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Abstract

Model Predictive Control (MPC) has become one of the most popular control techniques

in the process industry mainly because of its ability to deal with multiple-input-multiple-

output plants and with constraints. However, its performance can deteriorate in the

presence of model uncertainties and disturbances. In the last years, the development

of robust MPC techniques has been widely discussed, but these were rarely applied in

practice due to their conservativeness or their computational complexity.

This thesis presents multi-stage nonlinear model predictive control (multi-stage NMPC)

as a promising non-conservative robust NMPC control scheme, which is applicable in real-

time. The approach is based on the representation of the evolution of the uncertainty

by a scenario tree. It leads to non-conservative robust control of the plant because it

takes into account explicitly that new information (usually present as measurements)

will become available at future time steps and that the future control inputs can be

adapted accordingly, acting as recourse variables.

Different aspects of the proposed multi-stage NMPC scheme are studied in detail in this

thesis. Firstly, the approach is analyzed from a control theory point of view, including

a formulation that guarantees stability and constraint satisfaction. Secondly, an efficient

implementation is described, which is necessary to deal with one of the challenges of

the presented method: The size of the resulting optimization problems. Thirdly, novel

algorithms and modifications are proposed to enhance its performance and capabilities.

The method is evaluated using examples from the chemical engineering field. Several

simulations and real experiments presented in this thesis show that multi-stage NMPC is

a promising strategy for the optimizing control of uncertain nonlinear systems subject to

hard constraints. It is also shown that multi-stage NMPC performs better than standard

NMPC and better than other robust NMPC approaches presented in the literature while

still being implementable in real-time.
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Zusammenfassung

Modellprädiktive Regelung (kurz: MPC) ist eine der populärsten Methoden zur Regelung

von Anlagen in der chemischen Industrie. Dies beruht auf der Möglichkeit, Mehrgrößen-

systeme mit Beschränkungen zu behandeln. Ungenauigkeiten im mathematischen Modell

und äußere Einflüsse führen allerdings zu einer Verschlechterung der Regelgüte. Um die

genannte Probleme zu vermeiden, wurden in den letzten Jahren verschiedene robuste

MPC-Ansätze untersucht. Diese Ansätze finden aber in der Praxis selten Anwendung,

weil sie sehr konservative Lösungen liefern oder ihre numerische Komplexität zu hoch ist.

In dieser Dissertation wird die Methode des mehrstufigen nichtlinearen MPC als ein

vielversprechender robuster und nicht konservativer MPC-Ansatz vorgestellt. Die Meth-

ode basiert auf der Beschreibung der Unsicherheiten als Szenarienbaum. Dies führt zu

einer nicht konservativen und robusten Regelung der Strecke, weil explizit berücksichtigt

wird, dass in der Zukunft neue Informationen (oft in der Form von Messungen) zur Ver-

fügung stehen. Die zukünftigen Stellgrößen können dann entsprechend angepasst werden

und haben die Wirkung von recourse Variablen.

Verschiedene Aspekte des vorgestellten mehrstufigen nichtlinearen MPC-Ansatzes wer-

den in dieser Dissertation ausführlich untersucht. Zunächst wird eine Analyse aus der

Perspektive der Regelungstheorie vorgestellt, einschließlich einer Formulierung, welche

die Stabilität und die Einhaltung der Nebenbedingungen garantieren kann. Im näch-

sten Schritt wird eine effiziente Implementierung beschrieben, die notwendig ist, um die

wichtigste Herausforderung des Ansatzes zu bewältigen: die Größe des zu lösenden Op-

timierungsproblems. Im Anschluss daran werden neue Algorithmen und Ergänzungen

vorgeschlagen, um das Potenzial des Ansatzes zu erhöhen.

Die vorgestellte Methode wird mit Hilfe von Beispielen aus der Verfahrenstechnik evaluiert.

Mehrere Simulationen und Experimente werden in dieser Dissertation gezeigt. Die Ergeb-

nisse deuten darauf hin, dass die Methode des mehrstufigen nichtlinearen MPC eine

vielversprechende Strategie für die optimierungsbasierte Regelung unsicherer Systeme mit

Beschränkungen ist. Im Vergleich zu Standard MPC oder anderen robusten MPC Meth-

oden, weist der vorgestellte Ansatz eine bessere Regelgüte auf, während die gleichzeitig

in Echtzeit realisierbar ist.
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Chapter 1

Introduction

1.1 Motivation

In times when energy consumption, emissions, and production volumes of industrial

plants become ever more important, the optimization of the processes is a main goal

of all engineers in charge. This objective has to be achieved taking into account con-

straints arising from quality, safety and legal requirements. To successfully realize this

task in an uncertain environment and under the presence of disturbances is one of the

main goals of advanced process control.

Beyond classical linear control theory, model-based control strategies have been estab-

lished as a standard technique to cope with this problem, mainly because they can deal

with coupled multivariable plants subject to constraints on the control inputs as well

as on the process variables. However, the use of a model introduces uncertainty into

the control problem in the form of plant-model mismatch, thus making robust control a

fundamental tool.

One of the most popular model-based control strategies is model predictive control

(MPC). MPC uses a mathematical model to predict the future behavior of a system

and to compute a sequence of future control inputs by solving an optimization problem

that minimizes a pre-defined objective. The accuracy of the model and the presence of

disturbances have a strong influence on the performance and on the stability of such a

controller. This is one of the main reasons that prevents MPC, especially its nonlinear

version, from being widely used in the industry.

Dealing with uncertainty is one of the major challenges of model predictive control and
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therefore this subject has been widely studied during the last decades. While for the

linear case useful results which can be also applied in practice have been developed, for

the nonlinear case there is still a large gap between the problems that are solved in

academia and the problems that arise from real applications. To bridge this gap is the

central motivation of this thesis.

1.2 Scope of the Thesis

The main goal of this thesis is to investigate a new approach for the explicit consideration

of uncertainty within the framework of model predictive control. This approach should

extend the current state of the art by providing a method that achieves robust control

of a system under the presence of uncertainties with a better performance than existing

methods. The proposed approach should be applicable to complex problems and imple-

mentable in real-time. Furthermore, it should guarantee the stability and the constraint

satisfaction of the controlled system as well as the recursive feasibility of the optimization

problems.

These goals are accomplished in this thesis by means of multi-stage nonlinear model

predictive control, which uses ideas of multi-stage stochastic programming to formulate

the robust NMPC problem as a large optimization problem.

The performance of the proposed strategy will be evaluated with the help of challenging

case studies from the chemical engineering field that show the advantages of the approach

with respect to other methods presented in the literature.

1.3 Structure and Contribution of the Thesis

Fig. 1.1 shows the structure of this thesis. It consists of four main parts which deal with

the different aspects necessary to develop the multi-stage NMPC approach. In order to

achieve the main goals of this thesis, a multi-disciplinary approach is necessary which leads

to different contributions of each part of the thesis. In the remainder of this section, the

structure of the thesis is explained in detail together with the main contributions which

have led to several publications.
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Multi-stage NMPC

Theoretical
Foundations

Part I

Efficient
Implementation

and Solution

Part II

Simulation and 
Experimental 

Results

Part III

Extended 
Algorithms and 
Enhancements

Part IV

Figure 1.1: Structure of the thesis.

Part I: Theoretical Foundations

The first part presents the theoretical foundations of the approach on which the rest of

the thesis is based. In particular, Chapter 2 presents a literature review of the existing

methods for robust optimal control and for robust model predictive control.

Chapter 3 introduces the proposed multi-stage NMPC approach as a general framework

for robust NMPC, which includes several other robust approaches. This chapter is mainly

based on the publications (Lucia et al., 2013a) and (Lucia et al., 2014b).

Chapter 4 presents a formulation of the multi-stage approach that guarantees stability

and recursive feasibility of the optimization problem by extending the proofs available

for existing methods. The results presented in this chapter have been published in (Lucia

et al., 2014c).

Part II: Efficient Implementation and Solution

The use of multi-stage NMPC results in the formulation of multi-stage stochastic opti-

mization problems. These optimization problems are large and an efficient implemen-

tation is necessary to realize a real-time solution. This part of the thesis presents an

efficient implementation and introduces a tool called DO-MPC for the simple, modular

and efficient implementation of multi-stage NMPC.



4 Introduction

Chapter 5 presents the different discretization methods used for the discretization of the

nonlinear models that are used in this thesis, together with efficient methods for the

computation of the derivatives and their use via the optimization framework CasADi.

Chapter 6 presents the DO-MPC tool that has been developed in cooperation with co-

workers of the department for the efficient, simple and modular use of multi-stage NMPC.

This efficient implementation has been published in (Lucia et al., 2014e).

Chapter 7 presents an approach to decompose the large-scale optimization problems

that result from the multi-stage NMPC formulation into smaller subproblems which are

computationally less expensive. This chapter is based on the results presented in (Lucia

et al., 2013b).

Part III: Simulation and Experimental Results

The third part presents simulation and experimental results that illustrate the advantages

of the proposed approach.

Chapter 8 includes results achieved for polymerization processes under strong uncer-

tainties. In particular, results of the Chylla-Haase polymerization reactor, which are

published in (Lucia et al., 2013a), and results of an industrial batch polymerization reac-

tor provided by BASF SE (published in (Lucia et al., 2014b) and (Lucia et al., 2014a))

are presented to show the advantages of the multi-stage approach compared to existing

methods. Other results that illustrate different aspects and applications of multi-stage

NMPC that are not included in this thesis can be found in (Lucia and Engell, 2012),

(Lucia and Engell, 2013) or in (Lucia and Engell, 2014).

Chapter 9 presents the results for a stability guaranteeing formulation of multi-stage

NMPC applied to a simple example, as published in (Lucia et al., 2014c).

The efficient implementation of this approach enables its implementation on real plants,

which is demonstrated in Chapter 10 by its application to a laboratory process.

Part IV: Extended Algorithms and Enhancements

The last part of the thesis describes different algorithms that are based on the aforemen-

tioned theory and methods, and can be used to enhance the performance of the proposed



1.3 Structure and Contribution of the Thesis 5

approach in different manners.

Chapter 11 describes an extension of the multi-stage approach to reduce the variability

of the system under uncertainty. It is shown that enforcing a low variability of a system

under uncertainty may lead to a very poor performance, especially in the case of NMPC

with an economic cost function. These results have been published in (Lucia et al.,

2014b).

Chapter 12 presents a modification of the multi-stage NMPC that makes it possible to

guarantee robust constraint satisfaction for the uncertainty values that are not included

in the scenario tree on which the proposed approach is based. This chapter presents the

results published in (Lucia et al., 2014d).

Chapter 13 integrates the multi-stage approach with the use of optimal experiment design

which reduces the uncertainty range leading to an improved performance. These results

appeared in (Lucia and Paulen, 2014).

Part V: Summary, Conclusions and Future Work

The thesis is finalized in Chapter 14 where the main conclusions and directions for future

work are presented. Chapter 14 also includes some guidelines for the use of multi-stage

NMPC based on the results developed throughout this thesis and Appendix A presents

results of multi-stage NMPC for the problem of setpoint tracking.

The work presented in this thesis is the result of the research performed at TU Dortmund

with the financial support of the EU in the framework of the FP7 Project EMBOCON

(248940) and the ERC Advanced Grant MOBOCON (291458), as well as with the support

of the Deutsche Forschungsgemeinschaft (German Research Council) in the framework

of the research cluster optimization-based control of uncertain systems (EN 152/39-1).

This support is gratefully acknowledged and appreciated.
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Chapter 2

Optimization-based Robust Control

2.1 Optimal Control

Optimal control theory was born in the form of calculus of variations in 1697 when

Johann Bernoulli published his solution and the solution that different contemporaries

(Newton, Leibniz, l’Hopital, Tschirnbaus and his brother Jakob Bernoulli) had proposed

to solve the brachystochrone problem. After important contributions from Euler and

Lagrange among others (see (Sargent, 2000) for a more detailed historical perspective),

two of the major contributions to modern optimal control theory as it is known today

were provided by Pontryagin in (Pontryagin et al., 1962) where Pontryagin’s minimum

principle was presented and by the work of Bellman (Bellman, 1957) which resulted in

the Hamilton-Jacobi-Bellman equation. The contributions from Pontryagin and Bellman

made it possible to solve optimal control problems analytically.

After that, many works were focused on the linear, unconstrained optimal control prob-

lems, in particular on the linear quadratic (LQ) optimal control problem and on the

linear quadratic estimation (LQE) problem. In the LQ problem one tries to find the

optimal inputs that minimize a quadratic cost function for an infinite horizon and an

analytic solution can be obtained by solving the Ricatti differential equation. The LQE

problem consists in finding the optimal estimates using a model affected by process noise

and noisy measurements. Kalman proposed in (Kalman, 1960) a recursive formulation

which gives the optimal solution to this problem and it is known as the Kalman Filter.

The solution to these two important problems was one of the major achievements in

9
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control theory during the 20th century. The combination of both problems (the linear

quadratic regulator and the Kalman Filter) is known as the linear quadratic Gaussian

(LQG) problem. Doyle showed in (Doyle, 1978), that the LQG solution could exhibit

robustness problems even for arbitrarily small perturbations. This led to the development

of robust linear control theory. Most of the approaches for robust linear control theory

are focused on H∞ control (Zames, 1981), on Kharitonov’s methods (Kharitonov, 1978),

and on set-theoretic methods e.g. with bounding ellipsoids as presented in (Glover and

Schweppe, 1971).

Finding an analytic solution for the nonlinear case of the optimal control problem (and

of the robust optimal control problem) is in general not possible. It is then necessary

to employ numerical methods to solve general optimal control problems. The most used

numerical methods are usually classified as indirect methods and direct methods. Indirect

methods formulate the optimality conditions (obtained e.g. applying Pontryagin’s mini-

mum principle) and then discretize them to obtain a solution numerically. For this reason,

indirect methods are also called first optimize then discretize methods, see e.g. (Bryson

and Ho, 1975). Direct methods for the solution of optimal control problems were proposed

by (Bosarge and Johnson, 1970) among others leading to the control vector parametriza-

tion approach in (Sargent and Sullivan, 1978), the collocation approach in (Tsang et al.,

1975), and (Cuthrell and Biegler, 1987) and the multiple shooting method in (Bock and

Plitt, 1984). These methods are also referred to as first discretize then optimize methods

because the dynamics of the system and the control inputs are first discretized to formu-

late a nonlinear programming problem, which is then solved numerically. These methods

form the basis of most applications of dynamic optimization.

Another major advantage of transforming the optimal control problem into an optimiza-

tion problem is that different techniques from the field of optimization under uncertainty

can be used to address the issue of robustness of the optimal control solutions. The

field of optimization under uncertainty has experienced a tremendous progress in the last

century and some of the most relevant approaches are reviewed in the next section.

2.2 Optimization Under Uncertainty

Over the past 70 years, many techniques have been proposed to tackle the problem of op-

timization under uncertainty including stochastic programming, dynamic programming,
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and robust (worst-case, min-max) optimization.

One of the first efforts in the field of optimization under uncertainty was the work of

Dantzig (Dantzig, 1955) and Beale (Beale, 1955) for linear stochastic programming. A

huge amount of works followed this research making stochastic programming a very ac-

tive field with applications in many different disciplines, including operations research,

finances, and engineering.

Most of the formulations in stochastic programming consider a two- or multi-stage prob-

lem based on different scenarios of the uncertainty (Birge, 1997). The decision maker

can adapt the future decisions to the future observations, which is usually illustrated in

the separation of the decisions between here-and-now decisions that have to be fixed at

a certain time instant and the wait-and-see decisions which can be adapted according to

future observations. This concept – called recourse – plays a major role in optimization

under uncertainty and it is also a central element of this thesis. The typical formulation

of a two-stage linear stochastic programming problem can be written as:

min
x,y1,...,yN

cT x +
N∑

i=1

ωi qT
i yi (2.1a)

subject to:

Ax ≤ b (2.1b)

Wiyi ≤ hi − Tix, i = 1, ..., N, (2.1c)

where the vector x denotes the here-and-now (or first-stage) decisions, and the vectors yi

are the wait-and-see (or second-stage) decisions for each one of the N different possible

scenarios, which have a probability ωi to occur. The cost is a linear function of the first-

stage and the second-stage variables with coefficients c and qi. The constraints (2.1b)

(with A and b being a matrix and a vector of appropriate dimensions) represent linear

constraints on the first-stage variables and (2.1c) (with Wi, Ti and hi matrices and vector

of appropriate dimensions) denotes the constraints on the second-stage variables. The

key of this formulation is that the problem (2.1) models the fact that at the current time

a decision has to be made (here-and-now decision) in the presence of the uncertainty, but

this decision is taken assuming that at the next sampling time the decision maker will

take the optimal decision for each realization of the uncertainty. Thanks to this recourse,

the here-and-now decision can be less conservative because it relies on the possibility of

adapting the future decisions to the observation of the uncertainty. Two-stage problems

are based on the optimistic assumption that the uncertainty will be completely revealed
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at the next time stage, and therefore an optimal decision for each scenario can be taken.

If this assumption is not valid for the problem under study, the formulation has to be

extended to a multi-stage problem. In this case decisions are taken at each stage as

a response to the new information that becomes available as time progresses. A good

overview of the methods and theoretical basis of stochastic programming can be found

in (Birge, 1997) and in (Shapiro, 2009).

A different possibility to tackle the problem of uncertainty in optimization is to use

dynamic programming. This approach tries to find the optimal policies πk that minimize

the expected cost over a predefined planning horizon for all the possible values of the

uncertainty. Its formulation is based on the definition of the state sk of a dynamic

system at time k, to which decisions xk are applied. Then it searches for the policies

πk(sk) = xk that will result in a minimization of the expectation of the cost Ck(xk) over

a predefined planning horizon. Because of the presence of uncertainty, the state at the

next stage is a function of the previous state, the control action, and the uncertainty

(sk+1 = f(sk, xk, dk)). A general formulation of the dynamic programming formulation

can be written as the following optimization problem:

min
πk∈Π

E

{
K∑

k=0

Ck(xk))

}

, (2.2)

where K is the planning horizon and Π is the set of allowed policies. The work from

Bellman (Bellman, 1957) shows that an optimal policy that satisfies (2.2) also satisfies

the so-called Bellman equation, which defines the cost-to-go or value function at state sk,

denoted as Vk(sk), as the optimal cost from stage k until the end of the planning horizon

and can be written as:

Vk(sk) = min
πk∈Π

Ck(xk) + E {Vk+1(f(sk, xk, dk)|sk} . (2.3)

The Bellman equation is based on the so-called Bellman’s principle of optimality (Bell-

man, 1957), which says that for any optimal policy, regardless of the previous decisions,

the remaining decisions must be an optimal policy with respect to the state that resulted

from the previous decisions, i.e., every terminal part of an optimal policy is optimal.

However, solving (2.3) involves in general solving a recursive optimization problem which

is very difficult especially for high dimensions of the state and some approximations are

necessary (Powell, 2007). In particular the use of approximate dynamic programming

(ADP) has reported interesting results (see (Lee, 2014) for an overview). Dynamic pro-

gramming shares many common elements with stochastic programming, including the
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concept of recourse, but as recently discussed in (Powell, 2012), due to the use of a dif-

ferent formalism and different tools some of the parallelisms cannot be recognized easily.

A different approach to optimization under uncertainty is to use the robust counterpart

of the optimization problem. This approach started with the work of Soyster (Soyster,

1973) on robust linear programming. An important number of works have been devoted

to this topic in the last decades under the name of Robust Optimization. Most of the

approaches are focused on a convex formulation because in some cases it is possible to

reformulate the problem to a tractable convex optimization problem as shown in (Ben-Tal

and Nemirovski, 1998), which can be easily solved.

The simplest formulation addresses (in the linear case) problems of the following type:

min
x

c̃T x, (2.4a)

subject to:

Ãx ≤ b̃, (2.4b)

where x is the vector of decision variables, c̃ is the cost vector and Ã and b̃ denote the

constraints on the decision variables. In this framework, it is considered that c̃, Ã and

b̃ are all uncertain but known to be contained in a given uncertainty set. The optimal

solution of such a problem in the framework of robust optimization is the solution that

minimizes the value of the cost function for the worst case realization of the uncertainty

while satisfying the constraints for all the possible values of the uncertainty. For this

reason, these methods are also referred as min-max formulations. All the decision vari-

ables are here-and-now decisions, i.e., there is no possibility of recourse, and the fact that

future decisions can be adapted to the future observations is ignored. This can result

in conservative solutions compared to approaches that take recourse into account. In

order to overcome this drawback, some extensions of robust optimization have been re-

cently proposed such as the so-called adjustable robust counterpart (Ben-Tal et al., 2004)

which includes the notion of recourse in the robust optimization framework, borrowing

ideas from dynamic and stochastic programming. A wider overview of these methods is

presented in the recent book (Ben-Tal et al., 2009).
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2.3 Robust Model Predictive Control

Model Predictive Control, which was initially proposed in (Richalet et al., 1978) and

(Cutler and Ramaker, 1980), calculates at each sampling time of the controller a se-

quence of optimal control inputs by solving an optimization problem that minimizes a

pre-defined cost function over a finite prediction horizon subject to input and state con-

straints. This is illustrated in Fig. 2.1. Here the red line represents the control input

trajectory u(t), which is calculated until the prediction horizon NP . In a typical setting

the objective is to minimize the distance between a pre-defined reference (w(t)) and the

predicted trajectory of the plant (y(t)). As shown in Fig. 2.1, the control inputs are usu-

ally considered as piece-wise constant. In order to reduce the computational complexity

of the resulting optimization problems it is common to reduce its degrees of freedom by

considering the control input trajectory to be constant after the so-called control horizon

(Nu). Only the first control input of this sequence is applied to the plant, and at the

next sampling time the procedure is repeated using the new measurements of the states

as the initial condition for the next optimization problem. Usually steady-state accuracy

is achieved in the presence of modeling errors and disturbances via a bias correction term

that is computed from the last output measurements. In this case, the difference between

the last measurement and the prediction obtained at the previous step is added to the

predicted output along the prediction horizon, i.e., it is assumed that this difference will

remain constant in the future. As a result, feedback information – which is necessary to

control an uncertain system – enters the control loop only by the re-initialization of the

optimization problem and by the bias term. For this reason, the performance and the

stability of NMPC controllers rely strongly on the accuracy of the model that is used for

the optimization.

Robust model predictive control methods aim at overcoming the limitations of conven-

tional MPC with respect to the influence of model errors and disturbances, and have

attracted the attention of many researchers during the last years. Although it is known

that the standard MPC approach – ignoring uncertainties – has an inherent robustness

under quite strong assumptions (see (Grimm et al., 2004), (Limon et al., 2009)), this is

usually not sufficient for general nonlinear constrained systems and therefore the ideas of

optimization under uncertainty presented in the previous section were also used for the

robustification of MPC controllers. The first efforts in robust MPC were focused on the

so-called min-max MPC (Campo and Morari, 1987) using ideas of robust optimization
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Figure 2.1: Model Predictive Control strategy.

which were already presented in (Witsenhausen, 1968). This approach obtains a sequence

of control inputs that minimizes the cost of the worst-case realization of the uncertainty

while satisfying the constraints also for all the cases of the uncertainty. Min-max MPC

however does not take into account the fact that new information will be available in

the future and therefore the result may be overly conservative and may lead to infeasible

optimization problems, as illustrated in (Scokaert and Mayne, 1998).

In order to overcome this problem, closed-loop (or feedback) min-max NMPC was pro-

posed in (Lee and Yu, 1997), and (Mayne, 2001) using ideas from robust dynamic pro-

gramming. In this method, the cost function is minimized over a sequence of control

policies (in contrast to a sequence of control inputs). This solves the problems of con-

servativeness and feasibility because feedback is taken into account also within the opti-

mization problem and not only by its re-initialization. However, the resulting problem is

of infinite dimension and therefore difficult to solve. A solution presented in the litera-

ture is to restrict the possible policies to apply, for instance, only affine feedback control

policies as in (Bemporad, 1998), (Löfberg, 2003) or in (Goulart et al., 2006). This leads

to a certain degree of suboptimality that can be estimated for time-varying linear discrete

systems, as shown in (Hadjiyiannis et al., 2011). Other works in this direction tried to

apply approximate dynamic programming (Bjornberg and Diehl, 2006) in the context of

MPC. The complexity of this formulation limits its application to linear systems or more

recently to nonlinear systems without state constraints (Summers et al., 2013).
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Interestingly, less attention has been paid to the integration of the stochastic program-

ming paradigm in the framework of model predictive control. Although some works have

been presented in the linear case ((Scokaert and Mayne, 1998), (Muñoz de la Peña et al.,

2005b), (Bernardini and Bemporad, 2009)), the use of stochastic programming in robust

MPC has not been extensively studied in the case of general nonlinear systems. This is

the main topic of this work. In this thesis, multi-stage NMPC is presented as a general

framework that includes standard and min-max NMPC. Under the assumption that the

uncertainty can be perfectly modeled by a scenario tree, multi-stage NMPC provides the

best possible solution for the robust NMPC problem since it computes the optimal closed-

loop feedback policy over a finite prediction horizon. If this assumption does not hold,

i.e. if the uncertainty does not take only discrete values, multi-stage NMPC computes an

approximation of the optimal feedback policy that can be close to the optimal one if a

suitable scenario tree is chosen as will be discussed in Chapter 8.

The main drawback of the approach is that the size of the resulting optimization problem

grows exponentially with the length of the prediction horizon, and with the number of

uncertainties as well as with the number of different values of each uncertainty that is

considered in the design of the scenario tree. A detailed description of this approach is

provided in the next chapter.

A different approach for robust MPC which is not based on optimization under uncer-

tainty techniques but on set-theoretic methods is tube-based MPC. This approach was

presented for linear systems in (Mayne et al., 2005) and extended to the nonlinear case in

(Mayne and Kerrigan, 2007). It recently received attention as an alternative to min-max

approaches for the formulation of a robust NMPC scheme with guaranteed stability and

recursive feasibility. Tube-based MPC is based on the solution of the nominal control

problem and the inclusion of a so-called ancillary controller that ensures that the evolu-

tion of the real uncertain system stays within a tube around the nominal trajectory. The

cross-section of this tube is a robust positive invariant set, centered around the nominal

trajectory.

Different modifications and improvements have been reported in the literature (see (Rawl-

ings and Mayne, 2009), (Mayne et al., 2011), (Rakovic et al., 2011), (Yu et al., 2011)).

They mainly differ in the way how the cross-sections and the ancillary controller are cal-

culated, leading to different computation complexities and degrees of conservativeness.

In order to ensure that the constraints are robustly satisfied, the admissible set for the
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nominal problem has to be tightened in all cases, which can be difficult and conservative

for nonlinear systems if the constraints are active, as indicated in (Rawlings and Mayne,

2009). Tube-based control can be seen as the formalization of the standard engineering

approach to separate between trajectory or set-point generation and local feedback con-

trol to reduce the influence of disturbances. It can guarantee stability and constraint

satisfaction in the presence of bounded but unknown influences but does not address the

issue of optimal performance in the presence of uncertainties.

Other methods try to remove (completely or at least partially) the uncertainty from the

problem by estimating it using methods of experimental design (Qian et al., 2013) or dual

control (Adetola et al., 2009). The robustness with respect to the remaining uncertainty

can be achieved by means of min-max methods, or by computing a backoff with respect

to the active constraints as done e.g. in (Arellano-Garcia et al., 2005).

All the approaches discussed in this chapter try to guarantee stability or robust constraint

satisfaction for a given uncertainty range. There are other recent methods which enforce

the satisfaction of the constraints with a given probability (also called chance constraints),

given a probability distribution of the uncertainty, or a certain number of samples. These

methods are usually classified as stochastic model predictive control approaches. One

possibility is to use the scenario approach presented in (Calafiore and Campi, 2006)

which can be used for convex problems or special cases of nonlinear problems as shown

in (Grammatico et al., 2014). Other approaches use a problem formulation based on

polynomial chaos expansions e.g. in (Fagiano and Khammash, 2012), (Mesbah et al.,

2014) for parametric time-invariant uncertainty, or the works in (Farina et al., 2013),

(Cannon et al., 2011), which assume additive time-varying uncertainties.

2.4 Real-Time Optimization

Traditionally in the control of chemical processes under uncertainty, linear or nonlinear

MPC controllers are used to track set-points calculated by an upper layer which uses

steady-state optimization. Different methods have been presented in the literature to

solve the optimization problems in the upper layer explicitly, considering uncertainties.

These methods are usually classified under the name of Real-Time Optimization (RTO).

The main idea of RTO is to use measurements of the real system in order to achieve –
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usually in an iterative manner – optimal performance and constraint satisfaction in the

presence of uncertainties. As classified in (Chachuat et al., 2009), the RTO schemes can

be divided into different categories depending on how the measurement information is

used. If this information is used to update the parameters of the model, the two-step

approach presented in (Chen and Joseph, 1987), or in (Marlin and Hrymak, 1997) is

obtained. The information of the measurements can be used for the direct adaptation of

the inputs using different methods as for example the self optimizing control presented in

(Skogestad, 2000) or the tracking of the necessary conditions of optimality (NCO tracking,

(Srinivasan et al., 2002)). The main idea of the direct adaptation of the inputs is to avoid

the use of numerical optimization by finding some measured variables that, if maintained

constant (using e.g. a simple controller), enforce optimal performance. The measurement

information can also be used to modify directly the optimization problem by updating the

cost function and/or the constraints. This category of RTO schemes is usually referred

to as modifier adaptation. The basic idea of these methods is to use measurements of

the real plant to estimate an experimental gradient of the plant, which is added to the

cost function achieving robust optimality as presented in (Roberts, 1979). An update of

the constraints can also be performed as shown in (Gao and Engell, 2005) so that the

gradients of the constraints also match the plant gradients and upon convergence the

Karush-Kuhn-Tucker conditions of optimality are satisfied for the real plant (Marchetti

et al., 2009).

In a classical setup of a process control hierarchy, the RTO techniques are used to compute

set-points that have to be tracked using a lower-level MPC controller. Most of the

literature in control theory and applications until the recent years has focused on achieving

optimal and of course stable reference tracking. However, the actual goal of process

control is not to track as well as possible a certain set-point that has been previously

generated, but to maximize the profit (or minimize the costs) of a process as discussed in

(Engell, 2007). For this reason, in the last years the traditional two-layer framework with

a tracking cost function of the MPC scheme has frequently been replaced (at least in the

academic community) by a one-layer scheme in which an NMPC controller is used with a

general cost function that can represent the plant economics. Different results have been

reported recently usually referring to this approach as economic MPC in e.g. (Rawlings

and Amrit, 2009), (Idris and Engell, 2012), (Ellis et al., 2013), and in (Gopalakrishnan

and Biegler, 2013). An important implication of economic MPC is that the economic

operation of a system usually drives the system to its constraints and for this reason the
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use of robust schemes for economic MPC is crucial to guarantee that the constraints will

be respected also in the presence of model uncertainty and disturbances.

2.5 Discussion

This thesis uses ideas from the four research fields presented in this chapter: Optimal

control, optimization under uncertainty, robust model predictive control and real time

optimization.

Optimal control ideas are used in this thesis to transform the original optimal control

problem into a nonlinear programming problem using direct methods. This transforma-

tion makes it possible to use optimization under uncertainty, in particular multi-stage

stochastic programming, in the framework of robust NMPC to achieve a robust non-

conservative control of systems under uncertainty in which the control task is not to

track a predefined set-point, but to maximize the profit of a process using the ideas of

real-time optimization that led to economic NMPC formulations.

This chapter presented a short overview of some of the methods that are widely used

for the optimization-based control of uncertain systems. Due to the great interest that

this subject has attracted in the last decades, it is not possible to cover all the different

methods. For a more detailed description of classical robust optimal control methods

the reader is referred to (Zhou et al., 1996). The review in (Sahinidis, 2004) presents

different alternatives for optimization under uncertainty and the recent book (Ben-Tal

et al., 2009) presents robust optimization in detail. The main ideas of approximate

dynamic programming are discussed in (Powell, 2007) and some approaches for robust

MPC, especially tube-based methods, are discussed in more detail in (Rawlings and

Mayne, 2009). More information about RTO schemes can be found in (Srinivasan et al.,

2002), (Engell, 2009) and (Chachuat et al., 2009).





Chapter 3

Multi-stage NMPC as a General

Framework for Robust NMPC

This chapter presents the framework of multi-stage nonlinear model predictive control,

which is the central idea of the thesis. It is shown that this framework includes other

approaches such as a standard NMPC (which ignores the uncertainties), an open-loop

approach where no recourse is introduced and other robust approaches that parametrize

the future control inputs as affine policies. The resulting optimization problems and the

notation which will be used for the rest of the thesis are also defined here.

3.1 Multi-stage Nonlinear Model Predictive Control

Multi-stage NMPC is a robust NMPC approach that is based on describing the evolution

of the uncertainty by a scenario tree (see Fig. 3.1). Each branching at a node represents

the effect of an unknown uncertain influence (disturbance and model error) together with

the chosen control input. The tree structure represents how future control inputs can

depend on the previous values of the uncertainty if full state measurement or perfect es-

timation is assumed. This means that future control inputs can act as recourse variables

that counteract the effect of the future uncertainties, i.e., when the scenario tree is formu-

lated at a given time it is considered explicitly that when a new decision has to be taken

in the future, new information (usually in the form of measurements) will be available

and hence the decision can be adjusted accordingly. Thus, multi-stage NMPC is a closed-

21
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Figure 3.1: Scenario tree representation of the uncertainty evolution for multi-stage

NMPC.

loop robust NMPC approach that exhibits a lower degree of conservativeness compared

to other approaches, such as open-loop min-max NMPC, multi-model or multi-scenario

approaches without recourse (as the one in (Huang et al., 2009a)). The basic idea of the

use of a scenario tree for MPC was suggested in (Scokaert and Mayne, 1998) and some

results for linear MPC have been reported in (Muñoz de la Peña et al., 2005b) and in

(Bernardini and Bemporad, 2009). The same approach has been applied in planning and

scheduling, see e.g. (Sand and Engell, 2004) and (Cui and Engell, 2010). The first steps

in the direction of nonlinear systems were given in (Dadhe and Engell, 2008).

It is important to note that the tree structure does not necessarily represent time-varying

uncertainties or disturbances, but it reflects the fact that if the uncertainty is not known

at one sampling time, it will remain unknown at the next sampling time when a new tree

(shifted in time) will have to be considered.

Since the constraints are directly enforced in the optimization problem, their satisfaction

is guaranteed for all the values of the uncertainty that are considered in the scenario tree.
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For general nonlinear systems, robust constraint satisfaction cannot be guaranteed for

values that are not represented explicitly in the tree. However, the values of the param-

eters that produce the worst-case scenario are often on the boundaries of the considered

parameter interval (Srinivasan et al., 2002) and therefore a suitable scenario tree should

include the combinations of the extreme values of the parameters. In the remainder of

the thesis, an NMPC scheme is considered to be robust if it satisfies the constraints for

a given (properly chosen) scenario tree. If a suitable scenario is generated by the com-

bination of the different possible extreme values of the uncertainties, the size of the tree

grows exponentially with the number of uncertainties, as well as with the length of the

prediction horizon. This constitutes the main drawback of the approach.

In order to represent the real-time decision problem correctly, the control inputs cannot

anticipate the values of the uncertainty that are realized after the corresponding decision

point. This is enforced by the non-anticipativity constraints that require all the control

inputs that branch at the same node to be equal (for example in Fig. 3.1, u1
0 = u2

0 = u3
0;

u1
1 = u2

1 = u3
1; ...).

The scenario tree setting assumes a discrete-time formulation of an uncertain nonlinear

dynamic system described by f : Rnx × Rnu × Rnd → Rnx that can be written as:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), (3.1)

where each state xj
k+1 ∈ Rnx is a function of the previous state x

p(j)
k and nx is the number

of states. The superscript p(j) denotes the index of the previous (also called parent) node

in the tree, which is a function of its position j and of the stage k. The explicit dependence

on k is dropped from the notation for simplicity. The control input vector is denoted as

uj
k ∈ Rnu and nu is the number of control inputs. The realization r of the uncertainty

at stage k, which for each stage is a function of the position j in the scenario tree, is

denoted as d
r(j)
k ∈ Rnd, where nd is the dimension of the uncertainty vector (for example

in Fig. 3.1, x7
2 = f(x3

1, u7
1, d1

1)). For simplicity of the presentation, it is considered that

the tree has the same number of branches at all nodes, given by d
r(j)
k ∈ {d1

k, d2
k, ..., ds

k} at

stage k for s different possible values of the uncertainty. In order to make the notation

clear, the index set of all occurring indices (j, k) is denoted by I. Each path from the

root node x0 to a leaf node xi
NP

is called a scenario and is denoted by Si, which contains

all the states xj
k and control inputs uj

k that belong to scenario i:

Si = {xi
NP

, x
p(i)
NP −1, x

p(p(i))
NP −2 , ..., x1

0, ui
NP −1, u

p(i)
NP −2, u

p(p(i))
NP −2 , ..., ui

0}, ∀ i = 1, ..., N, (3.2)
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where N is the number of scenarios (or leaf nodes) and NP is the prediction horizon. In

a similar way the set of states that belong to scenario i is denoted as:

Xi = {xi
NP

, x
p(i)
NP −1, x

p(p(i))
NP −2 , ..., x1

0}, ∀ i = 1, ..., N, (3.3)

and the set of control inputs that belong to scenario i can be written as:

Ui = {ui
NP −1, u

p(i)
NP −2, u

p(p(i))
NP −2 , ..., ui

0}, ∀ i = 1, ..., N, (3.4)

The optimization problem resulting from the multi-stage formulation in a scenario-based

setting can be written as:

min
xj

k
,uj

k
∀(j,k)∈I

N∑

i=1

ωiJi(Xi, Ui), (3.5a)

subject to:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (3.5b)

g(xj
k+1, uj

k) ≤ 0 , ∀ (j, k + 1) ∈ I, (3.5c)

uj
k = ul

k if x
p(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I, (3.5d)

where g : Rnx × Rnu → Rng represents general and possibly nonlinear constraints on the

states and the inputs of the control problem evaluated at each node of the tree. The

number of constraints is determined by ng. The cost of each scenario Si with weight ωi

is denoted by Ji : Rnx×NP +1 ×Rnu×NP → R defined as:

Ji(Xi, Ui) =
NP −1
∑

k=0

L(xj
k+1, uj

k), ∀ xj
k+1 ∈ Xi, uj

k ∈ Ui, (3.6)

L : Rnx × Rnu → R is the stage cost, which represents a general cost function. The non-

anticipativity constraints in (3.5d) enforce that the decisions uj
k with the same parent

node x
p(j)
k must be the same. If the summation in (3.5a) is replaced by the max operator,

a closed-loop min-max approach is obtained, in which feedback is taken explicitly into

account. A comparison of both approaches will be presented in Chapter 8. If the number

of scenarios is N = 1, the problem is reduced to standard NMPC. The weights ωi ∈
RN

+ can be adapted according to parameter estimation or stochastic information if it is

available or chosen to be identical if no information is available.
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3.1.1 The Robust Horizon Assumption

From a computational point of view, the main challenge of the multi-stage approach is

the rapid growth of the size of the scenario tree for increasing length of the prediction

horizon, increasing number of uncertainties and increasing number of branches considered

for each uncertainty. This problem is commonly known in the literature of stochastic

programming and dynamic programming as the curse of dimensionality. This can be

seen in Table 3.1 in which the number of nodes of a scenario tree resulting from a multi-

stage NMPC formulation is shown for different lengths of the prediction horizon NP and

number of uncertainties. It is assumed that the scenario tree is generated by combining

the maximum, minimum and nominal value of the uncertainties. It is clear that the size

of the problem becomes rapidly intractable.

Table 3.1: Number of nodes of a scenario tree for multi-stage NMPC for different lengths

of the prediction horizon (Np) and different number of uncertainties, assuming three

branches per uncertainty.

# of uncertainties

NP 1 2 3 4

1 3 9 27 81

2 9 81 729 6,561

3 27 729 19,683 531,441

4 81 6,561 531,441 43,046,721

5 243 59,049 14,348,907 3,486,784,401

6 729 531,441 387,420,489 28,242,953,648

A simple strategy to deal with the growth of the tree with the prediction horizon is to

assume that the uncertainty remains constant after a certain point in time (called the

robust horizon). The main idea of this simplification is that due to the receding horizon

nature of NMPC, modeling the far future very accurately is not critical because all the

control inputs will be recomputed at the next sampling time anyway. An example of a

scenario tree illustrating this simplification can be seen in Fig. 3.2. This simplification

has been shown to provide very good results in practice as can be seen in (Lucia et al.,

2013a) and it will be used in the remainder of this thesis.
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Figure 3.2: Scenario tree representation of the uncertainty evolution for multi-stage

NMPC with robust horizon.

As pointed out above, the branching of the scenario tree does not only model the fact

that the uncertainties may be time-varying, but it also models the fact that at the next

sampling time a new tree will have to be considered. For this reason, even if the uncer-

tainties are truly constant (but unknown), the performance of multi-stage NMPC with

robust horizon NR = 1 does not necessarily have to be better than the performance of

multi-stage NMPC with NR = NP .

3.2 Open-loop Robust Nonlinear Model Predictive

Control

The formulation of multi-stage NMPC presented in (3.5) can be modified to represent

the open-loop case in which no feedback is incorporated in the prediction of the NMPC

controller. For this purpose the non-anticipativity constraints are modified such that

they force all control inputs to be equal at each time stage. Thus, a sequence of control

inputs satisfying the constraints for all the cases of the uncertainty in the scenario tree

has to be computed. The optimization problem that has to be solved at each sampling
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time reads as:

min
xj

k
,uj

k
∀(j,k)∈I

N∑

i=1

ωiJi(Xi, Ui), (3.7a)

subject to:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (3.7b)

g(xj
k+1, uj

k) ≤ 0 , ∀ (j, k + 1) ∈ I, (3.7c)

uj
k = ul

k , ∀ (j, k), (l, k) ∈ I, (3.7d)

here the only difference with respect to the multi-stage formulation (3.5) is the modifica-

tion of the non-anticipativity constraints in (3.7d).

3.3 The Importance of Recourse

This section shows a very simple example where it is easy to understand why the intro-

duction of recourse, which is realized by the formulation of a scenario tree in multi-stage

NMPC and ignored in an open-loop approach, can greatly improve the performance and

the feasible set of the controller. This example has been adapted from (Scokaert and

Mayne, 1998).

The following discrete-time system is considered:

xk+1 = xk + uk + dk. (3.8)

The disturbance dk can take values at each sampling time from the interval dk ∈ [−1, 1].

A scenario tree is generated using the maximum and the minimum possible values of dk

as it can be seen in Fig. 3.3 with a prediction horizon and a robust horizon NP = NR = 3.

The stage cost is the tracking of the origin, i.e. L = (xj
k − 0)2.

First an open-loop robust MPC approach is formulated, in which all the control inputs

at each stage have to be equal. The optimization problem that has to be solved at each

sampling time is:

min
xj

k
,uj

k
∀(j,k)∈I

N∑

i=1

(ωiJi(Xi, Ui)), (3.9a)

subject to:

xj
k+1 = x

p(j)
k + uj

k + d
r(j)
k , ∀ (j, k + 1) ∈ I, (3.9b)
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Figure 3.3: Scenario tree representation of the uncertainty with prediction horizon and

robust horizon NP = NR = 3 with two realizations of the uncertainty.

x1
0 = 2 (3.9c)

−2.0 ≤ xj
k ≤ 2.0, ∀ (j, k) ∈ I, (3.9d)

−1.0 ≤ uj
k ≤ 1.0, ∀ (j, k) ∈ I, (3.9e)

uj
k = ul

k, ∀ (j, k), (l, k) ∈ I, (3.9f)

Using the two extreme scenarios (realization with d
r(j)
k = −1 and d

r(j)
k = 1 for k =

0, .., NP − 1), it is easy to conclude that the problem (3.9) is infeasible as it is shown

below. For those scenarios the state at the end of the prediction horizon can be calculated

as:

Scenario 1: x1
3 = x1

0 + u1
0 + u1

1 + u1
2 + d1

0 + d1
1 + d1

2 = 2 + u1
0 + u1

1 + u1
2 − 1− 1− 1

= −1 + u1
0 + u1

1 + u1
2. (3.10)

Scenario 8: x8
3 = x1

0 + u2
0 + u1

4 + u8
2 + d2

0 + d2
1 + d2

2 = 2 + u2
0 + u4

1 + u8
2 + 1 + 1 + 1

= 5 + u2
0 + u4

1 + u8
2. (3.11)

From the equation defining the final state of the scenario 8 it is possible to infer that

the control inputs have to be chosen u2
0 = u4

1 = u8
2 = −1 in order to satisfy the state

constraints. Due to the open-loop nature of this formulation, the same control inputs

have to be used for all the cases of the uncertainties (imposed in (3.9f)) and this control

inputs result in constraint violations for scenario 1. Then this optimization problem is

infeasible and does not have a solution.
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However, if a multi-stage formulation is used, which can be written as:

min
xj

k
,uj

k
∀(j,k)∈I

N∑

i=1

ωiJi(Xi, Ui)) (3.12a)

subject to: (3.12b)

xj
k+1 = x

p(j)
k + uj

k + d
r(j)
k , ∀ (j, k + 1) ∈ I, (3.12c)

x1
0 = 2 (3.12d)

−2.0 ≤ xj
k ≤ 2.0, ∀ (j, k) ∈ I, (3.12e)

−1.0 ≤ uj
k ≤ 1.0, ∀ (j, k) ∈ I, (3.12f)

uj
k = ul

k if x
p(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I, (3.12g)

the scenario tree structure makes it possible to adapt the control inputs (respecting the

non-anticipativity constraints in (3.12g)) and it is possible to find a feasible solution. For

example in this case the control inputs u2
0 = u4

1 = u8
2 = −1 and u1

0 = −1, u4
1 = u8

2 = +1

provide a feasible solution for the scenarios 1 and 8. It is trivial to find feasible control

inputs for the rest of the scenarios.

This simple example shows the importance of considering recourse if it exists the possi-

bility of taking new decisions (control inputs) using measurements about the system that

become available in the future, as it is the case in model predictive control.

3.4 Robust Model Predictive Control with Affine Poli-

cies

The computation of open-loop control policies can lead to very conservative solutions or

even to infeasible optimization problems as has been illustrated in the previous section.

A traditional way to introduce feedback in the predictions to achieve a closed-loop for-

mulation is to include a feedback matrix which depends on the future predicted state as

an additional degree of freedom in the optimization problem. This was introduced in the

context of MPC in (Bemporad, 1998). In this case, the control input that is calculated

at each sampling time in the prediction is uj
k = vj

k + Kx
p(j)
k where K ∈ Rnx×nx is the

new optimization variable. Other parametrizations, including time-varying affine (state

feedback) policies or affine policies parametrized on the uncertainty instead of on the

states, have also been proposed in the literature (see e.g. (Löfberg, 2003) or (Goulart
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et al., 2006)).

The constraints have to be satisfied for all values of the uncertainty and in order to have

a direct comparison with the other presented approaches this is enforced by applying

the constraints to all the nodes of the tree. Following (Goulart et al., 2006), only the

nominal scenario is considered in the cost function, which can easily be extended to the

average over all the scenarios if wanted. The optimization problem that is solved at each

sampling time in the case of constant affine policies can be written as:

min
xj

k
,vj

k
,K ∀(j,k)∈I

1∑

i=1

ωiJi(Xi, Ui), (3.13a)

subject to:

xj
k+1 = f(xp(j)

k , vj
k + Kx

p(j)
k , d

r(j)
k ), ∀ (j, k + 1) ∈ I, (3.13b)

g(xj
k+1, vj

k + Kx
p(j)
k ) ≤ 0 , ∀ (j, k + 1) ∈ I, (3.13c)

vj
k = vl

k , ∀ (j, k), (l, k) ∈ I. (3.13d)

For the case of time varying state feedback policies, uj
k = vj

k + Kx
p(j)
k with Kk ∈ Rnx×nx ,

the optimization problem is formulated as:

min
xj

k
,vj

k
,Kk ∀(j,k)∈I

1∑

i=1

ωiJi(Xi, Ui), (3.14a)

subject to:

xj
k+1 = f(xp(j)

k , vj
k + Kkx

p(j)
k , d

r(j)
k ), ∀ (j, k + 1) ∈ I, (3.14b)

g(xj
k+1, vj

k + Kkx
p(j)
k ) ≤ 0 , ∀ (j, k + 1) ∈ I, (3.14c)

vj
k = vl

k , ∀ (j, k), (l, k) ∈ I. (3.14d)

This chapter presented four different designs for robust NMPC which will be used in

the remainder of this thesis. Multi-stage NMPC is described in (3.5), which also in-

cludes standard NMPC if the number of scenarios is N = 1, and min-max NMPC if

the maximization operator is used instead of the summation in the cost. An open-loop

robust NMPC implementation in which a sequence of control inputs has to satisfy the

constraints for all the cases of the uncertainty can be found in (3.7). Robust NMPC with

affine constant policies is defined in (3.13) and robust NMPC with affine time-varying

policies is described in (3.14). These names will be used for referring to the different

approaches in the remainder of the thesis.



Chapter 4

Stability Properties of Multi-stage

NMPC

Since the very first paper on model predictive control in the work of (Richalet et al.,

1978), it was shown that MPC had significant advantages over other control techniques,

which led to it being taken up quickly in the process industry. However, it was later

realized that the simple solution of a finite horizon problem is not enough to achieve a

guarantee for the stability of the closed-loop system when such a receding horizon strategy

is applied, as shown e.g. in (Bitmead et al., 1990). During the decade of the 1990s, many

different modifications of the MPC formulation were proposed to ensure the closed-loop

stability of a system controlled using MPC. Most of these results are summarized and

condensed in the important publication by (Mayne et al., 2000). The different approaches

are all based on modifications of the original MPC problem. These modifications usually

include a so-called terminal penalty term that penalizes the states at the last stage of the

prediction horizon and a terminal constraint which forces the state at the last stage of

the prediction horizon to lie within a pre-computed terminal set.

In this chapter, these ideas are extended to the multi-stage NMPC case using the concept

of Input-to-State Stability (ISS) (Jiang and Wang, 2001). ISS was recently presented

as an unifying framework for the stability analysis of robust NMPC (see (Magni and

Scattolini, 2007), (Limon et al., 2009)). The work presented in this chapter has been

done in collaboration with Daniel Limon and it is largely identical to the work published

in (Lucia et al., 2014c).

31
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Figure 4.1: Scenario tree representation of the uncertainty with embedded non-

anticipativity constraints.

In order to facilitate the notation used during the stability proofs presented in this chap-

ter, the non-anticipativity constraints are embedded in the formulation by reducing the

number of different control inputs that are available at each stage so that the same control

input variable is used at each node as can be seen in Fig. 4.1. Then the indices for the

description of the uncertain nonlinear system are used as:

xc
k+1 = f(xj

k, uj
k, dr), (4.1)

where xj
k ∈ Rnx denotes the state vector at stage k. The child node xc

k+1 ∈ Rnx is obtained

when the control input uj
k ∈ Rnu is applied at the parent node xj

k and the realization of

the uncertainty is dr ∈ Rnd . Since the same values of the uncertainty are used at each

time stage, the subindex k is dropped for dr for the formulations of the proofs. For a

uniform scenario tree, the index of the children node can be calculated as a function of the

parent node and the realization of the uncertainty c = s(j − 1) + r, where s denotes the

number of realizations of the uncertainty (or branches of the scenario tree at each node).

Note that it is also possible to determine the realization r of the uncertainty that leads

to a node xj
k using the modulo operator r = mod(j, s) + 1. Without loss of generality, it

is considered that the scenario tree is generated at each sampling instance starting from

stage k = 0. For the analysis of the multi-stage NMPC, some basic assumptions are
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necessary.

Assumption 1 (Basic Assumptions).

A. The system (4.1) is assumed to be uniformly continuous in dr and to have an equilib-

rium point at the origin, i.e., f(0, 0, 0) = 0.

B. Control and states are required to satisfy constraints (imposed in the optimization

problem), xj
k ∈ X ⊆ Rn and uj

k ∈ U ⊆ Rm, ∀(j, k) ∈ I, where X and U are compact sets.

C. The uncertainty is assumed to take one of the different s possible realizations at each

node, i.e, dr ∈ D = {d1, ..., ds} with probability {π1, ..., πs} respectively and the set D is

the same for all stages.

D. Perfect measurement information is available, that is, the states are available before a

new decision has to be computed each sampling time.

In order to guarantee the closed-loop stability of multi-stage NMPC it is necessary to

modify the optimization problem (3.5) presented in the previous chapter by adding a

terminal penalty term and terminal constraints. In addition, it is easier to prove the

stability of the multi-stage NMPC approach if the cost function is formulated stage-wise

instead of scenario-wise, such that the cost for each node in the tree is summed at each

stage. Then, the optimization problem at each sampling instance is formulated as:

min
xj

k
,uj

k
∀(j,k)∈I

NP −1
∑

k=0

sk+1
∑

j=1

πj
kℓ(xj

k, uj
k) +

sNP
∑

j=1

πj
NP

V r
f (xj

NP
), (4.2a)

subject to:

xc
k+1 = f(xj

k, uj
k, dr), ∀ (j, k + 1) ∈ I, (4.2b)

xj
k ∈ X , ∀ (j, k) ∈ I, (4.2c)

uj
k ∈ U , ∀ (j, k) ∈ I, (4.2d)

xj
NP
∈ Xf , ∀ (j, NP ) ∈ I, (4.2e)

where in the stage cost ℓ : Rnx×Rnu → R, xj
k represents the parent node from which with

the control input uj
k and the realization of the uncertainty dr the children node xc

k+1 is

obtained. Since s denotes the number of realizations of the uncertainty, sk is the number

of nodes that the scenario tree has at stage k. V r
f : Rnx → R are possibly different

terminal penalty terms, depending on which realization dr led to the corresponding leaf

node. Each node xj
k has a certain probability of being reached from its parent node that

is equal to the probability {π1, ..., πs} of the corresponding realization of the uncertainty.
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The accumulated probability πj
k of the node xj

k is defined as the probability of this node

to be reached from the root node x1
0 and it can be calculated as the product of the

probabilities of the realizations of the uncertainty that occur along the path from x1
0

until xj
k. For instance, the probability associated to node x3

2 in Fig. 4.1 is calculated as

π3
2 = π1 ·π3. In this way, the sum of the accumulated probabilities of all the nodes in each

stage is equal to one. The accumulated probabilities πj
k are in general different from the

probabilities of each scenario ωi defined in (3.5). The accumulated probabilities at the

last stage πj
NP

coincide with the probabilities of each scenario ωi. The set of states for

which a solution of problem (4.2) exists is denoted as XA(NP ) and it is called feasibility

region.

Remark 1. Note that there is only one terminal Xf set but there are different terminal

penalty terms V r
f , depending on the realization of the uncertainty in the last stage. By

adapting these penalties, the guarantee of stability can be facilitated.

The value of the cost function defined in (4.2a) for a given initial state x1
0, a given

prediction horizon NP and a given set of control inputs ũ is denoted as J(x1
0, ũ, NP ). The

set of optimal control inputs that solve problem (4.2) are denoted as ũ∗ and as usual only

the first stage control input is used (u1∗
0 ). This is repeated in a receding horizon fashion

obtaining implicitly the NMPC control law κNP
. The optimal value of the cost function

with prediction horizon NP at each sampling instance is denoted as

VNP
(x1

0) = J(xj
k, ũ∗, NP ). (4.3)

4.1 Input-to-State Stability of Multi-stage NMPC

4.1.1 Notation and Basic Definitions

The open-loop system (4.1) is assumed to be controlled by a certain control law u = κ(x),

so that the closed-loop system is expressed as:

xk+1 = F (xk, dk), (4.4)

where dk represents the actual realization of the disturbance and xk is the current state

of the system. The following definitions are necessary for the analysis of the stability

of the origin of multi-stage NMPC. They can be found in the literature (Khalil, 2002;
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Magni and Scattolini, 2007; Limon et al., 2009) or (Rawlings and Mayne, 2009) and they

are shortly presented here for the sake of completeness.

Definition 1 (Robust positively invariant (RPI) set). A set Ω ⊆ X
n that contains the

origin is said to be a robust positively invariant set for system (4.4) with respect to D if

for all x ∈ Ω it holds that F (x, d) ∈ Ω for all d ∈ D.

Definition 2 (Class K-functions). A function γ: R+ → R+ is said to belong to class K
if it is strictly increasing and γ(0) = 0. It is said to belong to class K∞ if γ(a) → ∞ as

a→∞.

Definition 3 (Class KL-functions). A function β: R+ × Z+ → R+ is said to belong to

class KL if for each fixed k, β(·, k) belongs to class K and for each fixed s ≥ 0, β(s, ·) is

decreasing and β(s, k)→ 0 as k →∞.

Definition 4 (Regional Input-to-State Practical Stability). Given a RPI set Γ ∈ R
n,

with the origin in its interior, the closed-loop system (4.4) is said to be ISpS in Γ with

respect to d if there exist a KL-function β, a K-function γ, and a constant c ≥ 0 such

that

|xk| ≤ β(|x0|, k) + γ(|d[0,k−1]|) + c, (4.5)

for all k ≥ 0, x0 ∈ Γ, d ∈ D where d[0,k−1] indicates the sequence of realizations of the

uncertainty from time 0 to time k − 1. If it holds for c = 0, then the system 4.1 is said

to be ISS in Γ.

The concept of Input-to-State stability implies asymptotic stability of the nominal system

and that the effect of the uncertainty on the states is bounded (Limon et al., 2009). Also,

the real uncertain system will converge asymptotically to the origin if the uncertainty

vanishes. This is the main difference to the Input-to-State practical stability property,

in which it is not guaranteed that the system will converge to the origin for the case of

vanishing uncertainty, but it will converge to a compact set around the origin.

The following definition was introduced in (Limon et al., 2006) and describes the existence

of a Lyapunov function that can be used for the analysis of the ISpS property.

Definition 5 (ISpS Lyapunov function in Γ). Assuming that Γ is an RPI set with the

origin in its interior and that there exists a compact set Θ ⊆ Γ with the origin as an

interior point. A function V : Rn → R+ is called an ISpS-Lyapunov function in Γ for
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the closed loop system (4.4) with respect to d, if there exist K∞-functions α1, α2, α3, a

K-function σ and constants c1, c2 such that:

V (x) ≥ α1(|x|), ∀x ∈ Γ, (4.6a)

V (x) ≤ α2(|x|) + c1, ∀x ∈ Θ, (4.6b)

∆V (x, d) ≤ −α3(|x|) + σ(|d|) + c2, ∀x ∈ Γ, d ∈ D, (4.6c)

where ∆V (x, d) = V (F (x, d))− V (x).

After introducing these definitions, it is possible to state the following theorem, which

has been presented in (Limon et al., 2006) and in (Limon et al., 2009).

Theorem 1. Consider that the system (4.4) fulfills Assumption 1. If this system admits

an ISpS-Lyapunov function in Γ with respect to d, then it is ISpS in Γ with respect to d.

Proof. See (Limon et al., 2006) or (Limon et al., 2009).

4.1.2 Input-to-State Practical Stability of Multi-stage NMPC

In this subsection the extension of the Input-to-State practical stability property to the

case of multi-stage NMPC is presented. In order to derive this result, it is necessary to

introduce the following assumptions.

Assumption 2 (Assumptions on the stage cost). There exist a constant c3 ≥ 0 such

that: γ1(|x|) ≤ ℓ(x, u) ≤ γ2(|x|) + c3, where γ1, γ2 are K∞ functions.

Assumption 3 (Assumptions on the terminal ingredients).

A. Xf ⊆ X, 0 ∈ Xf and Xf is closed.

There exists a feedback policy κf (x) inside Xf such that:

B. κf (x) ∈ U, ∀x ∈ Xf .

C. f(x, κf (x), d) ∈ Xf , ∀x ∈ Xf , ∀d ∈ D.

There exist a set of terminal cost functions V r
f (x) such that:

D. γ3(|x|) ≤ V r
f (x) ≤ γ4(|x|), ∀x ∈ Xf , ∀V r

f with r ∈ {1, ..., s} and γ3, γ4 are K∞-

functions.

E.
∑s

r=1 πrV r
f (f(x, κf(x), dr)) − V l

f (x) ≤ −ℓ(x, κf (x)) + γd(|d|), ∀x ∈ Xf , ∀d ∈ D, with

l ∈ {1, ..., s} and γd is a K∞-function.
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Remark 2. The only nonstandard assumption is 3.E. As long as assumption 3.E is sat-

isfied, the probabilities πr can be chosen to enhance the performance of the controller. For

instance, if the uncertainty can be estimated, the probabilities can be adjusted according

to this estimation, achieving a better performance, but still guaranteeing robust stability

and robust constraint satisfaction.

One important ingredient for stability proofs of NMPC schemes is the monotonicity of

the cost function. In the next lemma, we show that the cost function of the multi-stage

NMPC scheme has this property.

Lemma 1 (Monotonicity of the cost function). Suppose that assumptions 1, 2 and 3

hold. Then, there exists a K∞-function γ5 such that

Vk+1(x1
0) ≤ Vk(x1

0) + γ5(|d̄|), ∀k ∈ Z[0,NP −1], ∀d̄ ∈ D, ∀x1
0 ∈ XA(NP ). (4.7)

Proof. Let ũ+ be a feasible, but not necessarily optimized, set of control inputs of the

problem with horizon NP + 1. It contains the optimized control inputs of the problem

with horizon NP , denoted as ũ∗, and the not necessarily optimized control inputs for stage

NP + 1, denoted as uj
NP

. Provided that xj
NP
∈ Xf ∀(j, NP ) ∈ I (imposed in (3.5)), the

inputs uj
NP

are calculated using the auxiliary control law κf (x), so that uj
NP

= κf (xj
NP

).

In this manner, it is guaranteed that the system at time NP + 1 satisfies both input and

state constraints because of Assumptions 3.B and 3.C.

Then, the not necessarily optimal cost function of the problem with horizon NP + 1 can

be written as:

J(x1
0, ũ+, NP + 1) = VNP

(x1
0) +

sNP
∑

j=1

πj
NP

ℓ(xj
NP

, uj
NP

)

−
sNP
∑

j=1

πj
NP

V r
f (xj

NP
) +

sNP +1
∑

j=1

πj
NP +1V

r
f (f(xj

NP
, uj

NP
, dr)).

(4.8)

Making use of Assumption 3.E it is possible to prove that

sNP +1
∑

j=1

πj
NP +1V r

f (f(xj
NP

, uj
NP

, dr
NP

))−
sNP
∑

j=1

πj
NP

V r
f (xj)

≤ −
sNP
∑

j=1

πj
NP

ℓ(xj
NP

, uj
NP

) + γ5(|d̄|).
(4.9)

This follows from applying Assumption 3.E to each of the sNP leaf nodes of the problem

with horizon NP . Then, it is clear that VNP +1(x1
0), the optimal cost of the problem with
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horizon NP + 1, fulfills

VNP +1(x
1
0) ≤ J(x1

0, ũ+, NP + 1) ≤ VNP
(x1

0) + γ5(|d̄|), (4.10)

for all x ∈ XA(NP ) and for all d̄ ∈ D. This is true for all NP and thus (4.7) is proved.

Now we prove Input-to-State practical stability of multi-stage NMPC extending existing

results as the ones presented for nominal (Rawlings and Mayne, 2009) and min-max

NMPC (Raimondo et al., 2007).

Theorem 2 (ISpS of multi-stage NMPC). Provided that Assumptions 1, 2 and 3 hold,

the system (4.1) with the receding horizon control law κNP
is ISpS with robust invariant

region XA(NP ).

Proof. The theorem can be proved by showing that the optimal value of the cost function

(4.3) is an ISpS Lyapunov function for the closed-loop system in XA(NP ). It is easy to

prove that under the given assumptions XA(NP ) is robust positively invariant (Raimondo

et al., 2007). Then, we establish the three conditions that VNP
(x1

0) has to fulfill to be an

ISpS Lyapunov function.

(i) First, the lower bound (4.6a) will be proved, which follows from Assumption 2 and

VNP
(x1

0) ≥
NP −1
∑

k=0

sk
∑

j=1

πj
kℓ(xj

k, uj
k)

≥ min
(j,k)∈I

πj
kℓ(xj

k, uj
k) ≥ γ1(|x|),

(4.11)

for all x ∈ XA(NP ), where the last inequality holds because of Assumption 2.

(ii) The upper bound (4.6b) can be proved by using the monotonocity property derived

in Lemma 1. By applying it recursively

VNP
(x1

0) ≤ VNP −1(x1
0) + γ5(|d|) ≤ ... ≤ V0(x1

0)

+ NP γ5(|d̄|) = V r
f (x1

0) + NP γ5(|d|) ≤ γ4(|x1
0|) + NP γ5(|d̄|),

(4.12)

for all x1
0 ∈ XA(NP ), where the last inequality follows from Assumption 3.D.

(iii) The key element of MPC stability proofs is the descent property (4.6c). In order

to show that this property holds, we write the optimal value of the cost function of
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the problem with horizon NP as:

VNP
(x1

0) =
s∑

r=1

πrVNP −1(f(x1
0, u1

0, dr)) + ℓ(x1
0, u1

0)

= ℓ(x1
0, u1

0) +
s∑

r=1

πrVNP
(f(x1

0, u1
0, dr))

+
s∑

r=1

πrVNP −1(f(x1
0, u1

0, dr))−
s∑

r=1

πrVNP
(f(x1

0, u1
0, dr))

Reordering and grouping summations we have that:

− VNP
(x1

0) + ℓ(x1
0, u1

0) +
s∑

r=1

πrVNP
(f(x1

0, u1
0, dr))

=
s∑

r=1

πr[VNP
(f(x1

0, u1
0, dr))− VNP −1(f(x1

0, u1
0, dr))]

≤ γ5(|d̄|),

where the inequality holds because of the monotonicity property derived in Lemma

1. Then:

ℓ(x1
0, u1

0) +
s∑

r=1

πrVNP
(f(x1

0, u1
0, dr)) ≤ VNP

(x1
0) + γ5(|d̄|), (4.13)

which implies

s∑

r=1

πrVNP
(f(x1

0, u1
0, dr))− VNP

(x1
0) ≤ −γ1(|x1

0|) + γ5(|d̄|), (4.14)

for all x1
0 ∈ XA(NP ) and for all dr ∈ D.

The inequality in (4.14) shows an average descent in the optimal value of the cost

function over all the possible realizations of the uncertainty. In order to prove ISpS

of the closed loop system, a decrease for each realization is needed as shown in (4.6c).

To achieve this condition, it is possible to prove that for all x1
0 ∈ XA(NP ), it holds

for any dl ∈ D that the difference between the individual costs VNP
(f(x1

0, u1
0, dl))

and the average cost over all l = 1, ..., s is bounded:

VNP
(f(x1

0, u1
0, dl)) ≤

s∑

r=1

πrVNP
(f(x1

0, u1
0, dr)) + γ6(|d̄|) + ρ, (4.15)

This can be derived taking into account that VN is such that for all dl, dr ∈ D

|VNP
(f(x, u, dr))− VNP

(f(x, u, dl))| ≤ γV (|d̄|) + ρV where γV (|d̄|) is a K∞-function

and ρV is a constant which is nonzero only in the case of discontinuity of VNP
and
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always exists because VNP
is bounded. The dependence on d̄ ∈ D of the bound

given by γV (|d̄|) follows from the the uniform continuity of f(x, u, dr) in dr given

by Assumption 1. By bounding each one of the cost functions inside the sum, then

(4.15) holds with γ6(|d̄|) = γV (|d̄|) and ρ = ρV . Then for all dr ∈ D and for all

x1
0 ∈ XA(NP ) we have that:

VNP
(f(x1

0, u1
0, dr))− VNP

(x1
0) ≤ −γ1(|x1

0|) + γ5(|d̄|) + γ6(|d̄|) + ρ

= −γ1(|x1
0|) + γ7(|d̄|) + ρ.

(4.16)

This proves condition (4.6c) and therefore Theorem 2 is also proved.

4.1.3 Achieving Input-to-State Stability of Multi-stage NMPC

Note that the terms γ7(|d̄|) and ρ that appear in (4.16) only allow for a convergence of the

system to a neighborhood of the origin even if there is no disturbance. The reason for this

stems from the design of the controller, which always takes into account all the possible

scenarios. In a very similar manner as demonstrated in (Lazar et al., 2008), (Raimondo

et al., 2009), and (Limon et al., 2009) for min-max NMPC, it is possible to prove the

Input-to-State stability of the multi-stage NMPC by using a dual-mode controller. That

is, the implicit control law derived from the solution of the NMPC problem is used until

the system reaches the terminal set Xf . Once the system is in this region the terminal

control law κf is applied. ISS can be proved using the fact that the terminal set Xf

can be reached in finite time, and imposing that V T
f =

∑s
r=1 πrV r

f is an ISS-Lyapunov

function for the system (4.1) with the terminal control law κf in the set Xf .

4.2 Multi-stage NMPC with Robust Horizon

In this section the stability proof is extended for the case of a robust horizon NR smaller

than the prediction horizon NP . The optimization problem solved at each sampling time

for multi-stage NMPC with prediction horizon NP and robust horizon NR is:

min
xj

k
,uj

k
∀(j,k)∈I

NR−1
∑

k=0

sk+1
∑

j=1

πj
kℓ(xj

k, uj
k) +

sNR
∑

j=1

πj
NR





NP −1
∑

k=NR

ℓ(xj
k, κf(xj

k)) + V r
f (xj

NP
)





︸ ︷︷ ︸

W r
f

(xj
NR

,κf (xj
NR

),dr)

, (4.17a)
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subject to:

xc
k+1 = f(xj

k, uj
k, dr), ∀ (j, k + 1) ∈ I with k = 0, ..., NR − 1, (4.17b)

xj
k+1 = f(xj

k, κf(xj
k), dr), ∀ (j, k + 1) ∈ I with k = NR, ..., NP − 1, (4.17c)

xj
k ∈ X , ∀ (j, k) ∈ I, with k = 0, ..., NR − 1, (4.17d)

uj
k ∈ U , ∀ (j, k) ∈ I, with k = 0, ..., NR − 1, (4.17e)

xj
NR
∈ Xf , ∀ (j, NR) ∈ I, (4.17f)

The new terminal cost W r
f (·) includes the original stage cost ℓ(·) applied from the ro-

bust horizon NR until NP − 1 using the terminal control law as control input and the

original terminal penalty term V r
f (·) applied to the leaf nodes at stage NP . Note that

the accumulated probabilities remain constant after the robust horizon, and therefore

the same probability πj
NR

can be used in (4.17a) for the stage and terminal cost af-

ter the robust horizon. For simplicity in the notation we denote the new terminal cost

W r
f (xj

NR
, κf (xj

NR
), dr) as W r

f (xj
NR

). The stability proof can be done in a similar form as in

the case of the complete tree. Assumption 3.E is substituted by the following assumption.

Assumption 4 (Robust horizon assumption).

A prediction horizon NP and a robust horizon NR with NP ≥ NR are chosen such that As-

sumption 3.E holds with W r
f (·) as terminal cost function. That is,

∑s
r=1 πrW r

f (f(x, κf(x), dr))−
W l

f(x) ≤ −ℓ(x, κf (x))+ γe(|d|), ∀x ∈ Xf , ∀d ∈ D, with l ∈ {1, ..., s}, γe is a K∞-function.

Remark 3. Denoting f(xj
k, κf(xj

k), dr) as f r
κf

(xj
k) for simplicity, it is possible to write

the left hand side of Assumption 4 as

s∑

r=1

πrW r
f (f r

κf
(xj

k))−W l
f(xj

k) =

s∑

r=1

πr





NP −1
∑

k=NR

ℓ(f r
κf

(xj
k)), κf(f r

κf
(xj

k))) + V r
f (f r

κf
(xj

k))



−
NP −1
∑

k=NR

ℓ(xj
k, κf(xj

k)) + V l
f (xj

NP
) =

s∑

r=1

πrV r
f (f r

κf
(xj

k)))− V l
f (xj

NP
) +

NP −1
∑

k=NR

(
s∑

r=1

πrℓ(f r
κf

(xj
k), κf(f r

κf
(xj

k)))− ℓ(xj
k, κf(xj

k))

)

≤ −
s∑

r=1

πrℓ(xj
k, κf(xj

k)) + γe(|dr|).

As it can be seen from the expression above, If NR = NP , the second term of the left

hand side of the inequality disappears and the assumption is reduced to Assumption 3.E.

For NR < NP , and if this term is negative, Assumption 4 is a relaxed assumption with
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respect to Assumption 3.E and therefore the domain of attraction may be increased as

will be illustrated in the next section. Note that for this term to be negative it is only

required that the average stage cost decreases in the terminal set along the time steps

k = NR...NP − 1.

The optimal value of the problem with robust horizon NR and prediction horizon NP can

be written as:

VNP ,NR
(x1

0) = J(xj
k, ũ∗, NP , NR), (4.18)

where ũ∗ is the set of optimal control inputs that solve problem (4.17). Then, it is possible

to proof ISpS of the multi-stage approach with robust horizon making use of the following

lemma.

Lemma 2. If Assumptions 1, 2, 3.A-D and 4 hold, then there exists a K∞-function γ8

such that

Vj+1,l+1(x0) ≤ Vj,l(x0) + γ8(|d̄|),
∀j ∈ Z[0,NP −1], ∀l ∈ Z[0,NR−1] with j ≥ l, ∀d̄ ∈ D.

Proof. The not necessarily optimal cost function of the problem with prediction horizon

NP + 1 and robust horizon NR + 1 can be written as:

J(xj
k, ũ+, NP + 1, NR + 1) = VNP ,NR

(x1
0) +

sNR+1
∑

j=1

πj
NR

ℓ(xj
NR

, uj
NR

)

−
sNR
∑

j=1

πj
NR

W r
f (xj

NR
) +

sNR+1
∑

j=1

πj
NR+1W r

f (f(xj
NR

, κ(xj
NR

), dr)).

By applying Assumption 4 to all the nodes at stage NR it is possible to prove that:

−
sNR
∑

j=1

πi
NR

W r
f (xj

NR
) +

sNR+1
∑

j=1

πj
NR+1W

r
f (f(xj

NR
, κ(xj

NR
), dr))

≤ −
sNR+1
∑

j=1

πj
NR

ℓ(xj
NR

, uj
NR

) + γ8(|d̄|).

Then, the optimal cost of the problem with prediction horizon NP +1 and robust horizon

NR + 1 fulfills

VNP +1,NR+1(x1
0) ≤ J(xj

k, ũ+, NP + 1, NR + 1)

≤ VNP ,NR
(x1

0) + γ8(|d̄|),

and Lemma 2 is proved.
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Now we state in the following theorem the Input-to-State practical stability of multi-stage

NMPC with robust horizon.

Theorem 3 (ISpS of multi-stage NMPC with robust horizon). Provided that assumptions

1, 2, 3.A-D and assumption 4 hold, the system (4.1) with the receding horizon control

law κNP ,NR
is ISpS with robust invariant region XA(NP , NR).

Proof. The proof is analogous to the one presented for Theorem 2 and is omitted here

for brevity.

4.3 Discussion

This chapter presented a stability guaranteeing formulation of multi-stage nonlinear

model predictive control based on the addition of a terminal cost and a terminal constraint

to the original formulation presented in Chapter 3.

The necessary assumptions to guarantee stability of the multi-stage approach in particular

and of any NMPC approach in general are not always fulfilled. It is very difficult to find

in practice a terminal set which is a robust positively invariant set for a general nonlinear

system, as well as to find its associated terminal control law. Another challenge is that

the optimal cost of the MPC problem does not have to be a Lyapunov function of the

closed-loop system if an economic cost function is used. In that case some additional

assumptions are required (such as dissipativity of the system) to establish the stability of

an NMPC scheme with an economic cost function, as recently studied in (Angeli et al.,

2012).

For these reasons, in the rest of the thesis, the original formulation of multi-stage NMPC

presented in (3.5) will be considered, and the stability of the controller is analyzed by

simulation studies. In order to illustrate the stability guaranteeing formulation presented

in this chapter, an example is provided in Chapter 9 in which multi-stage NMPC with

an a priori guarantee for stability and recursive feasibility is applied.
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Efficient Implementation and
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Chapter 5

Formulation and Solution of

Dynamic Optimization Problems

5.1 Discretization Methods

Solving an optimal control problem involves the solution of an infinite-dimensional op-

timization problem, because it contains the dynamics of a system, which is typically

described by Ordinary Differential Equations (ODEs) or Differential Algebraic Equa-

tions (DAEs), and the computation of control actions for all time instants within a given

time interval. The exact solution of these type of problems is difficult and therefore

only a numerical approximate solution of the problems is usually obtained. There are

two main approaches to solve the resulting optimization problems numerically. The first

type of methods, called indirect methods, apply the Pontryagin minimum principle and

then discretize the resulting problem to obtain a solution. In contrast, this thesis –

as well most of the modern dynamic optimization solvers – focuses on the application

of direct methods. These approaches perform a discretization in order to convert the

original infinite-dimensional optimal control problem into a finite-dimensional nonlinear

programming (NLP) problem which can be solved using standard methods.

Direct methods can be classified as sequential if only a discretization of the control in-

puts is performed or simultaneous if both the control inputs and the state variables are

discretized. These methods are briefly reviewed in the remainder of this section.
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5.1.1 Sequential Approach

Sequential methods, also known as Control Vector Parametrization (CVP) (Sargent and

Sullivan, 1978), consider only the control inputs to the system to be optimization vari-

ables. The control inputs are discretized in time, and this discretization can be performed

in several manners. The most common discretization – especially in the case of MPC –

is to consider a control input which is piecewise constant over a fixed time interval. This

time interval is usually chosen equal to the sampling time of the controller.

In a sequential approach an initial guess for the control inputs is given to the optimizer.

Then the system model is simulated by means of an integrator (ODE solver) by using

the given controls as inputs to the system. In the multi-stage approach, the integration

of the system has to be performed for each scenario. Then the objective function, the

constraints and the derivative information are evaluated, and the conditions for optimality

are checked. If they are satisfied, an optimal solution has been found, and if not, the

NLP solver provides a new guess for the control inputs. Most of the computation time

necessary to solve the optimization problem using a sequential approach is taken by the

solution of the sequence of initial value problems that the ODE solver has to solve. In

the case of multi-stage NMPC, this effort is multiplied by the number of scenarios that

the scenario tree contains.

5.1.2 Simultaneous Approach

Although sequential methods are simple to implement, in the last years the use of si-

multaneous approaches has been preferred by a number of researchers because it can

provide better treatment of path constraints and faster solutions if the right tools are

used. Furthermore, simultaneous approaches (multiple shooting and full discretization)

have the dichotomy property, i.e., by imposing bounds on the state variables along the

time, the unstable modes can be pinned down avoiding that a state gets unbounded before

the final prediction time. This can happen for the sequential approach when integrating

unstable systems. A more detailed description of these concepts can be found in (Biegler,

2010). The disadvantage of simultaneous methods is that they result in larger optimiza-

tion problems. In the simultaneous approach, both the control inputs and the states are

discretized and are used as decision variables. There are two main simultaneous methods:

multiple shooting and full discretization.
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Multiple Shooting

In multiple shooting, presented in (Bock and Plitt, 1984), the states are also discretized

and added as additional optimization variables to the original optimization problem. The

integration of the system over the prediction horizon is divided into stages, that usually

coincide with the sampling time. In order to enforce continuity of the solution, continuity

constraints are added to the optimization problem, which enforce that the final point of

the integration within one stage is equal to the initial point of the following stage. For

a more detailed description of the multiple-shooting approach the reader is referred to

(Bock and Plitt, 1984) or (Diehl et al., 2001). The extension of the multiple-shooting

approach to the multi-stage NMPC framework is straightforward. The integration of

the system over the prediction horizon is divided into stages, which can coincide with

the different branches of the tree, as illustrated in Fig 5.1. From each node x
p(j)
k in the

tree, the system model is solved using an ODE solver for the corresponding control input

and value of the uncertain parameters. At the end of each sampling time, an auxiliary

variable s̃j
k+1 is obtained as a result of the integration. This is done for all the branches

of the scenario tree. In order to enforce continuity on the solution, new constraints are

added so that the resulting optimization problem can be written as:

min
xj

k
,uj

k
,s̃j

k
∀(j,k)∈I

N∑

i=1

ωiJi(Xi, Ui) (5.1a)

subject to:

s̃j
k+1 = F̃ (xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (5.1b)

s̃j
k+1 − xj

k+1 = 0 ∀ (j, k) ∈ I, (5.1c)

g(xp(j)
k , uj

k) ≤ 0 , ∀ (j, k) ∈ I, (5.1d)

uj
k = ul

k if x
p(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I, (5.1e)

where F̃ : Rnx × R
nu × R

nd → R
nx denotes the ODE solver operator and (5.1c) are the

constraints that enforce the continuity of the solution. All the integrations at each branch

of the tree can be performed in parallel because they are completely independent. Since

the intermediate states are also optimization variables, the multiple shooting formulation

results in a larger optimization problem compared to the sequential approach, but it is
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Figure 5.1: Multiple shooting for multi-stage NMPC for a scenario tree with two realiza-

tions of the uncertainty and a prediction horizon and robust horizon NP = NR = 2.
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highly structured and sparse, which can be exploited by modern NLP solvers to achieve

faster solutions as explained e.g. in (Diehl et al., 2001).

Full Discretization

A further step in the discretization of the dynamics of the system is performed when a full

discretization approach is used, which is usually implemented using orthogonal collocation

on finite elements. In this method, also the states and control inputs are discretized

and added as optimization variables. Unlike in multiple shooting, the dynamics of the

system are approximated between the sampling times so that the use of an ODE solver

is not necessary. Each control interval is divided into finite elements, on which the

state trajectory is parametrized using Lagrange polynomials such that the states are

represented by:

xj
k,γ(t) =

nθ∑

θ=0

Lθ(t)xj
k,γ,θ, (5.2)

where xj
k,γ(t) are the state variables at position (j, k) of the tree, at time t for the finite

element γ, and xj
k,γ,θ are the state variables at stage k for the finite element γ at the

collocation point θ. The Lagrange polynomials are defined as:

Lθ(τ) =
nθ∏

l=0,l 6=θ

τ − τl

τθ − τl
, (5.3)

where τ0, ..., τnθ
are the collocation points chosen as the roots of the Gauss-Jacobi poly-

nomials. The values of these coefficients can be found in the literature as for example in

(Biegler, 2010). The time tk,γ,θ denotes the time associated with the collocation point θ of

the finite element γ at stage k in the scenario tree and tend
k,γ is the time at the end of finite

element γ at stage k. These times only depend on the choice of the polynomials, number

of finite elements nγ and degree of polynomial nθ and for this reason they are the same for

all the scenarios at the same stage (they do not depend on the uncertainty realization).

Note that due to the Lagrangian basis, xj
k,γ,nθ

= xj
k(tk,γ,θ) is satisfied at the collocation

points. Fig. 5.2 illustrates the collocation approach applied to multi-stage NMPC with a

total number of finite elements per sampling time nγ = 2 and for a polynomial of degree

nθ = 2.

By differentiating (5.2) for the states along each finite element xj
k,γ, the collocation

algebraic equations are obtained and added as nonlinear constraints in (5.4b), where
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Figure 5.2: Orthogonal collocation on finite elements for multi-stage NMPC with nγ = 2

finite elements and polynomials of degree nθ = 2 for a scenario tree with two realizations

of the uncertainty and a prediction horizon and robust horizon NP = NR = 2.
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ẋj
k,γ = 1

hγ

∑nθ

θ=0 L̇θ(tk,γ,θ)x
j
k,γ,θ, where the coefficients L̇θ(tk,γ,θ) can be calculated before-

hand based on the choice of the collocation points. The length of the finite element γ

is denoted by hγ. The continuity equations at the end of each finite element (5.4c) and

at the end of each control interval (5.4d) are also added as constraints. The constraints

of the original dynamic optimization problem are checked for all the collocation points

as can be seen in (5.4e). Thus the optimization problem for multi-stage NMPC with

orthogonal collocation on finite elements can be written as:

min
xj

k,γ
,uj

k
,xj

k,γ,θ
∀(j,k)∈I,

N∑

i=1

ωiJi(Xi, Ui) (5.4a)

subject to:

ẋj
k,γ = f(xj

k,γ,θ, uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, γ ∈ {1, ..., nγ}, θ ∈ {0, ..., nθ} (5.4b)

xj
k,γ(tend

k,γ ) = xj
k,γ(tk,γ+1,0) ∀ (j, k + 1) ∈ I, γ ∈ {1, ..., nγ − 1}, (5.4c)

x
p(j)
k,γ (tend

k,nγ
) = xj

k+1,γ(tk+1,1,0) ∀ (j, k + 1) ∈ I, (5.4d)

g(xj
k,γ,θ, uj

k) ≤ 0 , ∀ (j, k) ∈ I, γ ∈ {1, ..., nγ}, θ ∈ {0, ..., nθ} (5.4e)

uj
k = ul

k if x
p(j)
k,0 = x

p(l)
k,0 , ∀ (j, k), (l, k) ∈ I, (5.4f)

A more detailed description of orthogonal collocation on finite elements for a general

setting can be found in the book (Biegler, 2010).

A simple collocation approach consists in applying an implicit Euler discretization in

which the next node in the tree is calculated as:

xj
k+1 = x

p(j)
k + tstep (f(xj

k+1, uj
k, d

r(j)
k )), (5.5)

where tstep is the sampling time. This discretization is very easy to implement, but it

requires small sampling times tstep to obtain a good accuracy in the discretization.

In this thesis, only simultaneous methods are used. The optimization problems for the

different examples discussed in the following chapters are kept in the general form pre-

sented in (3.5) for simplicity.

5.2 Calculation of the Derivatives

Regardless of the methods used for the numerical solution of the resulting multi-stage

NMPC problem, an NLP solver is necessary to calculate the optimal control inputs. Mod-

ern NLP solvers apply different algorithms, such as Sequential Quadratic Programming
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(SQP) or Interior Point (IP) methods, which need derivative information of both, the

constraints and the cost function. The efficiency and accuracy of the calculation of the

derivative information has a crucial influence on the performance of the optimizer. For

this reason the computation of derivatives is a topic which has received great attention

in the literature in the last years.

There are three main approaches to calculate derivatives: finite differences, symbolic

differentiation and automatic differentiation.

Calculation by Finite Differences

The finite differences method is based on the application of Taylor’s theorem to compute

the derivative of a smooth function f with respect to the variable x, which in the scalar

case can be written as:

df

dx
≈ f(x + h)− f(x)

h
, (5.6)

where h is a small number that has to be chosen. If h is too small, numerical (round-

off) errors occur and if h is too large, the first order Taylor approximation will not be

accurate resulting in a poor approximation of the derivative. These problems become

more important when higher order derivatives are needed. The computation of the nec-

essary gradients, Jacobians and Hessians can be done in a similar manner as explained

in (Nocedal and Wright, 2006).

Symbolic differentiation

A symbolic calculation of the derivatives makes use of computer algebra tools that are

able to recursively manipulate an algebraic expression. They result in exact computation

of the derivatives up to machine precision, but for large expressions, they usually result

in very long expressions that are expensive to evaluate. In addition, the code has to be

provided in form of functions, so that the derivatives of algorithms cannot be provided.

In contrast, these can be obtained by using automatic differentiation.
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Automatic Differentiation

Automatic differentiation, also called algorithmic differentiation, is a technique for the

evaluation of derivatives of functions that are represented in a computer. The main idea of

automatic differentiation is the exploitation of the fact that any differentiable function can

be represented as a combination of elementary operations such as addition, multiplication,

division, trigonometric and exponential functions among others. Using this decomposition

and applying the chain rule from elementary calculus, automatic differentiation provides

derivatives that are exact up to machine precision with a computational cost that is of

the same order of magnitude than the cost of evaluating the original function. Automatic

differentiation is different from symbolic differentiation, mainly because the symbolic

expression of the derivative is never generated but only evaluated which can result in a

much faster calculation of the derivatives.

In order to illustrate the basic ideas of automatic differentiation, a simple example

adapted from (Griewank and Walther, 2008) and (Nocedal and Wright, 2006) is used.

Consider the function:

f(x) = x1x2ex1 + cos(x1/x2). (5.7)

The evaluation of this function can be decomposed into 6 elementary operations as follows:

v1 = x1x2, (5.8a)

v2 = ex1 , (5.8b)

v3 = x1/x2, (5.8c)

v4 = v1v2, (5.8d)

v5 = cos(v3), (5.8e)

v6 = v4 + v5. (5.8f)

Usually, in the framework of automatic differentiation the sequence of expressions for

the evaluation of the function is substituted by a computational graph that defines the

function f as shown in Fig. 5.3. This also helps to have a better representation of functions

that contain nested loops or other procedures, which would result in a huge amount of

lines of elementary operations as the ones shown above. In automatic differentiation,

the elementary operations are differentiated using the chain rule. There are two different

approaches (also called modes) for automatic differentiation which are explained in the

remainder of this section.
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Figure 5.3: Computational graph for the function f(x) = x1x2ex1 + cos(x1/x2).

Forward Mode

In the forward mode, new variables v̇j = ∂vj

∂xi
are associated with each intermediate variable

vj in order to get the derivative of the function f with respect to one of the independent

variables xi. There are N independent variables (x1, ..., xN) and M intermediate variables

(v1, ..., vM). The new variables can be calculated using the chain rule as:

v̇i =
dvi

dx
=

N∑

j=1

∂vi

∂xj

dxj

dx
. (5.9)

Given [x1, x2]T and [ẋ1, ẋ2]T, it is possible to calculate:

v1 = x1x2, v̇1 = ẋ1x2 + x1ẋ2, (5.10a)

v2 = ex1, v̇2 = ex1ẋ1, (5.10b)

v3 = x1/x2, v̇3 =
ẋ1x2 − x1ẋ2

x2
2

, (5.10c)

v4 = v1v2, v̇4 = v̇1v2 + v1v̇2, (5.10d)

v5 = cos(v3), v̇5 = − sin(v3)v̇3, (5.10e)

v6 = v3 + v5, v̇6 = v̇3 + v̇5. (5.10f)

The new associated intermediate variable v̇6 gives a directional derivative v̇6 = ∇fT [ẋ1, ẋ2]T.

The vector p = [ẋ1, ẋ2]T is referred to as seed vector. In order to calculate the derivative

of f with respect to the variable x1, the operations shown above have to be performed

by choosing [ẋ1, ẋ2]T = [1, 0]T. In order to calculate the full gradient of f , the algorithm

has to be called N times (in this case N = 2), with different seed vectors ([1, 0]T , [0, 1]T ).
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This technique can be extended to the computation of Jacobians in a straight forward

manner. As explained in the automatic differentiation literature ((Griewank and Walther,

2008), (Nocedal and Wright, 2006) or in (Andersson, 2013)), if the Jacobians are sparse,

a more efficient choice of the seed vectors can be made using graph coloring techniques

to get the full Jacobians in a computationally cheaper way.

Reverse Mode

In the reverse mode – also called adjoint mode – instead of calculating the derivatives of

each intermediate variable, the derivatives of the function (output variable) with respect

to the intermediate variables are calculated. For this purpose, a new set of variables,

called the adjoint variables v̄i = ∂f
∂vi

are associated with each variable vi. All of them

are initialized with the value 0, except for the one associated with the last intermediate

variable, which is set to one (vL = 1). Then, using the chain rule, the partial derivatives

of the function f with respect to each one of the intermediate variables can be written as

v̄i =
df

dvi
=

∑

j∈I(i)

df

dvj

∂vj

∂vi
, (5.11)

where I(i) contains the indices of the children nodes of vi. The same definition holds for

the adjoint variables x̄i associated to the input variables xi. In a computer program, as

soon as all the quantities necessary to compute one of these operations are available, the

corresponding operation is performed and updated in the variable. The information about

all the children might not be available at the same time at which the variables are updated

though. For this reason, the additional variables are initialized to vi = 0, ∀i = 1, ..., 5

and v̄6 = 1 because it is the last node and it has no children, so that v̄6 = df
dvi

= 1. Thus

for a given [x1, x2]T, the operations necessary to compute the gradient of f in the reverse

mode are:

v1 = x1x2, (5.12a)

v2 = ex1, (5.12b)

v3 = x1/x2, (5.12c)

v4 = v1v2, (5.12d)

v5 = cos(v3), (5.12e)

v6 = v4 + v5, (5.12f)

Now the graph in Fig. 5.3 is evaluated backwards
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v̄6 =
∂f

v6
= 1 (given initialization) (5.12g)

v̄5+ =
df

dv6

∂v6

∂v5

= v̄61 (5.12h)

v̄4+ =
df

dv6

∂v6

∂v4

= v̄61 (5.12i)

v̄3+ =
df

dv5

∂v5

∂v3

= v̄5(− sin(v3)) (5.12j)

v̄2+ =
df

dv4

∂v4

∂v2

= v̄3v1 (5.12k)

v̄1+ =
df

dv4

∂v4

∂v1
= v̄3v2 (5.12l)

x̄1+ =
df

dv1

∂v1

∂x1
= v̄1x2 (5.12m)

x̄1+ =
df

dv2

∂v2

∂x1
= v̄2e

x1 (5.12n)

x̄1+ =
df

dv3

∂v3

∂x1
= v̄3

1
x2

(5.12o)

x̄2+ =
df

dv1

∂v1

∂x2
= v̄1x1 (5.12p)

x̄2+ =
df

dv3

∂v3

∂x2
= v̄3

−x1

x2
2

. (5.12q)

The final values accumulated in the variables x̄1, x̄2 constitute the full gradient of the

function f :

∇f(x) = [x̄1, x̄2]
T. (5.13)

The main advantage of the reverse mode with respect to the forward mode is that the

algorithm has to be executed only once to calculate the full gradient of a scalar function.

As discussed in (Nocedal and Wright, 2006), the computation effort needed to evaluate the

gradient ∇f is at most five times the time needed to evaluate the function f , no matter

how many input variables xi exist. The disadvantage is that, unlike in the forward mode,

the full computational graph has to be stored for its backward evaluation.

5.3 Implementation of Multi-stage NMPC

Unless explicitly mentioned, the dynamics of the system are discretized using a simulta-

neous approach for all the results presented in this thesis. Then the first order and second

order derivatives of the cost function and the constraints are calculated using automatic

differentiation. For the rest of the thesis, it is assumed that the models and constraints
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under consideration are differentiable. All this information is given to an NLP solver

which solves the optimization problem at each sampling instance.

The algorithms presented in this thesis have been implemented using the optimization

tool CasADi (Andersson et al., 2012a), which makes it possible to greatly improve the

computational performance compared to a simple implementation using Matlab. An

illustrative comparison will be shown in Part III of this thesis.

CasADi is an open-source framework for C++ and Python for numerical optimization

and optimal control. The main feature of CasADi is that it provides the users with a

flexible framework to implement a wide range of optimal control algorithms in an easy

and efficient way, rather than providing the user with a black-box Optimal Control Prob-

lem (OCP) solver. A nonlinear programming problem in CasADi can be represented

in a general high-level symbolic representation which internally is represented as an ex-

pression graph which may contain also operations such as ODE/DAE integrators. After

formulating the NLP, it can be solved with any available solver or by a self-written NLP

solver. The solver used relies on CasADi to calculate first and second order derivative in-

formation automatically. The generation of the Jacobian of the nonlinear constraints and

of the Hessian of the Lagrangian function is done via a state-of-the-art implementation

of automatic differentiation as presented in (Griewank and Walther, 2008). If ODE or

DAE integrators are part of the symbolic expressions, forward and backward sensitivity

analysis is invoked automatically, see (Cao et al., 2003) for more details. CasADi relieves

the user from the implementation effort and from the possible errors that are common

when calculating and passing derivative information. Furthermore, it offers a convenient

working environment in the high-level language Python (see (Andersson et al., 2012b) for

a simple example). This makes it possible to significantly reduce the necessary effort to

implement an optimal control solver. The results presented in (Andersson et al., 2012a)

suggest that CasADi is faster than other state-of-the-art software such as the AMPL

Solver Library (ASL) when solving standard benchmark problems. In this work the re-

sulting nonlinear programming optimization problems are solved using IPOPT (Wächter

and Biegler, 2006) which uses first and second order exact derivative information pro-

vided automatically by CasADi. As described before, CasADi makes it possible to solve

the optimal control problem using direct multiple shooting or direct collocation for the

discretization of the ODEs. In this thesis, Radau collocation points are used for the col-

location approach, using interpolating polynomials of degree 2. For the multiple shooting

approach the integrators from the SUNDIALS toolbox (Hindmarsh et al., 2005) are used.
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The real plant is simulated with the calculated control input using also the integrators

from the SUNDIALS toolbox with a high accuracy. All the optimization problems are

solved on a standard laptop with an Intel i-5 processor at 2.30GHz running Ubuntu on a

virtual machine with one core and 1 GB of RAM.

The implementation of the multi-stage NMPC approach using CasADi has been done in

collaboration with Joel Andersson and Prof. Moritz Diehl from KU Leuven within the

framework of the European Project EMBOCON.



Chapter 6

DO-MPC: An Environment for the

Easy Development of NMPC

Solutions

Linear model predictive control is a control strategy that has been successfully applied

at many industrial plants as reported in (Qin and Badgwell, 2003). For nonlinear model

predictive control, many simulation results have been published in the last years, in-

cluding large-scale and highly nonlinear systems based on rigorous models (e.g. (Huang

et al., 2009b) or (Idris and Engell, 2012)). Although some companies develop industrial

NMPC implementations for some processes (see (IPCOS, 2014), (Pluymers et al., 2008),

or (Cybernetica, 2014)) its practical use is still in its early stages and not a widespread

reality.

A decade ago, one of the main reasons for this gap between academic research and

industrial practice was the long computation time that was necessary to solve the resulting

complex nonlinear programming problems. In the last years the progress on algorithms

and computation power has made it possible to significantly reduce the computation

times needed to solve NMPC problems even to the microsecond range (Houska et al.,

2011a), if appropriate tools are used. Most of these tools have recently been developed in

the academia such as MUSCOD II (Diehl et al., 2001), ACADO (Houska et al., 2011b),

NMPC tools (Amrit and Rawlings, 2008), OptCon (Nagy, 2008) or the MPT Toolbox

(Herceg et al., 2013) among others. These tools can solve different kind of problems

including nonlinear model predictive control formulations.

61
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However, one of the main obstacles for the knowledge transfer from academia to industry

via these tools is their lack of modularity and the lack of sustainability of the imple-

mentations. Most of the tools named above require an implementation of the model in

a particular syntax, and an interface of the tool with other necessary components such

as a simulator or an observer. If the model needs to be changed, all the codes have to

be adjusted accordingly. The lack of modularity also makes it difficult to compare the

computational performance and solution quality of different approaches or tools (or to

combine parts of different tools) because they require a completely new implementation,

which will result in an obscure and time-consuming comparison.

In order to deal with this problem, this chapter presents a new concept for the modu-

larization of an NMPC implementation, dividing it into four main components: Model,

optimizer, observer and simulator. This is realized within the environment DO-MPC,

which includes a modular implementation of an NMPC approach to which any other

software available can be coupled by means of rewriting a standardized interface that

represents the needs of the specific problem. Automatic plotting and logging of the data

as well as the implementation of multi-stage NMPC are also included. The presented

environment attempts to overcome two of the main problems of real NMPC implemen-

tations. Firstly, thanks to the modularity the implementations are simple and reusable.

Secondly, the use of multi-stage NMPC makes it possible to take into account possible

plant model mismatches. The tool is implemented in C using CasADi as a building block

in order to achieve very good performance with a low implementation effort.

The work presented in this chapter is based on previous work done by Christian Schopp-

meyer in the European Project EMBOCON, and an important part was done in the

framework of the master thesis of Alexandru Tatulea (Tatulea-Codrean, 2014). This

joint work led to the publication (Lucia et al., 2014e).

6.1 A Modular NMPC Development Environment

One of the main outcomes of the European research project EMBOCON (Embedded

Optimization for Resource Constrained Platforms) was the development of the open

source software platform GEMS (Generic EMBOCON Minimal Supervisor) (Schopp-

meyer, 2013).
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Figure 6.1: Modular scheme of an NMPC implementation with four main blocks: Model,

optimizer, observer and simulator.

The central idea of GEMS is to offer a set of general and standarized interfaces to simplify

the process of developing and deploying a model-based control algorithm to a real system,

and to offer a so-called supervisor that manages the flow of information between the

different parts of the implementation. For this purpose, the implementation of a model-

based control approach is divided into four main components: the model, the optimizer,

the observer and the simulation or real application (see Fig. 6.1). The exchange of

information between the different modules is managed and logged by a supervisor. Using

this conceptual idea, existing or newly developed algorithms for control, for simulation or

for state estimation of a system can be implemented based on the GEMS interfaces, which

are programmed in plain C-code to facilitate the use of existing tools and the extension

of them. The only necessary step is to provide the information required by GEMS in the

template form of its interfaces. The information exchanged between the different modules

includes the current control inputs, states and outputs (denoted as ucur, xcur, and ycur

in Fig. 6.1). In addition, the information about the right hand sides of the ODEs or the

derivatives can be also exchanged an updated if e.g. parameter estimation is available.

A complete definition of the interfaces can be found in (Schoppmeyer, 2013).
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The model module should contain the ODEs or DAEs defining the system, and also

the description of the control task (objective and constraints). The optimizer module

should contain the discretization method to transform the optimal control problem to

a nonlinear programming problen and a suitable solver. The observer module should

include a mapping from the measurements to the states (and also possible parameter

estimation) and finally the simulator or application module should include an integrator

to simulate the system or an interface to an input-ouput device to control a real plant.

With the modular implementation, when the models are updated or changed, there is

no need to update the code in each one of the different implementation parts, because

they will automatically get the information about the new model via the interfaces. This

enhances the sustainability of an NMPC implementation. Note that if different models

need to be used for the different modules, e.g. in the simulator a complex model is used

but a simplified one in the controller, this can also be taken into account by defining

several model modules for the same problem.

All the different modules are implemented as shared libraries within GEMS. They have

to be compiled before hand so that the supervisor can load the corresponding library for

each module at run-time. This ensures portability, transparency and configurability of

the final NMPC implementation. The implementation is done in the Linux OS which

makes the real-time managing of the modules possible. GEMS is freely available and it

can be downloaded from (Schoppmeyer, 2013).

6.2 DO-MPC: An Environment for an Easy, Modu-

lar, Robust and Efficient Development of NMPC

The desired features of an NMPC development platform described before have been

implemented in DO-MPC (TU DOrtmund MPC). DO-MPC is an environment that uses

the main ideas of GEMS to provide users with an easy, modular, robust and efficient way

to realize sustainable implementations of NMPC.

The main added value of DO-MPC with respect to other available MPC tools is that

instead of offering a black-box solution to the MPC problem, it provides a platform to

develop own NMPC realizations with a very low effort. We use CasADi (Andersson et al.,

2012a) as a building block to develop the necessary modules and interfaces. Furthermore,
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we provide templates using the scripting language Python for each one of the modules

including an implementation of the multi-stage NMPC approach. These templates pro-

vide a user-friendly environment for the formulation of a new NMPC problem that only

requires the definition of the model equations, the control problem and the estimation

problem. However, it is not necessary to use the provided templates and the user can

couple any existing software just by writing an interface to DO-MPC.

Once the information for the different modules is provided using the templates, CasADi

automatically generates C-code. The autogenerated C-code is compiled to shared li-

braries, which are loaded at run-time by DO-MPC. This ensures that the exchange of

the different modules can be done by just loading a different shared library at run-time.

Fig. 6.2 shows an example of a configuration of DO-MPC. This includes the choice of the 4

modules (model, optimizer, observer and simulator) which uniquely determine an NMPC

implementation. In the example the multi-stage NMPC with CasADi/IPOPT is used

as optimizer, an Extended Kalman Filter as observer and the SUNDIALS (Hindmarsh

et al., 2005) integrators as simulator.

Along with the simplicity of the implementation, one of the main features of DO-MPC

is its modular implementation that makes it possible to use different configurations in

parallel. Different optimizers, cost functions, or observers can be tested online, while

maintaining the rest of the modules. This can be very useful for monitoring or comparison

purposes. Additionally, a degree of redundancy can be introduced to cope with possible

failures of some of the algorithms. For example, different optimization algorithms can

be run in parallel to cope with possible convergence problems of the optimizer. An

example of the structure of DO-MPC can be seen in Fig. 6.3. DO-MPC also features an

automatic data visualization tool which shows any variable previously defined, along with

the predictions that the NMPC controller is computing to enhances the understanding

of the controller performance. Using several configurations in parallel makes it possible

to switch to another configuration when a problem is detected in one of them, avoiding

the injection of wrong control to the plant.

The monitoring of the performance of an NMPC controller is an important subject of

research and the DO-MPC environment facilitates its use, while already including tech-

niques based on multivariate statistics (AlGhazzawi and Lennox, 2009). Other techniques

presented recently in the literature will also be implemented in the future (Patwardhan

et al., 2002), (Zagrobelny et al., 2013). The structure of the tool and a minimal graphical
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Figure 6.2: Example of a DO-MPC configuration.
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user interface has been developed using the Qt5.1 framework for C++ (Qt5.1, 2014).

In order to ensure the real-time capabilities of the tool, the implementation is done in

a multithreaded way. This ensures that the different computationally demanding tasks

(optimization, plotting, monitoring) are deployed on concurrent threads so that their ex-

ecution is performed without interruptions. Together with the use of the auto-generated

efficient C-code in the form of shared libraries for each one of the modules, this leads

to a very efficient implementation which at the same time is transparent, modular and

sustainable. A simplified version of the DO-MPC tool can be obtained from (Lucia et al.,

2015).

This chapter presented a generic environment for nonlinear model-predictive control that

supports the development and testing of NMPC solutions. The tool can be used to achieve

an easy, but still very efficient implementation of an NMPC controller. The modular

implementation makes the tool suitable as a framework to compare in a transparent

manner different MPC algorithms, solvers or estimators. It is also easy to use the tool

for the implementation of the algorithms in a real plant by just implementing a simple

interface between the available data acquisition system and the simulator interface of DO-

MPC. Then the algorithms can be tested in the real plant by exchanging the simulator

module by the module with the interface to the real plant as it will be shown in Chapter 10.

DO-MPC has been developed specifically for receding horizon implementations and it is

therefore not suitable for the development of other optimal control strategies in which

the information flow between the different modules (optimizer, simulator, observer) differs

significantly from the flow of an MPC implementation. DO-MPC requires that the user

installs the software that he or she wants to use (CasADi, IPOPT, SUNDIALS,...). The

self-contained generation of code which does not make use of external libraries is not

supported.



Chapter 7

Solution via Scenario Decomposition

Techniques

As it was shown in the previous chapters, the formulation of the multi-stage NMPC

approach results in large optimization problems, which have to be solved in a defined

amount of time if the algorithm is going to be applied to a real system. There are different

possibilities to achieve a fast solution of the resulting optimization problems. One is to

use a collocation approach with exact first and second order derivatives calculated using

automatic differentiation, and solving the optimization problem with solvers that can

exploit sparsity, as explained in Chapter 5.

It is also possible to exploit the tree structure of the multi-stage optimization problems

at the linear algebra level using methods based on the Schur complement as shown in

(Steinbach, 2000), which also makes the parallelization of most of the calculations pos-

sible. However, this techniques require a complete implementation of a new tailored

NLP solver. This chapter analyzes the possibilities of decomposition algorithms that can

be implemented in a straightforward manner using general-purpose NLP solvers such as

IPOPT, and it is therefore not a complete review of decomposition algorithms.

In particular, scenario decomposition approaches (see (Birge, 1997) for a review) such

as the Progressive Hedging Algorithm (PHA) presented in (Rockafellar and Wets, 1991)

are studied. The main idea of this approach is to take advantage of the fact that each

scenario in the scenario tree is an independent problem except for the non-anticipativity

constraints that link the scenarios by forcing all control inputs branching at the same
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node to be the equal. This algorithm relaxes the non-anticipativity constraints by adding

to the cost function of the scenario a term which penalizes their violation and then

solves each scenario independently. The algorithm iterates until the non-anticipativity

constraints are fulfilled and a feasible solution for the original problem is found.

The approach is shortly described in the rest of this chapter. Most of the work reported in

this chapter has been carried out in the framework of the master thesis by (Subramanian,

2012).

7.1 Decomposition Approaches for Multi-stage Op-

timization

Decomposition of large-scale optimization problems has already been used for a long

time (see (Birge, 1997) or (Ruszczynski, 1997) for a review). The monolithic problem is

divided into smaller subproblems which are solved independently. For the case of multi-

stage stochastic optimization problems, the different approaches are usually classified

into scenario decomposition or stage decomposition. In the scenario decomposition ap-

proaches each smaller subproblem corresponds to a scenario of the tree and in the stage

decomposition each subproblem corresponds to a time stage of the tree. In this work,

the scenario decomposition approach is chosen (see Fig. 7.1) because the the robust hori-

zon concept helps to reduce the amount of coupling between the scenarios. Therefore, a

scenario decomposition approach is more suitable, compared to the stage-decomposition

(Benders decomposition) approach applied for linear MPC in (Muñoz de la Peña et al.,

2005a). A dual scenario decomposition approach has been recently proposed in (Maestre

et al., 2012) to a linear example, but this chapter is focused on the nonlinear case using

a different algorithm.

7.1.1 Scenario Decomposition

The decomposition algorithm used in this thesis is the progressive hedging algorithm

of (Rockafellar and Wets, 1991). It can be applied to nonlinear non-convex problems

and it has been also proven in (Rockafellar and Wets, 1991) that the solution of the

algorithm always converges to a local optimum of the original cost function, if conver-
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Figure 7.1: Scenario tree representation of the uncertainty evolution using scenario de-

composition for multi-stage NMPC with robust horizon NR = 2 and prediction horizon

NP = 4. The arrows with the same colors represent the non-anticipativity constraints.

gence is achieved. The main idea of the algorithm is to relax the non-anticipativity

constraints by penalizing the difference between the control inputs that should satisfy

the non-anticipativity constraints and a fictitious common control input. In this man-

ner, the scenarios can be solved as independent subproblems. Then, the procedure is

repeated until the non-anticipativity constraints are fulfilled. Thus, instead of solving

the original monolithic problem defined in (3.5) the progressive hedging algorithm solves

an independent problem for each scenario i:

min
xj

k
,uj

k
∀(j,k)∈Ii

ωiJi(Xi, Ui) +
NP −1
∑

k=0

λj
k(uj

k − ûj
k) + ρj

k||uj
k − ûj

k||2 (7.1a)

subject to:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ Ii, (7.1b)

g(xj
k+1, uj

k) ≤ 0 , ∀ (j, k + 1) ∈ Ii, (7.1c)

(7.1d)

where Ii is the set of indices in the original tree of the nodes corresponding to scenario

Si, that is Ii = {(j, k) : xk
j ∈ Si}. ûj

k ∈ R
nu is the fictitious value towards which the
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control input at stage k should converge for each of the scenarios in which the non-

anticipativity constraints have to be satisfied. If a robust horizon NR ≤ NP is used,

the non-anticipativity constraints are applied only until k = NR because it is assumed

that afterwards the uncertainty remains constant and therefore the control inputs can

be adapted independently and then the scenarios are independent. For this reason ûj
k is

chosen such that ûj
k = uj

k for k ≥ NR so that the additional terms in the cost function

(7.1a) vanish if there are no non-anticipativity constraints. The choice of ûj
k at each

iteration greatly influences the performance of the algorithm. A simple approach to

obtain ûj
k is to use the average value of the control inputs that have to satisfy each

non-anticipativity constraint when the scenarios are solved independently, that is,

ûj
k =

∑

ul
k
|x

p(j)
k

=x
p(l)
k

πr(l)ul
k,

where πr(l) denotes the probability associated with the branch in the scenario tree at

which the control input ul
k is located. The idea is that after several iterations all the

non-anticipativity constrains are satisfied with a desired tolerance ǫ and therefore the

augmented cost function converges towards the original one. The parameters λj
k ∈ Rnu

and ρj
k ∈ R are updated at each iteration of the algorithm to improve the convergence.

A usual update rule for λj
k is: λj

k ← λj
k + ρj

k(uj
k − ûj

k) and the parameter ρj
k is usually in-

creased after each iteration, with a maximum value that avoids excessively large penalty

terms ρj
k ← min(βρj

k, ρmax), where β is a parameter that determines the increase of ρj
k.

The progressive hedging algorithm used in this thesis for multi-stage NMPC is summa-

rized in Algorithm 1. Further discussion about the updates of the parameters and about

the convergence properties of the algorithm can be found in (Rockafellar and Wets, 1991).

7.1.2 Reducing the Number of Iterations

For a complex nonlinear problem, usually the number of iterations that the PHA algo-

rithm needs to converge is large, and therefore the possible advantages in computation

time that could be obtained are lost. One possibility to reduce the number of iterations

is the use of a bundle decomposition approach. This method is a hybrid between a mono-

lithic scheme and a scenario decomposition approach. In this case, each subproblem of

the decomposition algorithm explained in the previous subsection is not a single scenario

but a subset (bundle) of all scenarios (see Fig. 7.2). If this subset is properly chosen, for
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Algorithm 1 Progressive Hedging Algorithm

Require: ρj
k = ρini; ûj

k = [0, ..., 0]; λj
k = [0, ..., 0], ∀(j, k) ∈ I

Solve problem (7.1) ∀i = 1...N

ûj
k =

∑

ul
k

|x
p(j)
k

=x
p(l)
k

πr(l)ul
k

while ‖uj
k − ûj

k‖2 ≥ ǫ, ∀(j, k) ∈ I do

for i = 1 : N do

λj
k ← λj

k + ρj
k(uj

k − ûj
k), ∀(j, k) ∈ Ii

Solve problem (7.1)

end for

ûj
k =

∑

ul
k

|x
p(j)
k

=x
p(l)
k

πr(l)ul
k

ρj
k ← min(βρj

k, ρmax)

end while

example using very different scenarios in each bundle, the number of iterations needed

by the decomposition algorithm to converge decreases significantly, as it is shown in

Chapter 8.

7.1.3 Discussion

Instead of using the progressive hedging algorithm, other approches can be used for the

scenario decomposition of the multi-stage NMPC problems. For example, it is possible

to formulate the problem as a price-based coordination problem as done in (Marti et al.,

2013), in which the prices are obtained using the sensitivities of the solution with respect

to the control inputs of each scenario. This avoids the difficult tuning of the parameters

λj
k and ρj

k that have to be initialized and updated for the progressive hedging algorithm.

Furthermore, the choice of the values towards which the control inputs have to converge

to fulfill the non-anticipativity constraints (ûj
k) can be done in a smarter way than by

taking the weighted average of all the independent control inputs that should satisfy the

constraints. For example, if one control input is limited by some active constraints, and

it cannot be moved because then the system would violate the constraints, it is beneficial

to include this value as ûj
k, because this will increase the speed of convergence. However,

finding this value is not straightforward.

Decomposition approaches are computationally advantageous only if the computation
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Figure 7.2: Scenario tree representation of the uncertainty evolution using bundle scenario

decomposition for multi-stage NMPC with robust horizon NR = 2 and prediction horizon

NP = 4. The scenarios in the same box represent the bundles and the arrows with the

same color represent the non-anticipativity constraints.

time grows clearly faster than linearly with the number of scenarios, or if a high degree

of parallelization is possible so that the independent scenarios can be solved in parallel.

However, if efficient tools as the ones described in this thesis are used, with exact com-

putation of first and second order derivative information, the computation time increases

only slightly more than linearly with the number of scenarios and therefore it is hardly

possible to achieve a shorter computation time with decomposition approaches, even if

some paralellization is possible. Nevertheless, decomposition approaches require much

less computer memory for the solution of the problems. This may be an important ad-

vantage for huge problems. Illustrative results for the decomposition approach and its

comparison with the monolithic calculation are provided in the next chapter.
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Chapter 8

Multi-stage NMPC of

Polymerization Processes

This chapter presents results that show the advantages of multi-stage NMPC with re-

spect to several other approaches by simulation studies of two different polymerization

processes.

Polymerization processes are characterized by strongly exothermic reactions with nonlin-

ear kinetics, and often a very precise control of the reaction temperature is necessary to

ensure that the final product will have the desired quality. Moreover, several parameters

such as the quality of the raw materials, the heat transfer coefficients or other distur-

bances are not exactly known and introduce uncertainty in the nonlinear models, which

makes the satisfaction of the tight constraints a difficult task. This chapter shows that

multi-stage NMPC is a very promising strategy to achieve this task with a low degree of

conservativeness.

The first section of this chapter includes a comparison of multi-stage NMPC with a

standard NMPC approach in which the uncertainties are ignored and with a min-max

approach that optimizes for the worst-case value of the uncertainty for the Chylla-Haase

benchmark problem presented in (Chylla and Haase, 1993). Also, the approach has

been applied to the situation when only some states can be measured and the remaining

states are estimated with an Extended Kalman Filter (EKF). It is shown that multi-stage

NMPC also has satisfactory performance in this situation and it performs better than a

standard NMPC approach even if the uncertainty is estimated. This section is largely

77
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identical to (Lucia et al., 2013a).

The second section of this chapter shows the results of multi-stage NMPC applied to an

industrial batch polymerization reactor model provided by BASF SE in the framework

of the European Project EMBOCON (EMBOCON, 2014). Here it is shown that multi-

stage NMPC performs better than the other robust strategies that have been described

in Chapter 3. Most of the work presented in this sections is identical to (Lucia et al.,

2014b).

8.1 The Chylla-Haase Polymerization Reactor

The Chylla-Haase Reactor control problem which has been introduced in (Chylla and

Haase, 1993) is a well-known benchmark problem for temperature control of semi-batch

polymerizations, which constitute strongly nonlinear time-varying systems. A schematic

depiction of this process is given in Fig. 8.1. It consists of a pilot scale stirred tank reactor

where an emulsion polymerization reaction takes place and a heat exchange system with

a jacket and a recirculation loop. The heat exchanger can be used both for heating the

reactor up or for cooling it down. Depending on whether the system is operated in the

heating or in the cooling mode, medium-pressure steam or cold water is injected into the

recirculation loop. As it is usual in the polymer industry, the reactor is used to produce

different products, i.e. polymer grades. The different products are obtained from different

recipes, which consist of a sequence of charging, heating, feeding and holding steps that

may or may not be repeated, as it is described in the references (Chylla and Haase, 1993),

(Graichen et al., 2006) and (Beyer et al., 2008). The end-use properties of the product

mainly depend on the temperature at which the polymerization takes place, therefore a

very precise temperature control is required in order to guarantee that the final product

will have an acceptable quality. In (Chylla and Haase, 1993), it is stated that the reactor

temperature must stay within a very tight range of ±0.6 K around the specified reaction

temperature.

In the original version of the Chylla-Haase benchmark reactor (CHBR) problem the

monomer is dosed into the reactor at a constant flow rate, which means that there is

no degree of freedom for increasing the process productivity by reducing the duration of

the feeding period. In (Finkler et al., 2013), a modified version of the CHBR has been

proposed in which the monomer inlet flow varies over time. This turns the CHBR into a
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Figure 8.1: Scheme of the Chylla-Haase Benchmark Reactor.

much more challenging problem that involves simultaneous optimization of the monomer

feed and of the cooling/heating along the batch and includes online process performance

optimization under tight constraints. This version of the problem is the one considered

in the remainder of this section.

Modeling of the Process

An experimentally validated model that describes the system behavior was given in

(Chylla and Haase, 1993). This model has been widely investigated by the process control

community and several mistakes in its formulation have been identified and corrected.

The reader is directed to (Graichen et al., 2006) and (Beyer et al., 2008) for a more

detailed discussion on these corrections. The model that is used in this investigation

consists of a set of ODEs given by equations (8.1a) to (8.1e):

ṁM = ṁin
M − rP, (8.1a)

ṁP = rP, (8.1b)

Ṫ =
ṁin

MCp,M(Tamb − T ) + UA(T̄J − T )
mMCp,M + mPCp,P + mWCp,W

+
UAloss(Tamb − T ) + rP∆HP

mMCp,M + mPCp,P + mWCp,W
, (8.1c)

Ṫ out
j =

ṁCCp,W(T in
j (t− θ1)− T out

j ) + UA(T − T̄j)

mCCp,W

, (8.1d)
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Ṫ in
j = Ṫ out

j (t− θ2) +
T out

j (t− θ2)− T in
j

τp
+

Kp(c)
τp

, (8.1e)

where mM, mP, and mW are the holdups of monomer, polymer, and water inside the

reactor, T , T out
j , T in

j , Tamb are the inner reactor temperature, the water temperature at

the jacket outlet, the water temperature at the jacket inlet, and the ambient temperature,

rP is the polymerization rate, ∆HP is the reaction enthalpy, U is the overall heat transfer

coefficient, A is the heat transfer area, ṁin
M is the monomer inlet flow, ṁC is the flow

rate of water across the jacket, mC is the mass of water inside the jacket, Cp,M, Cp,P,

and Cp,W are the thermal capacities of monomer, polymer, and water, respectively, θ1

and θ2 are time delays, τP is the jacket time constant; the heating/cooling usage c is a

control command that can vary from 0 to 100%, and the heating/cooling function Kp is

a function of c with the split-range characteristic given by (8.2), with Tinlet and Tsteam

being the cold water and the medium-pressure steam temperatures:

Kp(c) =







0.8× 30−c/50(Tinlet − T in
j ), c < 50%,

0, c = 50%,

0.15× 30c/50−2(Tsteam − T in
j ), c > 50%.

(8.2)

The expressions for the computation of rP, U , and A are given as:

rP = ipkmM, (8.3)

U =
1

h−1 + h−1
f

, (8.4)

A =

(

mM

ρM
+

mP

ρP
+

mW

ρW

)

P

B1
+ B2, (8.5)

where ip is the monomer impurity factor, k is the first order kinetic constant, 1/h is the

film heat transfer coefficient and 1/hf is the fouling factor which depends on the number

of batches that have been produced since the last cleaning. The additional semi-empirical

relations for the computation of k and h as a function of the system states are given by

equations (8.6) to (8.12):

k = k0e
E

RT (k1µ)k2 , (8.6)

µ = c0ec1f10c2(
a0
T

−c3), (8.7)

f =
mP

mM + mP + mW
, (8.8)

h = d0e
d1µW , (8.9)

µW = c0e
c1f10c2(

u0
TW

−c3)
, (8.10)
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TW =
T + T̄j

2
, (8.11)

T̄J =
T out

j + T in
j

2
, (8.12)

where µ is the viscosity of the reactant mixture and f is the mass fraction of polymer

inside the reactor. The values for all parameters that appear in the model equations can

be found in the literature on the CHBR ((Chylla and Haase, 1993), (Graichen et al.,

2006) and (Beyer et al., 2008)).

Modeling of the Uncertainties

As it was discussed in (Chylla and Haase, 1993), the main uncertainties and disturbances

that affect the CHBR can be condensed in three variables, the impurity factor ip, the

fouling factor 1/hf and the ambient temperature Tamb. The impurity factor ip describes

the fluctuations in the reaction rate caused by impurities in the raw materials. It varies

randomly from batch to batch within the range 0.8 to 1.2 following a uniform distribution

and it is usually considered as constant during one batch. The fouling factor 1/hf describes

the decrease in U due to the formation of a polymer film on the reactor wall during

the successive batches. It varies from 0 to 0.704 m2KkW−1. The ambient temperature

describes the variations in the temperature of the monomer inlet feed as well as the

reactor and jacket temperatures at the beginning of the batch. It can vary from 280 to

305 K. In, (Chylla and Haase, 1993) it was also suggested that the time delays θ1 and θ2

may vary by ±25% when compared to the nominal values. As it turned out during the

simulations that these variations are not significant, they are neglected here. In (Chylla

and Haase, 1993) data for two different products (A and B) was given, product A is

considered here.

Tables 8.1 and 8.2 provide a summary of the benchmark problem that has 5 differential

states, 7 algebraic states to model the delayed states and 2 control inputs.
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Table 8.1: State constraints and typical values during the feeding phase.

States Min. Max. Typ. values Unit

mM 0 inf. 0 - 6 kg

mP 0 inf. 0 - 50 kg

T 81.632 82.832 81.632 - 82.832 ◦C

T out
j 5 95 25 - 95 ◦C

T in
j 5 95 20 - 95 ◦C

Table 8.2: Control input constraints and typical values during the feeding phase.

Control inputs Min. Max. Typ. values Unit

c 0 100 0 - 50 −
ṁin

M 0 0.0227 0 - 0.0227 kg s−1

8.1.1 Standard, Min-max and Multi-stage Economic NMPC of

the Polymerization Reactor Example with Full Feedback

Information

This section presents a comparison of the performance of standard, multi-stage and min-

max NMPC of the Chylla-Haase benchmark reactor control problem under uncertainty.

It is considered that all the states can be measured exactly. In this case, only the

uncertainty in the impurity factor is taken into account, since the ambient temperature

can be measured and the fouling factor can be estimated depending on the number of the

batch1. As described in the benchmark problem, three different values are considered for

the impurity factor, i.e. ip = {0.8, 1.0, 1.2}.

The benchmark problem consists of three different phases: heating, feeding and holding.

The discussion is focused on the feeding part, because it represents the most challenging

control problem. For each phase, a different optimization problem is formulated since

the control objectives and constraints are different. The optimization problem solved at

1As it is described in (Beyer et al., 2008), the reactor is cleaned every five batches and the fouling

factor may vary from 0 (clean reactor) to 0.704 m2KkW−1 (fouled reactor).
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each sampling time for the heating part is:

min
xj

k
,uj

k
∈I

N∑

i=1

ωi

Np−1
∑

k=0

q(T j
k − Tset)2 + r∆∆cj

k

2
, ∀ T j

k , cj
k ∈ Si, (8.13a)

subject to: (8.13b)

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (8.13c)

5 ≤ T in,j
j,k ≤ 95, ∀ (j, k) ∈ I, (8.13d)

5 ≤ T out,j
j,k ≤ 95, ∀ (j, k) ∈ I, (8.13e)

0 ≤ cj
k ≤ 100, ∀ (j, k) ∈ I, (8.13f)

0 ≤ ṁin,j
M,k ≤ 0, ∀ (j, k) ∈ I, (8.13g)

uj
k = ul

k if x
p(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I. (8.13h)

The cost function (8.13a) includes a tracking term of the reactor temperature, and a

regularization term for the control movements in the jacket to avoid oscillations. Each

node in the scenario tree contains all the states and control inputs in the model, i.e.,

xj
k = [mj

M,k, mj
P,k, T j

k , T
in,j
k , T out,j

k ]T and uj
k = [cj

k, ṁin,j
M,k]T . The tuning parameters q and

r∆ are chosen to be q = 1 and r∆ = 0.5 and Tset is the desired reaction temperature. The

different constraints of the optimization problem represent the system dynamics (8.13c),

the constraints in the jacket temperature (8.13d, 8.13e), since water is assumed to be used

in the jacket, and the constraints on the inputs ( 8.13f, 8.13g). For all the optimization

problems in this section, the dynamics of the system are discretized with an implicit Euler

method, so that the state at the next sampling time xj
k+1 can be written as:

xj
k+1 = x

p(j)
k + tstep · f(xp(j)

k , uj
k, d

r(j)
k ),

where f(·) is the right-hand side of the differential equations that define the model.

Once the optimization problem is solved, the real system is simulated using a precise

solution of the model and not the Euler approximation. The sampling time used in all

the optimization problems is the same, tstep = 30 s. The prediction horizon is equal to

the control horizon and the same for all the problems presented in this section, NP = 5

steps (150 s in total).

For the holding part, the same optimization problem is solved at each sampling time,

including a constraint for the reactor temperature (8.14d) and using as tuning parameters

q = 1 and r∆ = 0.1.

min
xj

k
,uj

k
∈I

N∑

i=1

ωi

Np−1
∑

k=0

q(T j
k − Tset)2 + r∆∆cj

k

2
, ∀ T j

k , cj
k ∈ Si, (8.14a)
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subject to: (8.14b)

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (8.14c)

Tset − 0.6 ≤ T j
k ≤ Tset + 0.6 ∀ (j, k) ∈ I, (8.14d)

5 ≤ T in,j
j,k ≤ 95 ∀ (j, k) ∈ I, (8.14e)

5 ≤ T out,j
j,k ≤ 95 ∀ (j, k) ∈ I, (8.14f)

0 ≤ cj
k ≤ 100 ∀ (j, k) ∈ I, (8.14g)

0 ≤ ṁin,j
M,k ≤ 0 ∀(j, k) ∈ I, (8.14h)

uj
k = ul

k if x
p(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I. (8.14i)

Since this work is focused on the feeding period, a fixed time is used for the heating phase

(30 minutes) and a fixed time of 15 minutes for the holding phase, which is entered once

all the necessary monomer has been fed into the reactor.

As discussed in (Engell, 2007), the optimal operation of the plant under the presence of

uncertainties is the main goal of process control, in contrast to classical set-point tracking

approaches that can be sometimes even counterproductive. Therefore, an economic cost

function is chosen for the feeding phase, and no tracking term for the temperature is

used. The cost function to be minimized is:

min
xj

k
,uj

k
∈I

N∑

i=1

ωi

Np−1
∑

k=0

r(ṁin,j
M,k − ṁmax

M )2 + r∆∆cj
k

2
, ∀ ṁin,j

M,k, cj
k ∈ Si, (8.15a)

subject to: (8.15b)

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (8.15c)

Tset − 0.6 ≤ T j
k ≤ Tset + 0.6, ∀ (j, k) ∈ I, (8.15d)

5 ≤ T in,j
j,k ≤ 95, ∀ (j, k) ∈ I, (8.15e)

5 ≤ T out,j
j,k ≤ 95, ∀ (j, k) ∈ I, (8.15f)

0 ≤ cj
k ≤ 100, ∀ (j, k) ∈ I, (8.15g)

0 ≤ ṁin,j
M,k ≤ ṁmax

M ∀(j, k) ∈ I, (8.15h)

uj
k = ul

k if x
p(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I. (8.15i)

where ṁmax
M is the maximum allowed feeding rate, and the tuning parameters are r = 10,

r∆ = 0.5.

Fig. 8.2 shows the result for standard NMPC when there is no model mismatch. Fig. 8.2

shows the control inputs and the reactor temperature for a whole batch. During the
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heating phase until t = 30 min no monomer is fed and the reactor is heated up to the

reaction temperature. During the feeding phase monomer is feed as fast as possible

as long as it is possible to satisfy the temperature constraints using the cooling jacket.

Once the cooling is saturated (around t = 45 min) the monomer feed is adjusted so that

the constraint is not violated. In the holding phase no monomer is fed and the reactor

temperature is controlled using the cooling jacket. Since in this case there is no error

between the prediction and the evolution of the real plant (in both models the impurity

factor is ip = 1.0), the performance is good and no constraint violations occur. However,

as it can be seen in Fig. 8.3 and in Fig. 8.4, if the model used in the optimizer differs

from the model of the plant, infeasibilities may occur. In this case, the monomer impurity

factor of the real plant is ip = 0.8 and ip = 1.2 and the impurity factor used in the model

of the optimizer is ip = 1.0. Since the end-use properties of the polymer depend strongly
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Figure 8.2: Reactor temperature, valve position and monomer feed rate for standard

NMPC, controller impurity factor = plant impurity factor = 1.0.

on the temperature at which the polymerization takes place, this is not an acceptable

performance of the controller.

In contrast to standard NMPC, if multi-stage NMPC is used, the constraints are not

violated for any of the possible values of the impurity factor. Fig. 8.5 shows the reactor

temperature and the control inputs when the real purity factor is ip = 0.8 and the robust

horizon is considered to be NR = 1, that is, the tree branches only in the first stage
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Figure 8.3: Reactor temperature, valve position and monomer feed rate for standard

NMPC, controller impurity factor = 1.0, plant impurity factor = 0.8.
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Figure 8.4: Reactor temperature, valve position and monomer feed rate for standard

NMPC, controller impurity factor = 1.0, plant impurity factor = 1.2.

and thereafter the uncertainty is considered to be constant. Fig. 8.6 and Fig. 8.7 show

that the multi-stage NMPC controller can satisfy the constraints for all cases of the

uncertainty included in the scenario tree. It can be observed in Fig. 8.7 that there is a

minor violation of the upper temperature constraint at time t = 34 min. This violation
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is due to the Euler approximation of the dynamics in the prediction and can be avoided

by choosing a smaller tstep. Here it is assumed that such a violation is negligible. Fig. 8.8

and Fig. 8.9 show the reactor temperature and the monomer feed rate obtained when

running multi-stage NMPC for many values of the uncertainty between the pre-specified

bounds, including also values that are not explicitly included in the tree. It can be seen

that also in this case the constraints are satisfied for all the values of the uncertainty.
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Figure 8.5: Reactor temperature, valve position and monomer feed rate for multi-stage

NMPC, plant impurity factor = 0.8.

Fig. 8.10 shows a comparison of the results for different robust horizons. As it can be

seen, the performance is very similar and therefore the case with robust horizon equal to

one will be used in the remainder of the paper since it provides a good solution with a

lower computational cost.

As mentioned in Chapter 3, the framework of multi-stage NMPC includes the closed-loop

min-max NMPC formulation by simply exchanging the summation by the maximization

operator in the general cost function defined in (3.5) if all the probabilities ωi are equal.

In order to obtain a differentiable cost function, a slack variable is used as cost function

and additional constraints (8.16j) are imposed such that the new slack variable is larger

than the cost of any of the scenarios. In this way a differentiable min-max formulation

is obtained. The mathematical formulation of the multi-stage min-max NMPC can be
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Figure 8.6: Reactor temperature, valve position and monomer feed rate for multi-stage

NMPC, plant impurity factor = 1.0.

0 10 20 30 40 50 60

355

356

357

Time [min]

T
em

pe
ra

tu
re

 [K
]

 

 

Reactor
Constraints

0 10 20 30 40 50 60
0

50

100

V
al

ve
 P

os
iti

on
 [%

] 

Time [min]

0 10 20 30 40 50 60
0

0.01

0.02

F
ee

d 
[k

g/
s]

Time [min]

Figure 8.7: Reactor temperature, valve position and monomer feed rate for multi-stage

NMPC, plant impurity factor = 1.2.

written as:

min
xj

k
,uj

k
∈ǫ

γ, (8.16a)

subject to: (8.16b)
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Figure 8.8: Reactor temperature for multi-stage NMPC for different values of the plant
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Figure 8.9: Monomer feed rate for multi-stage NMPC for different values of the plant

impurity factor.

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (8.16c)

Tset − 0.6 ≤ T j
k ≤ Tset + 0.6, ∀ (j, k) ∈ I, (8.16d)

5 ≤ T in,j
j,k ≤ 95, ∀ (j, k) ∈ I, (8.16e)
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Figure 8.10: Reactor temperature, valve position and monomer feed rate for multi-stage

NMPC, for different robust horizons NP and for plant impurity factor = 0.8.

5 ≤ T out,j
j,k ≤ 95, ∀ (j, k) ∈ I, (8.16f)

0 ≤ cj
k ≤ 100, ∀ (j, k) ∈ I, (8.16g)

0 ≤ ṁin
M ≤ ṁmax

M , ∀(j, k) ∈ I, (8.16h)

uj
k = ul

k if x
p(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I, (8.16i)

γ ≥ ωi · Ji ∀i = 1..N, (8.16j)

where Ji is the cost of scenario i defined for the feeding phase as:

Ji =
Np−1
∑

k=0

r(ṁin,j
M,k − ṁmax

M )2 + r∆∆cj
k

2
, ∀ ṁin,j

M,k, cj
k ∈ Si, (8.17)

As expected, min-max NMPC also satisfies the temperature constraints for all possible

values of the uncertainty. However, the performance is decreased due to the worst-case

nature of the approach. A comparison of multi-stage and min-max NMPC is shown in

Fig. 8.11 for the case of impurity factor ip = 0.8. Note that multi-stage min-max NMPC

is not the same as classical min-max NMPC where no recourse is included.

Table 8.3 shows a comparison of the feeding times for each controller, including whether

the corresponding controller is capable of maintaining the temperature between the spec-

ified bounds or not. It can be seen that multi-stage NMPC obtains the best performance.

The average computation time per optimization problem iteration needed for the differ-

ent NMPC algorithms is shown in Table 8.4. This computation times illustrate that the
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Figure 8.11: Reactor temperature, valve position and monomer feed rate for multi-stage

and min-max NMPC, plant impurity factor = 0.8.

solution is possible in real time for a robust horizon NR = 1. As it will be shown in the

next section, an efficient implementation using automatic differentiation to provide ex-

act first and second order derivative information that greatly improves the computation

times, enlarging the range of applications under real time constraints. The NLP contains

82 variables for standard NMPC, 222 for multi-stage NMPC with robust horizon NR = 1,

558 with NR = 2, and 1314 with NR = 3. The hardware used is a 4-core Intel i5 proces-

sor (2.67 GHz) with 4 Gb of RAM and the resulting NLPs are solved using SNOPT via

TOMLAB/MATLAB.

In order to illustrate the influence of the design of the scenario tree in the performance

of the controller, Table 8.5 presents different designs of the scenario tree with robust

horizon 1 and the resulting performance of the controller using multi-stage NMPC with

these trees is summarized in Table 8.6. It can be seen that as a guideline for the design

of the tree, extreme scenarios should be chosen in order to achieve robust constraint

satisfaction and that the inclusion of intermediate scenarios increases the performance of

the resulting controller.
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Table 8.3: Performance comparison between standard, multi-stage (NR = 1) , and min-

max (NR = 1) NMPC.

Feeding time in minutes

Impurity Impurity Standard Multi-stage Min-max

plant controller NMPC NMPC NMPC

0.8 27.00

0.8 1.0 infeasible 31.00 33.00

1.2 infeasible

0.8 infeasible

1.0 1.0 26.50 28.00 28.50

1.2 infeasible

0.8 infeasible

1.2 1.0 infeasible 27.00 27.50

1.2 26.50

8.1.2 Multi-stage NMPC with State and Parameter Estimation

In a real plant, measurements of all state variables usually are not available. Since this

information is necessary for the initialization of the optimizer, state estimation is required

if the states cannot be measured. As shown in (Lucia et al., 2012), multi-stage NMPC

can also be applied using state estimation based upon noisy temperature measurements.

However, in many cases, it is possible to estimate some uncertain parameters online as

well. Then standard NMPC can be applied using the estimated value of the uncertainty

in the model that is employed in the optimization. This raises the question whether

there is an advantage in using a robust formulation in this case. As it is demonstrated

here, the nominal controller with state estimation is not robust against a change in the

parameter value, even if it is perfectly estimated at the next sampling time, while the

use of the multi-stage NMPC scheme robustifies the system also against changes of the

operation conditions of the plant, such as a sudden change on the impurity factor of

the monomer input. In order to illustrate this advantage of multi-stage NMPC, an Ex-

tended Kalman Filter is simulated based on the assumption that only noisy temperature

measurements are available with a standard deviation of σ = 0.05K as described in the
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Table 8.4: Average computation times for one iteration of standard, multi-stage, and

min-max NMPC algorithms for different robust horizons.

NMPC algorithm Computation time (s) # of scenarios

Standard 0.74 1

Multi-stage (NR = 1) 2.98 3

Min-max (NR = 1) 5.73 3

Multi-stage (NR = 2) 18.65 9

Min-max (NR = 2) 31.39 9

Multi-stage (NR = 3) 97.48 27

Min-max (NR = 3) 145.28 27

Table 8.5: Description of several scenario trees with robust horizon NR = 1 with different

numbers of branches and values of the uncertainty taken into account.

Scenario tree Values of ip in the tree

Tree 1 {1.0}

Tree 2 {0.9, 1.1}

Tree 3 {0.8, 1.2}

Tree 4 {0.8, 1.0, 1.2}

Tree 5 {0.8, 0.9, 1.0, 1.1, 1.2}

original benchmark problem (Graichen et al., 2006). The Extended Kalman Filter (EKF)

was implemented in the same way as in (Beyer et al., 2008). The estimated state vector

is x̂ = [m̂M, m̂P, T̂ , T̂ out
j , q̂0, Û ]T using equations (8.1a) to (8.1d), augmented by q̇0 = 0

and U̇ = 0. The estimated heat of reaction Q̂rea is calculated as:

Q̂rea = q̂0 · m̂M.

The nonzero diagonal elements of the covariance parameters were tuned by simulation

and are shown in Table 8.7. The performance of the Extended Kalman Filter is shown in

Fig. 8.12, and it can be seen that, the heat of reaction Qrea, the heat transfer coefficient U

and the monomer mass mM are estimated well. Using the estimated heat of reaction Q̂rea,

it is possible to compute the estimated impurity factor using Q̂rea = ∆HPîp k̂ m̂M/MWM,
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Table 8.6: Performance comparison of multi-stage NMPC for the different scenario trees

Feeding time in minutes

Imp. plant Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

0.8 infeasible infeasible 31.50 31.00 31.00

0.9 infeasible 27.00 29.00 28.50 28.50

1.0 26.50 26.50 28.50 28.00 28.00

1.1 infeasible 26.50 28.50 28.00 28.00

1.2 infeasible infeasible 27.00 27.00 26.50

Table 8.7: Tunning parameters used in the covariance matrix QEKF of the EKF.

Period

Element in QEKF Heating Feeding Holding

σ2(T̂ out
j ) 5× 10−3 1× 10−7 5× 10−3

σ2(q̂0) 5× 10−3 6× 10−2 5× 10−3

σ2(Û) 5× 10−5 5× 10−3 5× 10−6

where MWM is the molar mass of the monomer, and k̂ is the estimated reaction constant

which can be computed using (8.6).

It is assumed that a step change in the quality of the raw materials occurs in the middle

of the batch (t = 45 min). The impurity factor of the input monomer feed changes from

iin
p = 0.8 to iin

p = 1.0. Then, the new monomer fed into the reactor is mixed with the

monomer that was inside the reactor such that after a certain time, the impurity factor of

the monomer that reacts and turns into polymer changes from the initial ip = 0.8 to the

final ip = 1.0. In order to take this effect into account, the model of the plant (8.1a–8.1e)

is augmented by the following differential equation:

dip

dt
=

ṁin
M(iin

p
K in

i +ṁin
M

ṁin
M
− ip)−K in

i ip

mM + mP + mW
, (8.18)

where ip is the impurity factor of the monomer that actually reacts (see Eq. (8.3))

and determines the heat produced by the reaction, and iin
p is the impurity factor of the
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Figure 8.12: Performance of the Extended Kalman Filter estimation for one batch using

the multi-stage NMPC as a controller

monomer input. The constant K in
i controls the speed at which the monomer that is

reacting goes from the initial impurity factor (ip = 0.8) to the final impurity factor

(ip = 1.0). We choose K in
p = 3 so that this change takes around 3 minutes in the

case shown in Fig. 8.12. In Fig. 8.13, different simulation results are presented in order

to compare the performance of the proposed robust multi-stage NMPC with standard

NMPC with estimation of the reaction rate.

Fig. 8.13.a shows the performance of standard NMPC assuming noise-free full-state feed-

back and perfect knowledge of the uncertainty. As it can be seen, due to the almost

step-shaped disturbance in the impurity factor, constraint violations occur even though

it is assumed that the value of the impurity factor is exactly known at the next sam-

pling time. A similar behavior can be seen in Fig. 8.13.c where the standard NMPC

controller with noisy temperature measurements and the EKF is simulated. In contrast,

multi-stage NMPC handles the step disturbance nicely, avoiding constraint violations

both for full-state feedback (Fig. 8.13.b) and when only noisy temperature measurements

are available (Fig. 8.13.d). Note that in this case no information about the current value

of the uncertainty is included in multi-stage NMPC. This means that it would not be

even necessary to estimate it. These results show that the lack of robustness against a
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Figure 8.13: Simulation of standard NMPC with full-state feedback and perfect knowl-

edge about the uncertainty (a), and with the EKF (c), and simulation of robust NMPC

with full-state feedback (b), and with the EKF (d). In all cases a step disturbance in

the impurity factor of the monomer input enters at time t = 45 min from iin
p = 0.8 to

iin
p = 1.0.

sudden change of the uncertainty of standard NMPC is not due to the estimation error

or the measurement noise, since it is observed also in the case of full-state feedback and

perfect knowledge of the uncertainty, but it is inherent to the approach, because it does

not take into account that the uncertainty may vary. On the other hand, multi-stage

NMPC can deal with constant uncertainties as well as with sudden changes of the uncer-

tain parameter because of the anticipation of the uncertainty in the scenario tree. The

price for this robustness is a slightly longer feeding time (around 10% longer in this case).

If the uncertainty can be estimated, it is reasonable to use this information to update

the weights of the branches in the scenario tree according to the estimated value of the

uncertainty. In this manner, the cost function will be minimized taking into account

that the estimated value is the most probable one, but at the same time it is guaranteed
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that the closed-loop will be still robust for all the possible values of the uncertainty.

Fig. 8.14 shows a comparison of multi-stage NMPC and multi-stage NMPC enhanced by

the estimation of ip for the case where the impurity is ip = 1.0. For multi-stage NMPC

the uncertainty is not estimated and therefore the probability of each scenario is equal

(ω1 = 1/3, ω2 = 1/3, ω3 = 1/3), while for the enhanced multi-stage NMPC the value of

the impurity factor in the middle branch (ip = 1.0) of the scenario tree is replaced by

the estimated impurity with a high probability (ωest = 0.99). The enhanced multi-stage

NMPC improves the performance of the controller, the feeding time is reduced by around

5% while maintaining the robustness of the approach.
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Figure 8.14: Simulation of multi-stage NMPC and enhanced multi-stage NMPC for the

case where the uncertain parameter and the states are estimated using an EKF.
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Figure 8.15: Industrial batch polymerization reactor with an external heat exchanger.

8.2 An Industrial Polymerization Reactor

This section shows a comparison of multi-stage NMPC with other robust NMPC strate-

gies applied to an industrial batch polymerization reactor and it is based on the results

published in (Lucia et al., 2014b). In addition, it is demonstrated that the efficient

implementation with CasADi using automatic differentiation as described in Chapter 5

makes it possible to solve the problem in real-time for much longer horizons and more

uncertain parameters when compared to the TOMLAB/MATLAB implementation used

for the example in the previous section.

Description of the Model

The results of this section were obtained for a realistic industrial batch polymerization

reactor model provided by BASF SE as a case study in the context of the EU-funded

project EMBOCON (EMBOCON, 2014). A scheme of the system under consideration

can be seen in Fig. 8.15. The system consists of a reactor into which monomer is fed. The

monomer turns into a polymer in a strongly exothermic chemical reaction. The reactor

is equipped with a jacket and with an External Heat Exchanger (EHE) that can both be

used to control the temperature inside the reactor.
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The process is modeled by a set of 8 ordinary differential equations:

ṁW = ṁF ωW,F, (8.19a)

ṁA = ṁFωA,F − kR1 mA,R − kR2 mAWT mA/mges, (8.19b)

ṁP = kR1 mA,R + kR2 mAWT mA/mges, (8.19c)

ṪR = 1/(cp,Rmges) [ṁF cp,F (TF − TR) + ∆HRkR1mA,R (8.19d)

− kKA (TR − TS)− ṁAWT cp,R (TR − TEK)], (8.19e)

ṪS = 1/(cp,SmS) [kKA (TR − TS)− kKA (TS − TM)], (8.19f)

ṪM = 1/(cp,WmM,KW) [ṁM,KW cp,W

(

T IN
M − TM

)

(8.19g)

+ kKA (TS − TM)], (8.19h)

ṪEK = 1/(cp,RmAWT) [ṁAWTcp,W (TR − TEK) (8.19i)

− α (TEK − TAWT) + kR2 mA mAWT∆HR/mges], (8.19j)

ṪAWT = [ṁAWT,KW cp,W (T IN
AWT − TAWT) (8.19k)

− α (TAWT − TEK)]/(cp,WmAWT,KW), (8.19l)

where: (8.19m)

U = mP/(mA + mP), (8.19n)

mges = mW + mA + mP, (8.19o)

kR1 = k0e
−Ea

R(TR+273.15) (kU1 (1− U) + kU2U) , (8.19p)

kR2 = k0e
−Ea

R(TEK+273.15) (kU1 (1− U) + kU2U) , (8.19q)

kK = (mW kWS + mA kAS + mP kPS)/mges, (8.19r)

mA,R = mA −mAmAWT/mges. (8.19s)

The model includes mass balances for the water, monomer and product hold-ups (mW,

mA, mP) and energy balances for the temperatures of the reactor (TR), of the vessel

(TS), of the jacket (TM), of the mixture in the external heat exchanger (TEK) and of

the coolant leaving the external heat exchanger (TAWT). The variable U denotes the

polymer-monomer ratio in the reactor, mges represents the total mass, kR1 is the reaction

rate inside the reactor and kR2 is the reaction rate in the external heat exchanger. The

overall heat transfer coefficient of the mixture inside the reactor is denoted as kK and

mA,R represents the current amount of monomer inside the reactor.

The available control inputs are the feed flow ṁF, the coolant temperature at the inlet

of the jacket T IN
M and the coolant temperature at the inlet of the external heat exchanger
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T IN
AWT.

The complete set of parameters of the model used in this work as provided by BASF SE,

together with a short description of each parameter, is presented in Table 8.8.

Description of the Control Problem

The control task under consideration is the production of one batch of polymer in the

minimum possible time while satisfying safety constraints and constraints on the quality

of the resulting product by manipulating the control inputs ṁF, T IN
M and T IN

AWT.

The temperature at which the polymerization reaction takes place strongly influences the

properties of the resulting polymer. For this reason, the temperature of the reactor should

be maintained in a range of ±2.0◦C around the desired reaction temperature Tset = 90◦C

in order to ensure that the produced polymer has the required properties.

Real processes are also subject to important safety constraints that are incorporated to

account for possible failures of the equipment. In this case, the maximum temperature

that the reactor would reach in the case of a cooling failure is constrained to be below

109◦C. The temperature that the reactor would achieve in the case of a complete cooling

failure can be calculated as:

Tadiab =
∆HR

cp,R

mA

mges
+ TR. (8.20)

To model the safety constraint, the model in (8.19a) is extended by an additional differ-

ential state (Tadiab), the differential equation of which is obtained by differentiating (8.20)

with respect to time:

Ṫadiab =
∆HR

mgescp,R

ṁA − (ṁW + ṁA + ṁP)

(

mA∆HR

m2
gescp,R

)

+ ṪR. (8.21)

The new state is constrained to be below the safe temperature (Tadiab ≤ 109◦C). Instead

of adding a new state it is also possible to consider the nonlinear constraint directly.

The maximum amount of material that can be fed into the reactor is
∫

ṁF dt = 30000

kg. After all the material has been fed into the reactor (feeding phase) the reaction

continues with the remaining monomer (holding phase) and the batch is considered to be
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Table 8.8: Parameters of the industrial polymerization reactor model

Parameter Description Value Unit

R Gas constant 8.314 kJ
kmol·K

cp,W Specific heat capacity of the coolant 4.2 kJ
kg·K

cp,S Specific heat capacity of the steel 0.47 kJ
kg·K

cp,F Specific heat capacity of the feed 3 kJ
kg·K

cp,R Specific heat capacity of the reactor contents 5.0 kJ
kg·K

kWS Heat transfer coeff. water-steel 4800 W
m2·K

TF Feed temperature 25 ◦C

A Heat exchange surface of the jacket 65 m2

mM,KW Mass of coolant in the jacket 5000 kg

mS Mass of reactor steel 39000 kg

mAWT Mass of the product in the EHE 200 kg

mAWT,KW Mass of the coolant in the EHE 1000 kg

ṁM,KW Coolant flow of the jacket 300000 kg
h

ṁAWT,KW Coolant flow of the EHE 100000 kg
h

ṁAWT Product flow to the EHE 20000 kg
h

Ea Activation energy 8500 kJ
kmol

∆HR Specific reaction enthalpy 950 kJ
kg

k0 Specific reaction rate 7 1
s

kU2 Reaction parameter 1 32 −
kU1 Reaction parameter 2 4 −

wW,F Mass fraction of water in the feed 0.333 −
wA,F Mass fraction of A in the feed 0.667 −
kAS Heat transfer coeff. monomer-steel 1000 W

m2·K

kPS Heat transfer coeff. product-steel 100 W
m2·K

α Experimental coefficient 3600000 1
s
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finished when the desired amount of polymer is produced (mend
P = 20680 kg). In order

to avoid the switching between different optimization problems as in the previous section

for the feeding and the holding phase, an additional state is added that accounts for the

accumulated material that has been fed, that is, ṁacc
A = ṁF and another constraint is

included such that 0 < macc
F < mmax

F = 30000 kg. The constraints on the states and

control inputs, as well as the initial conditions can be seen in Table 8.9 and in Table 8.10.

Table 8.9: Initial conditions and state constraints.

State Init. cond. Min. Max. Unit

mW 10000 0 inf. kg

mA 853 0 inf. kg

mP 26.5 0 inf. kg

TR 90.0 Tset − 2.0 Tset + 2.0 ◦C

TS 90.0 0 100 ◦C

TM 90.0 0 100 ◦C

TEK 35.0 0 100 ◦C

TAWT 35.0 0 100 ◦C

Tadiab 104.897 0 109 ◦C

macc
F 0 0 30000 kg

Table 8.10: Bounds on the manipulated variables.

Control Min. Max. Unit

ṁF 0 30000 kg
h

T IN
M 60 100 ◦C

T IN
AWT 60 100 ◦C

In a real system, usually the model parameters cannot be determined exactly, what

represents an important source of uncertainty. For this example two of the most critical

parameters of the model are considered not to be precisely known and vary with respect

to their nominal value. In particular, it is assumed that the specific reaction enthalpy
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∆HR and the specific reaction rate k0 are constant but uncertain, having values that can

vary ±30% with respect to their nominal values reported in Table 8.8.

Mathematical Formulation

The control task is formulated as the following optimization problem:

min
xj

k
,uj

k
∀(j,k)∈I

Jbatch(xj
k+1, uj

k), (8.22a)

subject to:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (8.22b)

Tset − 2.0 ≤ T j
R,k ≤ Tset + 2.0, ∀ (j, k) ∈ I, (8.22c)

0 ≤ T j
S,k ≤ 100, ∀ (j, k) ∈ I, (8.22d)

0 ≤ T j
M,k ≤ 100, ∀ (j, k) ∈ I, (8.22e)

0 ≤ T j
EK,k ≤ 100, ∀ (j, k) ∈ I, (8.22f)

0 ≤ T j
AWT,k ≤ 100, ∀ (j, k) ∈ I, (8.22g)

0 ≤ T j
adiab,k ≤ 109, ∀ (j, k) ∈ I, (8.22h)

0 ≤ macc,j
A,k ≤ mmax

A , ∀ (j, k) ∈ I, (8.22i)

0 ≤ ṁj
F,k ≤ 30000, ∀ (j, k) ∈ I, (8.22j)

60 ≤ T IN,j
M,k ≤ 100, ∀ (j, k) ∈ I, (8.22k)

60 ≤ T IN,j
AWT,k ≤ 100, ∀ (j, k) ∈ I, (8.22l)

uj
k = ul

k if x
p(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I, (8.22m)

where the constraints are applied to all the states and all control inputs along each

scenario with

xj
k = [mj

W,k, mj
A,k, mj

P,k, T j
R,k, T j

S,k, T j
M,k, T j

EK,k, T j
AWT,k, T j

adiab,k, macc,j
A,k ]T,

uj
k = [ṁj

F,k, T IN,j
M,k , T IN,j

AWT,k]T.

The discretized dynamics of the system are included as constraints in (8.22b), (8.22c-

8.22i) denote the constraints on the states, (8.22j-8.22l) represent the constraints on the

input variables, and the non-ancitipativity constraints are included in (8.22m).

Two possible cost functions Jbatch(xj
k+1, uj

k) are proposed. The first one, (8.23), represents

the maximization of the mass of polymer together with a set-point tracking term for



104 Multi-stage NMPC of Polymerization Processes

the reactor temperature. In addition, small regularization terms are added in order to

penalize the control movements so that a smooth control input is achieved as a result of

the optimization problem. The mixed tracking cost function results as:

Jtrack(xj
k+1, uj

k) =
N∑

i=1

ωi

K−1∑

k=0

−mj
P,k+1 + q(T j

R,k+1 − Tset)2

+ r1(∆ṁj
F,k)2 + r2(∆T IN,j

M,k )2 + r3(∆T IN,j
AWT,k)2 ,

∀ mj
P,k+1, T j

R,k+1, ṁj
F,k, T IN,j

M,k , T IN,j
AWT,k ∈ Si,

(8.23)

where q, r1, r2 and r3 are tuning parameters. A different possibility is to avoid the use

of a tracking term and to use only an economically motivated cost function:

Jeco(xj
k+1, uj

k) =
N∑

i=1

ωi

Np−1
∑

k=0

−mj
P,k+1

+ r1(∆ṁj
F,k)2 + r2(∆T IN,j

M,k )2 + r3(∆T IN,j
AWT,k)2 ,

∀ mj
P,k+1, ṁj

F,k, T IN,j
M,k , T IN,j

AWT,k ∈ Si.

(8.24)

For both cases the cost is calculated as the sum over all the N scenarios Si with i = 1, ..., N

along the prediction horizon NP . Here it is implicitly assumed that the batch time is

minimized by maximizing the amount of polymer produced within the prediction horizon.

For the multi-stage NMPC implementation a scenario tree with 9 scenarios is considered

that results from the combination of the maximum, the minimum and the nominal values

of the uncertain parameters. The tree is branched only in the first stage (NR = 1) because

as seen in the previous section, a larger robust horizon results in a similar performance

with a higher computational cost. For all the results shown in the remainder of the section

the sampling time of the NMPC controller is tstep = 50 s with a prediction horizon of

NP = 20 steps. The tuning parameters chosen for the cost functions presented in (8.23)

and (8.24) are r1 = 0.1, r2 = 0.02, r3 = 0.01 and q = 10000.

As explained in Chapter 5, all the algorithms presented in this section have been im-

plemented using the optimization tool CasADi to pass first and second order derivative

information, which has been automatically generated, to IPOPT. This makes it possible

to greatly improve the computational speed that was reported in the previous section

and in the publication (Lucia et al., 2013a) with little implementation effort. The real

plant is simulated with the calculated control input using the integrators from the SUN-

DIALS toolbox with a high accuracy. For comparison purposes, results with a collocation

approach and with a multiple shooting approach are presented. For the collocation ap-
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proach Radau collocation points are used, with interpolating polynomials of degree 2. For

the multiple shooting approach the integrators from the SUNDIALS toolbox are used.

8.2.1 Tracking NMPC vs. Multi-stage Economic NMPC of a

Polymerization Reactor under Uncertainty

This section presents first a comparison of tracking and economic NMPC without uncer-

tainty and afterwards a comparison of standard tracking NMPC (with typical modifica-

tions to account for uncertainty) and multi-stage NMPC under uncertainty.

First it is assumed that the model is perfect, i.e. there is no plant-model mismatch.

Then the described control problem can be solved by standard NMPC, using either the

economic cost function Jeco(xj
k+1, uj

k) or the mixed cost function Jtrack(xj
k+1, uj

k) in which

the center of the allowed temperature range is tracked. As expected, the use of economic

NMPC improves the performance of the controller as can be seen in Fig. 8.16. The

batch time is reduced by around 7.5%. Fig. 8.16 also shows a comparison between the

solution obtained using collocation and multiple shooting. Since both results are very

similar, only the results with the collocation approach are shown in the remainder of the

section . The current multiple-shooting implementation has not been optimized for its

performance and therefore the computation times are much higher than the ones obtained

by the collocation approach (73.23 s vs. 0.072 s per optimization problem for standard

NMPC with a mixed tracking objective).

As can be seen in Fig. 8.16 and in general when using an economic cost function, the pro-

cess is typically operated at one of its constraints, and this constraint may vary along the

operation. Since models for industrial applications are imperfect, constraints violations

will be unavoidable, unless additional measures are taken. A typical approach used in

practice is to track a conservative set-point and to expect that the tracking controller is

able to maintain the system near the set-point despite the several uncertainties affecting

it. This is however not enough to deal with significant uncertainties. Fig. 8.17 (left) shows

the results of standard NMPC for different values of the uncertain parameters ∆HR and

k0. Each line in the plot represents the state and control trajectories with different values

of the uncertain parameter for each batch (varying from batch to batch between ±30%

with respect to their nominal values) using the same controller. The parameters are kept

constant along each batch. It is clear that the standard NMPC controller with tracking



106 Multi-stage NMPC of Polymerization Processes

0 0.5 1 1.5
88
90
92

T
R

 [° C
]

0 0.5 1 1.5
90

100

110

T
ad

ia
b [° C

]

0 0.5 1 1.5
0

2

4
x 10

4

m
F
 [k

g/
h]

0 0.5 1 1.5
50

100

T
MIN

 [° C
]

Time [h]

 

 Eco. − col
Eco. − m.s.
Track. − col
Track. − m.s.

Figure 8.16: Reactor temperature, safety temperature (with constraints indicated),

monomer feed and jacket temperature for mixed and for economic NMPC using col-

location and multiple shooting for a perfect model (no uncertainty).

of the mean value of the allowed temperature range fails to satisfy the constraints for

several scenarios.

In order to increase the amount of feedback used in the standard NMPC scheme, a simple

modification which introduces a bias-term for the set-point can be used. By doing this,

the set-point that is used in the optimizer at each sampling time (T opt
set ) is updated using

a proportional rule, i.e., T opt
set ← T opt

set + K(Tset − TR), with K = 0.015 where Tset is the

real setpoint and TR is the state of the real plant. The performance of the controller

is improved (see Fig. 8.17 (right)) but there still are important violations of the safety

constraints and for the reactor temperature that could lead to a deficient quality of the

product and are not tolerable for safety reasons.

If the results are carefully analyzed, the violations occur only for certain values of the un-
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Figure 8.17: Reactor temperature, safety temperature (with constraints indicated),

monomer feed and jacket temperature for standard NMPC (left) and for standard NMPC

with bias term (right) with a mixed tracking cost function.

certain parameters, normally when the real ∆HR and k0 values are higher than expected,

because then more heat than expected is generated, leading to constraint violations. A

possible way to deal with this problem with the standard NMPC scheme with a track-

ing cost function is to consider the worst-case value of the uncertain parameters, i.e

∆HR = 1.30 · ∆HR and k0 = 1.30 · k0 in the prediction model. With this conservative

choice of the uncertain parameters, standard NMPC with a mixed tracking cost function

and a bias-term is able to satisfy the constraints for all cases of the uncertainty as can

be seen in Fig. 8.18 (left). However, the obtained batch times are significantly higher

than the ones obtained with the proposed multi-stage NMPC with economic cost function

(Fig. 8.18 (right))

A summary of the results obtained with the different controllers for all the scenarios is

shown in Table 8.11. It is clear that the use of multi-stage NMPC with a simple scenario

tree can improve the performance of the controller significantly compared to a conser-

vative choice of the uncertain parameters. Even in the case of the nominal value of the

parameters, multi-stage NMPC achieves a very similar performance compared to the stan-

dard NMPC approach, while being robust for all the possible values of the uncertainty.

This is due to the fact that an economic cost function is used in the multi-stage case and

that the uncertainty is taken into account by using a scenario tree, whereas a tracking
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Figure 8.18: Reactor temperature, safety temperature (with constraints indicated),

monomer feed and jacket temperature for standard NMPC with bias term and the worst

case value of the parameters in the model with mixed tracking cost function (left) and

for multi-stage NMPC with an economic cost function (right).

term of a conservative set-point is used in standard NMPC. Note that in this case, the

improvement in the batch time averaged over all the scenarios is approximately 60%,

which clearly shows the large economic potential of the multi-stage approach compared

to a conservative choice of parameters.

This improvement is achieved by considering the uncertainty explicitly using a robust

NMPC closed-loop approach by means of a scenario tree, which increases the compu-

tational complexity of the approach. However, if efficient tools are used – as the ones

described in this thesis – it is possible to solve the resulting optimization problems con-

sistently faster than the sampling time of the system (tstep = 50 s) which enables an

implementation of the proposed scheme for this industrial case study. The average and

maximum computation times per optimization problem obtained for each controller are

reported in Table 8.12.
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Table 8.11: Performance comparison between standard NMPC, standard NMPC with

bias term, standard NMPC with bias term using the worst-case value of the parameters

in the model used in the optimizer and multi-stage NMPC.

Batch time in hours

Unc. in Unc. in Standard Standard Std. worst-case Multi-stage

∆HR k0 NMPC NMPC+bias NMPC+bias NMPC

+30% +30% infeasible infeasible 2.15 2.03

+30% +0% infeasible infeasible 2.72 2.24

+30% -30% infeasible infeasible 4.05 2.69

+0% +30% 1.60 1.64 2.22 1.60

+0% +0% 1.81 1.81 3.00 1.84

+0% -30% 2.69 2.67 4.57 2.50

-30% +30% 1.50 1.50 2.72 1.43

-30% +0% 1.99 1.97 3.57 1.86

-30% -30% 2.88 2.80 5.11 2.68

Av. batch time [h] infeasible infeasible 3.35 2.10

Table 8.12: Average and maximum computation times per optimization problem (in

seconds) of standard NMPC, standard NMPC with bias term, standard NMPC with bias

term using the worst-case value of the parameters in the model used in the optimizer and

multi-stage NMPC.

Standard Standard Std. worst-case Multi-stage

NMPC NMPC+bias NMPC+bias NMPC

Average [s] 0.072 0.071 0.059 1.134

Maximum [s] 0.230 0.190 0.179 1.550
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8.2.2 Comparison of Robust Economic NMPC formulations for

a Polymerization Reactor under Uncertainty

This section presents a comparison of different robust NMPC approaches that have been

presented in the literature over the last years and that were described in Chapter 3, i.e.,

multi-stage NMPC, open-loop robust NMPC, robust NMPC with affine constant policies

and robust NMPC with affine time-varying policies. Although in this case the stability

of the closed-loop system is not guaranteed, no stability or recursive feasibility problems

were encountered for any of the simulations presented.

The robustness of the controllers is achieved in all cases by enforcing the constraints on

each node of a scenario tree which is obtained by combining the maximum, minimum

and nominal values of the uncertain parameters as in the previous section. The same tree

and the same economic cost function (8.24) are used for all the controllers.

Fig. 8.19 shows the results obtained when solving the optimization problem (8.24) in the

form of a robust open-loop NMPC approach as formulated in (3.7). Since the constraints

are checked for all the nodes in the scenario tree, no constraint violations occur for any

of the scenarios. However, in the open-loop robust approach, the fact that at the next

sampling time a newly computed control input will be able to counteract the effect of

the realized uncertainty is ignored. This leads to a higher degree of conservativeness and

therefore to longer batch times.

This can be partially compensated if a certain amount of feedback is introduced in the

prediction by including a feedback gain as an additional optimization variable. If a

robust NMPC controller with affine constant feedback policies is used by formulating the

optimization problem as in (3.13) with the nominal case in the cost function, shorter

batch times are obtained, as can be seen in Fig. 8.20 (left). If the number of degrees

of freedom is increased by optimizing over time-varying state feedback policies (as in

(3.14)) the performance can be increased even more, while preserving the robustness of

the solution for all the different scenarios at the cost of a higher computation cost. The

results for robust NMPC with time-varying feedback policies can be seen in Fig. 8.20

(right).

A summary of the performance of each controller for all the scenarios is given in Table

8.13. It can be seen that the use of any of the approaches presented in this section leads to

a significant reduction of the batch times with respect to the ones obtained with standard
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Figure 8.19: Reactor temperature, safety temperature (with constraints indicated),

monomer feed and jacket temperature for open-loop robust NMPC with an economic

cost function.
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Figure 8.20: Reactor temperature, safety temperature (with constraints indicated),

monomer feed and jacket temperature for robust NMPC with constant (left) and time

varying (right) affine control policies with an economic cost function.
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NMPC and a conservative choice of the uncertain parameters. It is important to note

that the open-loop approach leads to significantly higher batch times (25% with respect

to multi-stage NMPC) because recourse is not introduced in the predictions of the NMPC

controller. The performance can be enhanced by using constant affine or time-varying

affine feedback policies but the best performance is still achieved by multi-stage NMPC.

Note that even for the nominal case of the uncertainty, which is the only one entering the

cost function of the affine controllers, multi-stage NMPC achieves a better performance.

This is due to the conservativeness introduced in the system by the fixed structure of the

feedback. The computation times needed for the solution of each controller are reported

in Table 8.14. The computation time needed by the open-loop approach is very similar to

the one needed by the multi-stage even though it has less degrees of freedoms (free control

inputs) because the same constraints are included in order to enforce robustness. The

introduction of the state feedback matrix K as optimization variable includes new degrees

of freedom (see Table 8.15 for a comparison) and many non-zero entries in the Jacobian of

the constraints and in the Hessian of the Lagrangian due to the feedback structure, which

leads to computation times per iteration that are much higher than the ones obtained

for multi-stage NMPC, especially in the case of time-varying feedback policies. Following

(Goulart et al., 2006), we use only the nominal case in the cost function for the cases of

affine policies. If all the scenarios are included in the cost, the average performance for

the robust NMPC with affine policies (both constant and time-varying) is improved, but

it is still worse than in the multi-stage NMPC case for all the scenarios and it leads to

larger computation times.

8.2.3 Results with Scenario Decomposition

This subsection shows results with the progressive hedging algorithm presented in Chap-

ter 7 applied to the industrial batch polymerization reactor. As tuning parameters of the

Algorithm 1 a tolerance ǫ = 10−5 and ρinit = 0 are chosen. The parameter ρj
k is increased

at each iteration by a factor β = 2 with a maximum of ρmax = 104. A robust horizon
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Table 8.13: Performance comparison between open-loop robust NMPC, robust NMPC

with affine constant policies, robust NMPC with affine time-varying policies and multi-

stage NMPC.

Batch time in hours

Unc. in Unc. in Open-loop Constant Time-varying Multi-stage

∆HR k0 robust NMPC affine policies affine policies NMPC

+30% +30% 2.22 2.14 2.09 2.03

+30% +0% 2.58 2.38 2.31 2.24

+30% -30% 3.38 2.93 2.81 2.69

+0% +30% 1.97 1.85 1.74 1.60

+0% +0% 2.42 2.13 2.01 1.84

+0% -30% 3.38 2.83 2.74 2.50

-30% +30% 1.93 1.78 1.74 1.43

-30% +0% 2.43 2.18 2.18 1.86

-30% -30% 3.39 2.92 3.00 2.68

Av. batch time [h] 2.63 2.34 2.29 2.10

Table 8.14: Average and maximum computation times per optimization problem (in

seconds) of open-loop robust NMPC, robust NMPC with affine constant policies, robust

NMPC with affine time-varying policies and multi-stage NMPC.

Open-loop Constant Time-varying Multi-stage

robust NMPC affine policies affine policies NMPC

Average [s] 1.113 13.87 45.43 1.134

Maximum [s] 2.540 128.2 182.6 1.550

Table 8.15: Degrees of freedom (free control input variables) available for open-loop

robust NMPC, robust NMPC with affine constant policies, robust NMPC with affine

time-varying policies and multi-stage NMPC.

Open-loop Constant Time-varying Multi-stage

robust NMPC affine policies affine policies NMPC

D.o.F. 60 90 660 540
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NR = 1 is used so that the non-anticipativity constraints are applied only at the first

time stage. As shown in Fig. 8.21 the decomposition approach obtains a very similar

performance compared to the monolithic multi-stage approach. Minor differences can be

observed due to the presence of local optima.
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Figure 8.21: Reactor temperature, safety temperature (with constraints indicated),

monomer feed and jacket temperature for open-loop robust NMPC with an economic

cost function.

Table 8.16 shows the average computation times, the necessary memory to solve the op-

timization problems and the number of variables of the NLPs resulting from a monolithic

formulation of the multistage approach for different number of scenarios. The increasing

number of scenarios is obtained by increasing the number of possible realizations of the

uncertainty. For example, 9 scenarios are obtained when 3 possible values are considered

for each uncertainty and 25 scenarios are obtained when 5 possible values are considered

for each uncertainty. If the derivative information can be calculated efficiently and a

solver which exploits sparsity such as IPOPT is used, the computation time grows only

slightly higher than linear with the number of scenarios. For this reason a decomposi-

tion approach could be advantageous only if a large degree of parallelization is available

and convergence is achieved in few iterations of the decomposition algorithm. Table 8.17

shows the same information for the same problems solved with the progressive hedging
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algorithm, including the average number of iterations that the PHA needs to converge

to a solution that satisfies the non-anticipativity constraints. The computation times

(without parallelization) are significantly higher than in the monolithic case. Even if a

complete parallelization is possible (as many computing units as scenarios) the compu-

tation time is longer due to the high number of iterations needed for the algorithm to

converge. On the other hand, an important feature of the decomposition approach is that

the memory necessary to solve the problem does not grow with the size of the scenario

tree, since only simple subproblems are solved. If a monolithic approach is used, the

memory necessary to solve the problem grows linearly with the size of the problem. For

large-scale problems this might be a limitation and therefore a decomposition approach

might be the only possible technique to solve the problem.

Table 8.16: Average computation time per optimization problem, memory consumption

and number of variables of each optimization problem for an increasing number of sce-

narios using a monolithic approach.

# Scenarios Time [s] Memory [Mb] # Variables

1 0.1154 35.6 860

4 0.4583 66.7 3431

9 1.1340 141.1 7716

25 3.3541 285.9 21428

49 7.3292 499.3 41996

81 12.972 850.0 69420

The monolithic multi-stage NMPC approach is not limited to the problems of the size

reported in Table 8.16. If hardware with more memory is available, the implementation

proposed in this thesis is able to solve the large-scale problems resulting from a large

scenario tree. For example, it is possible to solve in 440 s the same industrial reactor

using a prediction horizon NP = 20 and a robust horizon NR = 3 which results in 729

scenarios and 879,402 variables. Due to the memory limitations this computation has

been realized in a computer with 16 Gb of RAM and 2 cores at 2.40 GHz.



116 Multi-stage NMPC of Polymerization Processes

Table 8.17: Average computation time per optimization problem (without paralleliza-

tion), memory consumption, average number of iterations of the progressive hedging al-

gorithm and number of variables of each optimization problem for an increasing number

of scenarios using a decomposition approach.

# Scenarios Time [s] Memory [Mb] # Iterations # Variables

1 0.1154 35.6 - 860

4 16.320 35.6 18.99 860

9 199.98 35.6 47.12 860

25 895.25 35.6 74.22 860

49 1831.1 35.6 93.54 860

81 3690.4 35.6 122.1 860

A possible strategy to reduce the number of iterations that the progressive hedging al-

gorithm needs to converge is to use a hybrid approach between the full decomposition of

the problem into single scenarios and the monolithic approach. In this case, the scenario

tree is divided into smaller sub-trees, which are called bundles, and the same algorithm

is applied until the non-anticipativity constraints are applied.

The systematic choice of the bundles is not trivial, but using knowledge about the problem

they can be chosen in such a way that the number of iterations is significantly reduced. It

can be observed that the large number of iterations needed is mainly due to the fact that

some scenarios are associated to control inputs that drive the system to the constraints.

During the iterations of the PHA these control inputs are required to move towards

the average control input ûj
k so that eventually convergence between all the scenarios is

achieved. This movement will not occur if it causes a violation of the constraints. In this

case, convergence is slow because all the other control inputs should move towards the

one that is at the constraint and cannot be moved.

Following this idea, a good heuristic rule to generate the bundles is to choose for one of

them the worst case scenarios, which are more likely to generate the control inputs that

make the system lie on the constraints. In this way, those complicating scenarios will be

solved simultaneously and the convergence will be faster. Furthermore, the weight of this

bundle for the calculation of the average control input ûj
k can be increased to enhance

even more the performance.
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For the results presented here the first bundle is generated using the scenarios with

parameter values that are a +30% larger than their the nominal values (first row in

Table 8.13), a −30% (ninth row in Table 8.13) and the nominal values of the parameters

(fifth row in Table 8.13). The second bundle is composed of the second, third and seventh

rows in Table 8.13. The third bundle contains the rest of the scenarios.

Fig. 8.22 shows how the use of bundles reduces significantly the number of iterations

that the algorithm needs to converge to a solution that satisfies the non-anticipativity

constraints. If the control input of the first bundle is weighted with a factor 50 times

bigger than the second and third bundles for the calculation of the average control input

ûj
k, the number of iterations can be further reduced as shown in Fig. 8.22.

The use of bundles can be useful to achieve a compromise with lower memory usage

than the monolithic approach but with significantly better computation times due to the

decrease of iterations (see Table 8.18). Nevertheless, even assuming that it is possible to

perform all the optimization problems in parallel, the monolithic approach achieves lower

computation times.
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Figure 8.22: Number of iterations of the progressive hedging algorithm at each NMPC

iteration for the full decomposition, the bundle decomposition and the weighted bundle

decomposition.
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Table 8.18: Average computation time per optimization problem (without paralleliza-

tion), memory consumption, average number of iterations of the progressive hedging

algorithm and number of variables of each optimization problem for the problem with 9

scenarios for the full decomposition approach, the bundle decomposition and the weighted

bundle decomposition.

# Decomposition Time [s] Memory [Mb] # Iterations # Variables

Full decomposition 199.98 35.6 47.12 860

Bundle 40.12 55.40 15.65 2580

Weighted bundle 25.72 55.40 9.49 2580

8.3 Discussion

This chapter presented the central simulation results of the thesis, in which the advan-

tages of the presented multi-stage NMPC with respect to several other approaches are

shown. The chapter is structured in two parts which present two case studies for different

polymerization processes.

In the first section, the potential of multi-stage NMPC was demonstrated by simulation

studies of the Chylla-Haase polymerization reactor. The results show that multi-stage

NMPC satisfies the temperature constraints for all possible cases of the uncertainty and

leads to better performance than standard and min-max NMPC. Multi-stage NMPC

outperforms standard NMPC also with perfect non-anticipative information of the un-

certainty in the case of a step change in the disturbance. If the uncertain parameters

can be estimated, the weights of the scenarios in the cost function of multi-stage NMPC

can be changed according to the estimation results in order to enhance the performance

while maintaining the robustness of the approach.

In the second section, multi-stage NMPC is applied to an industrial batch polymerization

reactor example provided by BASF SE. Simulation results show that multi-stage NMPC

with an economic cost is able to satisfy tight temperature constraints and safety-related

constraints for all the scenarios under consideration that represent variations of ±30%

in critical parameters, while standard NMPC and standard NMPC with bias term vio-

late the constraints. Choosing a standard NMPC scheme with tracking term and with

a conservative choice of the uncertain parameters results in no constraint violations but

increases the obtained batch times significantly compared to multi-stage NMPC. Multi-



8.3 Discussion 119

stage NMPC is also compared to other robust approaches proposed in the literature. It

is shown that the use of a robust open-loop approach can lead to an important decrease

of the performance compared to approaches with feedback or recourse. The introduction

of feedback using state feedback policies (constant or time-varying) improves the per-

formance, but for nonlinear systems it can be far from the performance obtained with

the use of multi-stage NMPC as in this case. Also, a comparison of the computation

times and memory needed for a monolithic and for a decomposition-based solution of the

optimization problem has been provided. These results suggest that if an efficient imple-

mentation is done, the decomposition approach should be preferred over the monolithic

only if a large degree of parallelization is available or if not much memory is available.

The stability of the multi-stage NMPC controllers has been shown by means of exten-

sive simulations, since for real case-studies some of the assumptions necessary (especially

the computation of control robust invariant sets and the positive definiteness of the cost

function) are not fulfilled, or very difficult to check.

The results presented in this chapter have been obtained for challenging industrial case

studies (highly nonlinear dynamics, tight constraints, economic objective). For this rea-

son, multi-stage NMPC represents a promising technique for the practical application of

robust NMPC techniques on real-world problems.

This chapter also provides an insight on the important advantages that the efficient im-

plementation of the approach proposed in this thesis. The use of exact first and second

order derivatives provided by CasADi together with the use of a collocation approach

solved using IPOPT provides a crucial improvement over simple implementations us-

ing TOMLAB/MATLAB. Problems with longer horizons and more uncertainties can be

solved faster and more accurately.

The multi-stage NMPC approach has been succesfully applied to other systems which are

not reported in this thesis for brevity. Results obtained for a highly nonlinear bioreactor

can be seen in (Lucia and Engell, 2012) and results for a penicillin production process

are reported in (Lucia and Engell, 2013). Multi-stage NMPC has been also applied to

a challenging example for the generation of renewable energy using kites in (Lucia and

Engell, 2014).





Chapter 9

Multi-stage NMPC with Guaranteed

Stability

This chapter presents a simple example for which multi-stage NMPC with an a priori

guarantee of stability and recursive feasibility is achieved. The results presented here

are obtained using the formulation presented in Chapter 4. This chapter is based on the

publication (Lucia et al., 2014c).

9.1 Illustrative Example

A spring-damper-mass system is considered, adapted from the problem presented in (Rai-

mondo et al., 2009). The system model can be written as:

ẋ1 = x2

ẋ2 = −k0

m
e−x1x1 −

br

M
x2 +

u

M

(9.1)

where x1 and x2 are the position and the velocity of the mass m, k0 is the constant of the

nonlinear spring, u is the control input and br is the uncertain damping constant which

is supposed to have three different possible values br = {b1, b2, b3} = {1.0, 2.0, 4.0} with

probabilities {π1, π2, π3} = {0.33, 0.34, 0.33}. The worst-case assumption that the damp-

ing constant varies unpredictably between the sampling instances is taken, considering a

sampling time of tstep = 0.4 s. For the implementation of the multi-stage NMPC with

guaranteed stability it is necessary to determine the terminal ingredients κf , Vf , and Xf .
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For this purpose, the next section presents an extension of the method based on lineariza-

tion around the equilibrium point presented for nominal NMPC in (Rawlings and Mayne,

2009). Note that it is also possible to apply other methods based on linear differential

inclusions, as the one described in (Chen et al., 2003) or on the techniques presented in

(Fiacchini et al., 2010) that use different of convex functions (DC programming).

9.2 Calculation of the Terminal Ingredients

The first step is to obtain an auxiliary control law κf . For this purpose, each of the

possible realizations of the system is linearized around the origin and discretized using

the sampling time tstep = 0.4 s, getting the state space representations x(k + 1) = Arx +

Bru, ∀ r ∈ {1, 2, 3}. In order to satisfy the non-anticipativity constraints, a unique κf

for all possible realizations of the uncertainty has to be determined. A state feedback

controller is calculated using the LQR method for the nominal system and it is checked

that all realizations are closed-loop stable with this control input κf . In this case, κf =

Kx is chosen with K = [−1.1869 − 0.9804]. Next, the following Lyapunov equation is

solved for each realization r:

ArT
K P rAr

K + 2Q∗ = P rT , (9.2)

with Ar
K = Ar + BrK and Q∗ = ρ(Q + KT RK) where ρ is a tuning parameter, and

Q and R are the matrices defining the quadratic stage cost of the NMPC controller

ℓ(·) = x′Qx + u′Ru with

Q =




30 0

0 20



 , R = 1. (9.3)

From the Lyapunov equations using ρ = 2 the following positive definite matrices are

obtained:

P 1 =




473.07 146.68

146.68 142.24



 , P 2 =




470.20 162.54

162.54 194.50



 ,

and P 3 =




644.45 227.50

227.50 408.64



 .

(9.4)

We define for each possible realization r different terminal cost functions as:

V r
f (x) =

1
2

xT P rx. (9.5)
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The function V s
f =

∑s
r=1 πr

0V r
f is proposed as a local common control Lyapunov function

for the real system in some neighborhood of the origin. In order to show this, it is

necessary that:

V s
f (f(x, Kx, dr))− V s

f (x) < 0, ∀x ∈ (Z(a) \ 0), ∀r. (9.6)

The set Z(a) is chosen to a be a sublevel set of the corresponding Lyapunov function, i.e.

Z(a) = levaV s
f = {x|V s

f (x) ≤ a}. In addition to condition (9.6), it is also necessary for

the proof of stability that the terminal penalty terms satisfy assumption 3.E. Then, by

simulations gridding the state space, a value of a is chosen so that both conditions are

satisfied. Here, we choose the maximum a that satisfies both conditions (a = 1200) and

ρd(|d|) = 0. The terminal region Xf is chosen to be

Xf = Z(a). (9.7)

The proposed terminal set has to satisfy both the state and the control constraints, that

is, Xf ⊆ X and KXf ⊆ U. If it is not the case, the value of a should be reduced.

In this way, Xf is a robust control invariant set for the system (4.1), i.e., there exists a

control input (in this case κf = Kx) such that the system remains in Xf for all possible

values of the uncertainty. The terminal region can be seen in Fig. 9.1. Fig. 9.1 also shows

the prediction of the scenario tree with prediction horizon NP = 4 equal to robust horizon

NR = 4 which is obtained by solving the multi-stage NMPC problem with guaranteed

stability (3.5) at one time instance. It can be seen that all the constraints, including the

terminal constraint are satisfied.

9.3 Results

Once all the necessary ingredients for the stability guaranteeing formulation of multi-

stage NMPC have been calculated, the control problem can be stated as in (3.5) and

then solved in a receding horizon fashion. For a comparison with other approaches, a

prediction horizon NP = 4 and an initial condition x0 = [5.3, 2.0] is considered. There

are constraints on the states (x1 ∈ [−10, 10] and x2 ∈ [−4, 10]) and on the control

inputs (u ∈ [−6, 6]). The stage cost is ℓ(x, u) = x′Qx + u′Ru and the uncertainty varies

randomly at each time step with the previously defined probabilities. Fig. 9.2 shows the

behavior of the system for 100 different runs with random values of the damping constant
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Figure 9.1: Prediction of the scenario tree for multi-stage NMPC at the initial time with

a prediction horizon of NP = 4. The elliptical terminal set and the state constraints are

also shown. The leaf nodes are indicated in red.

with multi-stage NMPC. None of the samples violates the constraints. As expected, if

standard NMPC with guaranteed stability is used (using the same terminal set) some of

the realizations violate the constraints as can be seen in Fig. 9.3. In addition, the average

accumulated cost for the multi-stage case is better than the one obtained for standard

NMPC as can be seen in the results reported in Table 9.1. Table 9.1 also shows that an

open-loop approach, in which all the control inputs at each stage are equal (no recourse),

leads to a higher cost. Since the uncertain parameter enters the model in a product with

the state x2, the uncertainty has no effect at the origin and therefore all the controllers

converge exactly to the origin instead of to a set around it. The optimal control problem

is solved using collocation on finite elements. The algorithms are implemented using

CasADi and IPOPT as explained in Chapter 5, which makes it possible to solve the

problem with computation times per iteration that are far below the sampling time and

it is therefore real-time implementable (see Table 9.1).

Fig. 9.4 shows a comparison of the feasibility regions (XA(NP )) for different controllers,

which has been obtained numerically (gridding accuracy of 0.2 m and 0.2 m/s for x1 and

x2 respectively). As expected, the feasibility region of the multi-stage controller is larger
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Figure 9.2: States and control trajectories for 100 different runs using multi-stage NMPC

with the uncertainty varying randomly at each sampling time.

Table 9.1: Comparison of the average cost and average computation time per NMPC

iteration obtained with standard, multi-stage and open-loop NMPC (100 samples).

Controller Cost Comp. time/iter [ms]

Standard 1567.47 5.65

Multi-stage 1558.65 33.91

Open-loop 1580.34 103.04
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Figure 9.3: States and control trajectories for 100 different runs using standard NMPC

with the uncertainty varying randomly at each sampling time.
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Figure 9.4: Feasibility region of open-loop NMPC, multi-stage NMPC and multi-stage

NMPC with robust horizon.

than the one obtained with the open loop controller, because of the possibility of adapting

the future inputs to the disturbances. If a longer prediction horizon NP = 6 is used with

a robust horizon NR = 4 to avoid the exponential growth of the tree, Assumption 4 is

satisfied for a higher value of a than Assumption 3.E, and therefore a bigger terminal set

can be chosen. In this case a = 1600 is chosen. This results in a bigger feasibility region

as shown in Fig. 9.4.

This chapter shows that an implementation of multi-stage NMPC with an a priori guar-

antee of stability and recursive feasibility can be done in real-time, provided that the

terminal ingredients can be calculated. For the general nonlinear case it is very challeng-

ing to obtain the required terminal ingredients. In this thesis this has been done based

on a linearization around the equilibrium point and a gridding of the state space (done

off-line), which might not possible for systems of high dimensions due to the necessary

computation power. Other methods besides the linearization approach can be used such
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as linear differential inclusions (LDI), as described in (Chen et al., 2003), or applying DC

programming as in (Fiacchini et al., 2010). It is also possible to use machine learning

techniques as the Support Vector Machine algorithms employed in (Ong et al., 2006).

However, the calculation of a robust control invariant set and its corresponding terminal

control law which are not overly conservative remains a challenge for general nonlinear

systems, especially in the case of high order systems.

Another challenge is that the stability proof provided in this thesis is valid for a classical

tracking MPC scheme, in which the stage cost is positive definite, which is used to prove

that the optimal cost of the multi-stage NMPC scheme is a Lyapunov function. As it

was discussed in Chapter 4, this is not always the case when an economic cost function is

used and therefore new assumptions and different arguments have to be used in order to

achieve an a priori guarantee for stability and recursive feasibility as described in (Angeli

et al., 2012).



Chapter 10

Experimental Results of Multi-stage

NMPC of a Laboratory Plant

This chapter presents the experimental results obtained from the application of standard

and multi-stage NMPC to a laboratory process using DO-MPC. This simple example

illustrates that the tools and methods provided in this thesis enable the implementation

of the multi-stage NMPC approach at a real plant without much effort.

10.1 A Continuous Stirred Tank Reactor

The plant under consideration (see Fig. 10.1) is located at the Group of Process Dy-

namics and Operations at the TU Dortmund. It consists of a continuous stirred tank

reactor (CSTR) equipped with a jacket. Only the thermal behavior of the CSTR is re-

alized experimentally and the kinetics of the chemical reaction are virtual. A schematic

representation of the plant is shown in Fig. 10.2.

The jacket is fed with water supplied from a thermostat, which can heat or cool the

water if necessary, modifying the temperature at the inlet of the jacket T in
j . The reactor

is operated in a semi-batch mode, such that the input flow (V̇ in
R ) can be adjusted using

a pump. For this experiment no real reaction takes place inside the reactor. A virtual

reaction is simulated using a heating rod which produces the heat that an exothermic

reaction taking place inside the reactor would produce.

129
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Figure 10.1: Experimental setup of the thermal part of the CSTR located at TU Dort-

mund.
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Figure 10.2: Schematic representation of the CSTR under consideration with virtual

reaction kinetics.

It is considered that the following reaction takes place inside the reactor:

A + B → C. (10.1)

Using energy and mass balances, it is possible to derive the differential equations that

describe the dynamics of the system and the following 7 ODEs are obtained:

V̇R = V̇ in
R , (10.2a)

ṪR =
V̇ in

R

VR

(T in
R − TR)− αA(TR − TJ)

ρVRcp

− kcAcB∆HR

ρcp

, (10.2b)

ṪJ =
V̇ in

J

VJ
(T in

J − TJ) +
αA(TR − TJ)

ρVJcp
, (10.2c)

ċA = − V̇ in
R

VR
cA − kcAcB, (10.2d)

ċB = − V̇ in
R

VR
(cin

b − cb)− kcAcB, (10.2e)

ċC = − V̇ in
R

VR

cC + kcAcB, (10.2f)

Ṫ in
J =

T̄ in
J − T in

J

τt

. (10.2g)
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The model includes a mass balance for the volume of the reactor VR where V̇ in
R is the input

flow, which is a control input of the system. The energy balances in (10.2b) and in (10.2c)

describe the dynamics of the temperature of the reactor TR and of the temperature of the

jacket TJ, which is assumed to be perfectly mixed. The parameter α is the heat transfer

coefficient and A is the heat transfer area, which can be calculated as a function of the

radius of the reactor r and of the volume of water in the reactor VR as A = πr2 + 2VR

r
.

The specific heat and the density of the water used in the experiment are denoted by cp

and ρ. V̇ in
J is the flow rate into the jacket, which is considered constant, and T in

R denotes

its temperature. VJ is the volume of the cooling fluid inside the jacket. The component

balances for the substances A, B, C are described in (10.2d)-(10.2f), where ci denotes

the concentration of component i. The reaction constant is denoted by k and cin
b is the

concentration of component B in the inflow V̇ in
R . In the considered setup the inflow only

contains the substance B. The dynamics of the thermostat in (10.2g) are approximated

by a first order system with a time constant τt. The thermostat has different dynamics

depending if it is cooling or heating the water. For this reason the time constant τt varies

depending on the temperature of the water at the inlet of the jacket:

τt =







τ cool
t , T in

J ≥ T̄ in
J ,

τheat
t , T in

J < T̄ in
J .

(10.3)

This introduces a discontinuity in the derivative of the model, which should be refor-

mulated if it causes convergence problems for the NLP solver. The set-point used in

the thermostat (T̄ in
J ) is the second control input of the system. The values of all the

parameters of the model can be seen in Table 10.1.

The initial conditions of the states together with the constraints on the states are de-

scribed in Table 10.2. The constraints for the control inputs are shown in Table 10.3.

All the parameters have been obtained experimentally. The parameters that determine

the virtual reaction are k and ∆H , which is the reaction enthalpy. These parameters are

chosen so that it is possible to emulate the virtual reaction with the equipment available.

The heat that would be generated by the reaction Qrea = ∆H k cAcBVR is generated by

the heating rod during the experiment.

The control task of this problem consists in maximizing the amount of product C obtained

(nC = VRcC), while satisfying the state and input constraints defined in Tables 10.2 and

10.3.
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Table 10.1: Parameter values of the CSTR.

Parameter Value Unit

V̇ in
J 9 · 10−6 m3s−1

T in
R 299.15 K

α 0.1484 KWm−2

r 0.092 m

ρ 1000 kg m−3

cp 4.2 kJ kg−1 K−1

VJ 0.00222 m3

k 1.339 · 10−6 m3 mol−1 s−1

∆H -50 kJ mol−1

cin
b 4 · 106 mol m−3

τheat
t 200 s−1

τ cool
t 950 s−1

Table 10.2: Initial conditions and state constraints.

State Init. cond. Min. Max. Unit

VR 0.0035 0 0.01 m3

TR 50.0 48.0 52.0 ◦C

TJ 50.0 0 100.0 ◦C

cA 2000.0 0 inf mol m−3

cB 0 0 inf mol m−3

cC 0 0 inf mol m−3

T in
J 50.0 0 100 ◦C

Table 10.3: Bounds on the manipulated variables.

Control Min. Max. Unit

V̇ in
R 0 9 · 10−6 m3s−1

T̄ in
J 30 80 ◦C
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10.2 Simulation and Experimental Results

This section presents the simulation and experimental results of standard and multi-stage

NMPC for the CSTR presented above.

The first step before applying a model-based technique to control a system is to check

the quality of the available model and its prediction capabilities. With the help of this

information, it has to be decided whether the available model is predicting the behavior

of the system well enough or whether some improvements are needed. For this purpose,

an experiment was performed in which a trajectory for the control inputs was given and

the temperature measurements of the experimental setup are compared with the ones

obtained by simulating the model described in (10.2). From the given initial condition

the model is also simulated in parallel and the values of the concentrations are used to

calculate the heat of reaction Qrea which is generated using the heating rod that emulates

the chemical reaction.

The obtained results are presented in Fig. 10.3. The simulation reproduces well the

results obtained experimentally and it is decided that the model is accurate enough to

be used for nonlinear model predictive control. Small deviations are expected due to the

assumptions made (perfect mixing in the jacket), the approximation of the thermostat

dynamics by a first order system, unmodeled effects (heat transfer to the environment),

small inaccuracies in some of the reactor parameters and sensor noise.

In order to achieve the control task within the framework of NMPC, the following opti-

mization problem is solved at each sampling time:

min
xj

k
,uj

k
∀(j,k)∈I

−
N∑

i=1

ωi

NP −1
∑

k=0

V j
R,kcj

C,k + r1∆V̇ in
R

2
+ r2∆T̄ in

J

2
+ µǫj

k

2
, ∀(j, k) ∈ I (10.4a)

subject to:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (10.4b)

0 ≤ V j
R,k ≤ 0.01, ∀ (j, k) ∈ I, (10.4c)

48 ≤ T j
R,k + ǫj

k ≤ 52, ∀ (j, k) ∈ I, (10.4d)

0 ≤ T j
J,k ≤ 100, ∀ (j, k) ∈ I, (10.4e)

0 ≤ T in,j
J,k ≤ 100, ∀ (j, k) ∈ I, (10.4f)

0 ≤ cj
A,k, ∀ (j, k) ∈ I, (10.4g)
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Figure 10.3: Temperature of the reactor, temperature at the inlet of the jacket and

temperature of the jacket for a given trajectory of control inputs. The experimental

results are shown in red and the simulation results in blue.

0 ≤ cj
B,k, ∀ (j, k) ∈ I, (10.4h)
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C,k, ∀ (j, k) ∈ I, (10.4i)

0 ≤ cacc,j
B,k ≤ 2000, ∀ (j, k) ∈ I, (10.4j)

0 ≤ V̇ in
R ≤ 9 10−6, ∀ (j, k) ∈ I, (10.4k)

30 ≤ T̄ in
J ≤ 80, ∀ (j, k) ∈ I, (10.4l)

uj
k = ul

k if x
p(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I, (10.4m)

Since this optimization problem is going to be solved using real measurements, the hard

constraint on the temperature of the reactor is relaxed and implemented as a soft con-

straint by adding the parameter ǫj
k at each point in the prediction as shown in (10.4d)

and then penalized in the cost function (10.4a) using a big penalty term µ = 106. This is

done to avoid infeasible optimization problems. Since the optimal solution is to operate

at the constraint, it is likely that due to measurement errors or plant model mismatches,

at some point in time the measurement lies outside of the constraint and therefore the

resulting optimization problem becomes infeasible if no additional measures are taken.
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This can jeopardize the performance of the control scheme giving dangerous commands

to the real plant if no backup strategy is available when an infeasible optimization prob-

lem is encountered. Note that it is also possible to use an ℓ1 penalty term to implement

the soft constraints, which makes it possible to use a smaller value of µ at the cost of

introducing a nondifferentiable element in the cost. Furthermore, an additional con-

straint (10.4j) is added to limit the amount of component B that can be fed into the

reactor cacc
B =

∫∞
0 cin

b V̇ in
R dt. If this constraint is not added the batch would end with a

large amount of component B in the reactor and this is not desired. To avoid oscillatory

behavior of the control inputs, penalty terms on the control moves are introduced as

indicated in (10.4a) using the tuning parameters r1 = 5 · 107 and r2 = 0.001.

The setup of the problem and of the different parameters is chosen in such a way that

the optimal solution of the problem resembles the one of the polymerization reactions

presented in Chapter 8. It is thus reasonable to draw some conclusions about the possible

implementation of the approach at real polymerization reactors.

The implementation of standard and multi-stage NMPC is realized using DO-MPC, both

for the simulation and for the experimental results. The communication between the

plant and the computer is done via USB using the data acquisition system Labjack U12

except for the thermostat, which uses serial port (RS-232) communication. To perform

the experiments, the system is first driven to the initial condition described in Table

10.2. Then the NMPC controller is started and at the same time a simulation of the

system is run in parallel using as control inputs those computed by the NMPC. Every

second, the values of the concentrations obtained by the parallel simulation are used

to calculate the heat of reaction Qrea and the corresponding command is given to the

heating rod to produce it. This emulates the chemical reaction that would take place in

the reactor. The values of the concentrations obtained by the simulation are corrupted by

white noise (σ = 0.1mol m−3) and used as measurements for the NMPC controller. That

is, it is considered that all the states can be measured: The temperatures and the volume

of the reactor are directly measured using suitable sensors and the concentrations are

obtained from the parallel simulation of the reaction after the addition of measurement

noise. The same probabilities ωi are chosen for all the scenarios. The sampling time

of the controller is tstep = 20 s and the prediction horizon is NP = 15 steps. For the

multi-stage results, a scenario tree is generated considering as scenarios the combinations

of the maximum, minimum and nominal values of the uncertain reaction parameters k

and ∆H . It is considered that they can vary ±25% with respect to the nominal values
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reported in Table 10.1. A robust horizon of NR = 1 is chosen.

Fig. 10.4 shows the performance of standard NMPC applied to the CSTR without uncer-

tainties, i.e. the values of the reaction parameters k and ∆H are the same in the model

and in the emulation of the reaction heat. On the left, the simulation results (which are

obtained assuming perfect measurements without noise) are shown and the right figure

contains the experimental results. In a similar way as in the polymerization processes

presented in Chapter 8, the feed (V̇ in
R ) is adjusted such that the constraints on the tem-

perature of the reactor are satisfied. The NMPC keeps the setpoint of the thermostat

(T̄ in
J ) to the minimum to be able to feed more and thus to maximize the amount of

component C produced. By comparing the simulation results in Fig. 10.4 (left) and the

experimental results in Fig. 10.4 (right) it can be concluded that the standard NMPC of

the CSTR using DO-MPC has an excellent performance and is capable of reproducing

the simulation results accurately.
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Figure 10.4: Reactor temperature, concentrations, input flow and setpoint of the thermo-

stat for standard NMPC with no uncertainty on the reaction parameters. The left plot

shows simulation results and the right plot shows experimental results.

One of the main features of the modular implementation of NMPC realized in DO-MPC

is that once a satisfactory simulation result has been obtained in simulation after tuning

the different parameters – as in Fig. 10.4 (left) – , the only necessary step to obtain the

experimental results in Fig. 10.4 (right) is to exchange the simulator module that uses an
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integrator (in this case SUNDIALS) for the module that contains the interface with the

real plant. This is illustrated in Fig. 10.5 which shows the DO-MPC configurations used

to obtain the results reported in Fig. 10.4. This makes the process of transferring the

simulation results to reality simple and transparent, and possible errors can be tracked

easily.
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Figure 10.5: DO-MPC configurations used to obtain the simulation results (left) and the

experimental results (right) of standard NMPC applied to the CSTR under consideration.

If standard NMPC is applied when the uncertain parameters differ from the nominal

values considered in the model, violations of the constraint on the reactor temperature

TR occur as it can be seen in the experimental results shown in Fig. 10.6. In this case

it is considered that the reaction parameters k and ∆H , which are used to perform the

parallel simulation of the system and to calculate the heat of reaction Qrea, have values

that are a 25% higher than their nominal values.

The violations of the constraints can be avoided if multi-stage NMPC is used. This

can be observed in Fig. 10.7 where the results for multi-stage NMPC of the CSTR are

shown. The left plot shows the simulation results and the right plot the results obtained

experimentally. Again, the simulation results match the experimental results very well.

A longer batch time is obtained when compared to the use of standard NMPC shown in

Fig. 10.6 because the feed is reduced to avoid the violations of the constraints. Fig 10.8
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Figure 10.6: Experimental results for the CSTR using multi-stage NMPC. The actual

reaction parameters ∆H and k are considered to be 25% higher than the nominal values.

shows further experimental results of multi-stage NMPC for different values of the un-

certain parameters. The case when both uncertain parameters are chosen to be a 25%

smaller than their nominal value is shown in Fig 10.8 (left) and the case when uncertain

parameters have their nominal value can be seen in Fig 10.8 (right). It can be seen that

multi-stage NMPC satisfies the constraints for all the scenarios also in the experiments.

The average computation time needed for the solution of each optimization problem is

0.073 s for the standard NMPC case and 0.65 s for the multi-stage case. The standard

NMPC problem has around 500 variables and constraints and the multi-stage problem

around 4500. In terms of iterations of the interior point algorithm, IPOPT needs in

average around 22 iterations to find an optimal solution for the standard case, and around

26 for the multi-stage case. Since the needed computation time is small in comparison

to the sampling time (tstep = 20 s), no additional measures are applied to counteract

the effect of the computation delay. For other cases where the delay is significant, it

can be taken into account by simulating the system for the expected computation time

and then by using this state as initial condition of the NMPC controller. More advanced

techniques to cope with this problem include the use of the real-time iteration algorithm

described in (Diehl et al., 2005).

This chapter described the experimental results obtained for a nonlinear CSTR with
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Figure 10.7: Simulation (left) and experimental (right) results for the CSTR using multi-

stage NMPC. The actual reaction parameters ∆H and k are considered to be 25% higher

than the nominal values.

virtual reaction kinetics using multi-stage NMPC. The results show that it is possible

to apply to a real system the methods developed in this thesis and that the use of

the tool DO-MPC for its implementation facilitates the task of transferring a controller

that has a satisfactory performance in simulation to the real plant. The experimental

setup is chosen in such a way that the optimal operation resembles the one obtained for

the polymerization reactor problems considered in Chapter 8. Thus it is reasonable to

conclude that the application of multi-stage NMPC to the real reactors is possible and

would achieve the expected results that have been suggested by the simulation studies.

For that case, it is also necessary to include an observer to estimate the states that cannot

be measured, since in this case study it was assumed that all the states are measurable.
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Figure 10.8: Experimental results for multi-stage NMPC of the CSTR with reaction

parameters 25% smaller than the nominal values (left) and with the nominal values

(right).
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Chapter 11

Multi-stage NMPC with Reduced

Variability

From a practical point of view, it can be beneficial to operate a system that behaves

consistently in the same manner despite the presence of changes in the plant dynamics

or of disturbances that act on the plant. For this reason, some control approaches try to

achieve a similar control performance of an uncertain system for all the possible cases of

the uncertainty. In some of the formulations of tube based-MPC, as the one presented

in (Mayne et al., 2011), the variability of the different trajectories can be influenced by

tuning a parameter that controls how strong the influence of the ancillary controller is.

Using a high value of this parameter leads to less variability, but also to a reduction of

the average performance.

This chapter presents results, which have been published in (Lucia et al., 2014b), in which

the idea of the reduction of the variability is followed by introducing a novel formulation

of the multi-stage NMPC approach. The general cost function defined in (3.5) is modified

by introducing an additional term which penalizes the deviations between the scenarios

in the state space. The new optimization problem can be written as:

min
xj

k
,uj

k
∀(j,k)∈I

N∑

i=1

ωiJi(Xi, Ui) + kvar





NP∑

k=1

Tk−1
∑

j=1

(xj
k − xj+1

k )2



 (11.1a)

subject to:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (11.1b)
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g(xj
k+1, uj

k) ≤ 0 , ∀ (j, k + 1) ∈ I, (11.1c)

uj
k = ul

k if x
p(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I, (11.1d)

where kvar ∈ R is a tuning parameter that controls the trade-off between robust economic

performance and variability of the different scenarios. The number of nodes in the scenario

tree at the stage k is denoted by Tk. The new term introduced in (11.1a) penalizes (with

a quadratic term) the deviations between two neighboring scenarios along the prediction

horizon NP for all the scenarios. Note that the presented approach is not a tube-based

approach, although it was inspired by tube-based ideas. There are three main differences

of the presented approach compared to the usual tube-based MPC approaches. Firstly,

tube-based approaches guarantee that the real system remains in a robust positively

invariant set around some trajectory, which is not guaranteed by the proposed method.

Secondly, the use of the typical structure consisting of a nominal MPC and an ancillary

controller is substituted by a single optimizing controller with a multi-objective cost

function (11.1a). Thirdly, the trajectories of the system are not forced to track the

nominal trajectory, but they are free to stay close around any trajectory which is optimal

in average for the different scenarios in the tree.

This formulation is comparable to minimizing an approximation of the sensitivities of

the states with respect to the uncertain parameters. It is important to note that in

the multi-stage approach the sensitivities are indirectly computed when predicting over

all the scenarios and therefore it is not necessary to compute the sensitivities explicitly,

which might be computationally expensive. In this way it is possible to use the scenarios

for a two-fold purpose. Firstly, to guarantee robust constraint satisfaction, and secondly

to reduce the variability of the system in the presence of uncertainties.

This new approach was applied to the industrial batch polymerization reactor presented

in Section 8.2 using the same tuning parameters and the same solution method. The

results obtained with the approach proposed in (11.1) are shown in Fig. 11.1 for different

values of kvar. The results show that by increasing kvar the state trajectories are closer to

each other for the different values of the uncertainties, obtaining also smoother control

inputs, but the batch times become much higher.

We define the variability obtained by the controller as the difference of each trajectory

to the average trajectory summed up over the batch time

variability =
N∑

i=1

1
K f

i

Kf
i∑

k=1

|xk(i)− xav
k |

xav
k

, (11.2)
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Figure 11.1: Reactor temperature, safety temperature (with constraints indicated),

monomer feed and jacket temperature for multi-stage tube-based NMPC with kvar = 0.1

(left) and kvar = 1 (right) in the economic cost function (11.1a).

where xk(i) represents the real state of the plant at sampling time k for the scenario

(realization of the uncertainty) i and all the operators are applied element-wise. The

number of sampling times that are necessary to end the batch for each scenario are

denoted as K f
i and xav

k is the average state of the real system at sampling time k over all

the scenarios, that is:

xav
k =

1
N

N∑

i=1

xk(i). (11.3)

Using this definition it is possible to perform an analysis of the closed-loop performance

by comparing the variability obtained by the controller and the resulting batch times for

different values of kvar. This analysis is shown in Fig. 11.2. As it can be seen, trying

to reduce the variability (increasing kvar) of the system causes a significant loss of the

economic performance of the process.

Reducing the variability of the system with respect to a certain trajectory might be a

good idea if the cost function is a classical tracking term, since both goals go in the

same direction, that is, if the nominal trajectory tracks the set-point well and if the

uncertain trajectories are near the nominal one, then the average performance will be

good. However, if an economic cost function is used, very often the objective of a reduced

variability and of an optimal economic performance are contradictory. This can be clearly
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Figure 11.2: Average batch time and variability over the different scenarios for different

values of kvar.

illustrated with a simple example used often in the MPC literature. If a driver wants to

track the center of a road and the driver wants to minimize the variability of his trajectory

despite the uncertain conditions of the road, the solution of this problem is to drive very

slowly such that the center of the road can be tracked well for all the conditions of the

road. This result will be good if the ultimate goal is just to track the center of the road.

However, this solution will provide very poor results if the real goal is to drive a certain

distance in the minimum time possible fulfilling the constraints for all the cases of the

uncertainty. The same happens in the presented case study, where the result with a high

value of kvar (Fig. 11.1 (right)) leads to slow feeding of the monomer ṁF in order to

achieve low variability, leading to very long batch times.

Note that it is also possible to choose kvar such that only the variability of certain states

(or other algebraic variables) is penalized. It is also possible to choose kvar < 0 in order

to excite the system. This can be useful in the context of Optimal Experiment Design

(OED) to increase the identifiability of certain parameters with respect to the available

measurements. OED can be also used to reduce the range of the uncertainty and to

generate a new scenario tree accordingly that leads to improved performance as it will

be shown in Chapter 13.

The goal of this chapter is not to compare different tube-based approaches, but to illus-

trate with simulation results the fact that, in the same way as the concepts and tools
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that are needed for stability guaranteeing formulations of economic MPC are different

to those of classical tracking MPC (Amrit et al., 2011), some typical approaches used

in robust tracking MPC that try to minimize the variability of the system may not be

suitable in the case of economic MPC because they might lead to significant losses of

performance.

The powerful tools of set theory used in some tube-based methods for establishing stability

and constraint guarantees could be combined with the multi-stage approach in order to

make use of the advantages of both approaches by considering, for example, slim tubes

centered around the different scenarios of the scenario tree.





Chapter 12

Multi-stage NMPC with Verified

Robust Constraint Satisfaction

One of the challenges of the multi-stage NMPC approach is that the use of a discrete set of

scenarios does not provide robust guarantees if the actual realization of the uncertainty

is not explicitly contained in the scenario tree. This chapter presents an approach to

deal with this challenge in an efficient way based on the computation of reachable sets.

The proposed strategy is similar to the robust NMPC methods based on reachable sets

presented e.g. in (Limon et al., 2005) using interval arithmetics or the one presented

in (Bravo et al., 2006) using zonotopic inclusions. The proposed approach possesses two

main advantages with respect to the cited works thanks to the use of multi-stage NMPC.

Firstly, due to the introduction of recourse on the scenario tree, a nonlinear closed-loop

control law without a fixed structure is obtained, which reduces the conservativeness of the

approach. Secondly, the partition of the parameter space that can be achieved by adding

more branches to the scenario tree helps to reduce the over-approximation introduced by

the different bounding techniques (at the cost of a higher computational effort) that are

necessary for the computation of the reachable sets. Using an efficient implementation

it is shown that it is possible to solve the multi-stage NMPC problem with guaranteed

robust constraint satisfaction in real-time for the industrial batch polymerization reactor

presented in Section 8.2.

The main contribution of this chapter is the introduction of a guarantee of robust con-

straint satisfaction for all values of the uncertainty, including those that are not present

in the scenario tree. The focus of this work is on the guaranteed robust constraint satis-
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faction and not the analysis of the stability and recursive feasibility of the approach which

are only checked by simulations. To simplify the notation during this chapter, polytopic

constraints on the states and on the inputs are considered for the NMPC problem:

min
xj

k
,uj

k
∀(j,k)∈I

N∑

i=1

ωiJi(Xi, Ui), (12.1a)

subject to:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (12.1b)

xj
k ∈ X , uj

k ∈ U , ∀ (j, k) ∈ I, (12.1c)

uj
k = ul

k if x
p(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I. (12.1d)

The work presented in this chapter has been done in collaboration with Radoslav Paulen

and has been published in (Lucia et al., 2014d).

12.1 Computing the Reachable Sets

The computation of reachable sets for dynamic nonlinear systems has been an active

field of research in the last years. Reachable sets have been used in the context of many

different fields such as MPC (Bravo et al., 2006), global optimization (Singer and Barton,

2006), hybrid systems verification (Althoff and Krogh, 2014), verified solution of ODEs

(Sahlodin and Chachuat, 2011) or for parameter estimation (Jaulin and Walter, 1993),

(Paulen et al., 2013b).

The techniques presented in this section are defined and applied in a continuous-time

setting in order to avoid any issues connected with validated numerical integration of the

ODEs (Sahlodin and Chachuat, 2011) at this stage. Consider an initial value problem

(IVP) for t ≥ tk for the set of parametric ODEs

ẋ(t) = f c(x(t), uk, dk), x(tk) ∈ Xk. (12.2)

The reachable set of the state variables over the time horizon [tk, tk+1] is defined as

Xk+1 := {x(tk+1) |Eq. (12.2), uk ∈ U, ∀dk ∈ D}, (12.3)

where D represents a continuous set of possible uncertainties in contrast to the discrete set

of realizations used in the formulation of the scenario tree D. In general it is not possible

to obtain an exact characterization of the set Xk+1. Consequently, one must rely on



12.1 Computing the Reachable Sets 153

approximation techniques that compute an over-approximation X̄k+1 that is guaranteed

to contain the reachable set, Xk+1 ⊆ X̄k+1. Such techniques exploit the propagation-in-

time of convex or non-convex envelopes that enclose the state-space evolution of x(t) over

the possible realizations of d.

Many different methods for the computation of the over-approximation of reachable sets

have been presented in the literature. This section describes two techniques for enclosing

the solution set of parametric ODEs that are exploited later in this chapter.

12.1.1 Interval Bounds

Interval bounds for (12.3) can be computed by application of the following classical results

from the theory of differential inequalities presented in (Walter, 1970).

Consider the IVP (12.2), where f c : Z×U×D → Rnx is a continuous vector function that

satisfies a uniqueness condition on Z× U×D, with Z ⊂ Rnx . Let the functions xL, xU :

R→ Rnx be continuous on some open set containing [tk, tk+1] and satisfy [xL(t), xU(t)] ⊂
Z for all t ∈ [tk, tk+1]. If for all Xk ⊆ [xL(tk), xU(tk)] and

ẋL
i (t) = min

z,d







f c
i (z, uk, dk)

∣
∣
∣
∣
∣
∣
∣

zi = xL
i (t), d ∈ D

z ∈ [xL(t), xU(t)]







, (12.4)

ẋU
i (t) = max

z,d







f c
i (z, uk, dk)

∣
∣
∣
∣
∣
∣
∣

zi = xU
i (t), d ∈ D

z ∈ [xL(t), xU(t)]







, (12.5)

for some u ∈ U, for almost all t ∈ [tk, tk+1] and i = 1, . . . , nx, then x(t) ∈ [xL(t), xU(t)]

for all (t, d) ∈ [tk, tk+1]×D.

In practice, bounds on the right-hand sides of the differential inequalities can be obtained

via natural interval extensions. The main idea is to decompose any function in elementary

operations as for the case of automatic differentiation presented in Chapter 5, replacing

the variables for their corresponding intervals and applying the rules of interval arithmetic.

Although simple to implement, the bounds obtained using natural interval extensions are

usually very conservative, i.e., the over-approximation of the true reachable set is large.

One of the main reasons for this is the so called wrapping effect, which occurs because

the actual reachable set is approximated by a box-shaped set and wrapped through time.

The wrapping effect can be mitigated in several ways, for example by representing the
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reachable set using zonotopes instead of intervals, as presented in (Kühn, 1998) and

applied in the context of MPC in (Bravo et al., 2006).

Another important challenge of these methods is the dependency problem that occurs

when a variable enters several times in an expression, which cannot be detected by interval

arithmetic resulting in unnecessarily large over-approximations. A possibility to avoid this

problem which has been extensively studied in the last years is the use of Taylor models

as described in (Makino and Berz, 1996) and in (Lin and Stadtherr, 2007).

A Taylor model can be constructed by a truncated Taylor series, and it is composed of the

polynomial part and the interval remainder. The interval remainder is then bounded using

techniques such as interval arithmetic. An alternative to the use of interval arithmetics,

is to use convex/concave relaxations as presented for example in (Sahlodin and Chachuat,

2011) for the computation of tight bounds of the remainder of the Taylor models.

A different possibility for the computation of reachable sets is the use of ideas of ellipsoidal

calculus as presented in (Houska et al., 2012), which are shortly described in the next

section.

12.1.2 Ellipsoidal-based Bounds

Given a positive semi-definite matrix Q ∈ S
nx
+ and a vector c ∈ Rnx , the set

E(Q, c) = {c + Q
1
2 v | ∃v ∈ R

nx : vTv ≤ 1}, (12.6)

defines an nx-dimensional ellipsoid centered at c and with shape matrix Q. As presented

in (Houska et al., 2012), an ellipsoidal reachable set of a nonlinear parametric ODE can

be calculated as explained below.

Consider the IVP (12.2), where f : Z × U × D → R
nx is a C2 vector function, with

Z ⊂ Rnx . Let Q : [tk, tk+1] → S
nx
+ , S : [tk, tk+1] → R

nx×nd
+ and x∗ : [tk, tk+1] → Rnx , and

define X(t) such that

Xi(t) =
√

Qii(t)[−1, 1]⊕ Si(t)[D − d∗]⊕ x∗
i (t), (12.7)

for each i = {1, . . . , nx} and all t ∈ [tk, tk+1] where ⊕ is the Minkowski sum. Suppose

that Q, S and x∗ satisfy

Q̇ � ∂f

∂x
(x∗, uk, d∗) Q + Q

∂f

∂x
(x∗, uk, d∗)T
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+
1Trad Rt√

tr Q
Q + diag(rad Rt)

√

tr Q, (12.8)

Ṡ =
∂f

∂x
(x∗, uk, d∗) S +

∂f

∂d
(x∗, uk, d∗), (12.9)

ẋ∗ = f(x∗, uk, d∗), (12.10)

for some uk ∈ U, for every t ∈ [tk, tk+1), as well as the initial conditions Q(tk) =

diag(rad X̄k)2, S(tk) = Sk and x(tk) = mid X̄k, where Rt is the remainder term of

a 1st-order Taylor model (Sahlodin and Chachuat, 2011) of f(·) on X(t) × U × D at

(x∗(t), uk, d∗), rad(·) is the radius of an interval and mid(·) is the center point of an in-

terval. Then, x(t) ∈ X(t), ∀(t, d) ∈ [tk, tk+1] × D and the over-approximated reachable

set is X̄k+1 = X(tk+1). For the presented method, the influence of the wrapping effect is

mitigated as compared to the method of differential inequalities that results in generally

tighter enclosures of computed reachable sets. This is obtained at the price of increased

computational time that arises from the quadratical growth of the number of auxiliary

states (Q, S) for increasing nx.

12.2 Verified Robust Constraint Satisfaction using

Multi-stage NMPC

Usually rigorous state bounding techniques are embedded into an optimization problem

in order to provide envelopes of the realizations of the state trajectories under the uncer-

tainty. These envelopes, propagated in time, are required to satisfy the constraints along

the prediction horizon as presented in (Limon et al., 2005; Bravo et al., 2006). Note that

such state bounds represent non-differentiable functions which makes the convergence

of the resulting optimization problem computationally very demanding. Moreover the

reachable sets are constructed throughout the solution of the optimization problem even

for the sub-optimal control inputs which further and unnecessarily increases the com-

putational time. In order to avoid the dramatic increase of the computational burden,

the multi-stage NMPC problem is solved recursively introducing time- and scenario-

dependent back-off constants whose values are updated based on the actual form of the

reachable set.

The construction of the scenario tree is done under certain assumptions to make the

optimization problem tractable. First, the realization of the uncertainty is considered to
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be constant over a sampling period. Moreover, the notion of robust horizon explicitly

imposes that the realization of the uncertainty remains constant after a certain point in

time. Such assumptions are inconsistent within the framework of rigorous state bounding

techniques. Two modifications in the scenario tree are introduced here to achieve a more

realistic representation of the uncertainty so that the scenario tree representation can

make use of the information provided by the employed bounding techniques in a more

efficient manner.

First, to avoid the optimistic assumption that the control inputs can be adapted after the

robust horizon to each uncertainty realization independently, all control inputs coming

from the same parent node at the stage at which the tree stops branching are constrained

to be equal at each sampling time until the end of the prediction horizon. This con-

straint is imposed by (12.11e). Secondly, for the calculation of the reachable sets it is

necessary to provide the bounding algorithm with a parameter box D. As the values of

the uncertainty are considered as sampled in the scenario tree, there exist a non-unique

parameter box Di that contains the realizations of the uncertainty from D around a par-

ticular scenario. Consequently, this parameter box can be chosen such that D ⊆ ∪∀iDi.

We incorporate this degree of freedom to the optimization problem by the introduction of

new optimization variables d
c(j)
k that determine the branching points between two neigh-

boring realizations (dr(j)
k and d

r(j+1)
k ) and give the ranges of the uncertainty that will be

used to compute the over-approximated reachable sets. An illustration of this modifica-

tion can be seen in Fig 12.1. The new states (xc(j)
k+1) are calculated with the inputs of both

neighbor (original) branches (denoted as u
n(j)
k ) for the realization d

c(j)
k . The newly occur-

ring indices are summarized in Ic and they are also subject to constraints as indicated

in (12.11c) and (12.11g). The modified optimization problem solved at each sampling

time for a multi-stage NMPC with verified constraint satisfaction reads as:

min
xj

k+1
,uj

k
,d

c(j)
k

, ∀(j,k)∈I

x
c(j)
k+1

,∀(j,k)∈Ic

N∑

i=1

ωiJi(Xi, Ui), (12.11a)

subject to:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ) , ∀ (j, k + 1) ∈ I, (12.11b)

x
c(j)
k+1 = f(xp(c(j))

k , u
n(j)
k , d

c(j)
k ), ∀(j, k + 1) ∈ Ic, (12.11c)

uj
k = ul

k if x
p(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I, (12.11d)
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Figure 12.1: Illustration of the addition of a middle branch to the scenario tree (indicated

in red) which is added as an additional optimization variable. The constraints are checked

at the next stage using the neighboring control inputs. The same procedure is applied to

all the nodes in the tree.
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uj
k = ul

k if x
p(j)
Nr

= x
p(l)
Nr

, ∀ (j, k), (l, k) ∈ I, (12.11e)

xj
k ⊕ B0(ǫ

j
k) ⊆ X, uj

k ∈ U , ∀ (j, k) ∈ I, (12.11f)

x
c(j)
k ⊕ B0(ǫ

j
k) ⊆ X, ∀ (j, k) ∈ Ic, (12.11g)

d
r(j)
k ≤ d

c(j)
k ≤ d

r(j+1)
k , ∀ (j, k) ∈ I, (12.11h)

where B0(r) = {b ∈ Rnx|‖b‖∞ ≤ r} and ǫj
k denotes a tightening factor of the original

constraints. We propose to use a systematic approach to the simultaneous tightening and

solution of problem (12.11). For this purpose we make use of the information contained

in the scenario tree. It is possible to approximate the parametric sensitivities of the states
∂x
∂d

by comparing neighbor states in the scenario tree, i.e.:

sj
k+1 :=

∂xj
k+1

∂d
r(j)
k

≈ xj
k+1 − xj+1

k+1

d
r(j)
k − dj+1

k

= s̃j
k+1. (12.12)

Once the approximated sensitivities are obtained, this information can be used to ap-

proximate the reachable set, exploiting the choice of the range of uncertainty at the same

time at which the problem (12.11) is solved, by computing

γj
k := s̃j

k+1(d
r(j)
k − d

c(j)
k ), (12.13)

which is an approximation of the second term on the right-hand side of (12.7). We use

ǫj
k = ρ γj

k as the automatic tightening of problem (12.11), where ρ is a tuning parameter.

If after solving (12.11) the reachable sets of any scenario i at any time stage k (X̄ i
k) violate

the original constraints, we increase ρ and solve problem (12.11) again. We introduce the

following assumptions to prove that it is possible to achieve an NMPC controller with

verified robust constraint satisfaction.

Assumption 5 (Boundedness of X̄ i
k). We assume that the distance between the over-

approximated reachable set X̄ i
k and any node of the scenario tree xj

k which belongs to

scenario Si is bounded for all k = 1, . . . , Np and for any sequence of admissible control

inputs so that:

X̄ i
k ⊆ xj

k ⊕ B0(L(radDi)), (12.14)

where L(radDi) is the radius of the ball which bounds the over-approximated reachable

set. The radius of the ball depends on the size of the parameter box Di.

Assumption 6 (Feasible solution). For a given set of parameter boxes Di with i =

1, . . . , N , the optimization problem (12.11) remains feasible using a tightening of the

constraints B0(ǫj
k) = B0(L(radDi)).



12.2 Verified Robust Constraint Satisfaction using Multi-stage NMPC 159

The complete algorithm for multi-stage NMPC with verified robust constraint satisfaction

is described in Algorithm 2.

Algorithm 2 Multi-stage NMPC with verified robust constraint satisfaction
REQUIRE Initial condition x1

0; ρ > 0;

1. Solve problem (12.11) with ǫj
k = ργj

k.

1.1 if (12.11) is feasible: GOTO 2.

1.2 else: reduce ρ and GOTO 1.

2. Calculate the reachable sets until the end of the prediction horizon (X̄ i
1, X̄ i

2, ..., X̄ i
Np

)

for each scenario Si given the optimal control inputs and the ranges of the uncer-

tainty calculated in 1.

3. if X̄ i
k satisfy the constraints with k = 1, . . . , Np and i = 1, . . . , N :

3.1 Apply u1
0 and wait until next sampling time.

3.2 Take the new measurement x1
0 and GOTO 1.

4. else: Increase ρ and GOTO 1.

Theorem 4. If Assumptions 5 and 6 hold, then Algorithm 2 provides an NMPC algorithm

that guarantees the satisfaction of the constraints for all the possible realizations of the

uncertainty d ∈ D.

Proof. If problem (12.11) is feasible then for any node xj
k in the tree belonging to

any scenario Si, it follows that xj
k ⊕ B0(ǫ

j
k) ⊆ X. Dilating both sets we have: xj

k ⊕
B0(ǫj

k) ⊕ B0(L(radDi)) ⊆ X ⊕ B0(L(radDi)). Then using Assumption 5, it follows that

X̄ i
k ⊕ B0(ǫ

j
k) ⊆ X ⊕ B0(L(radDi)). By increasing ǫj

k (and decreasing if (12.11) becomes

infeasible) at each iteration of Algorithm 2, a value of ǫj
k ≤ L(radDi) (element-wise) can

be found so that the optimization problem (12.11) is feasible because of Assumption 6

and all the resulting reachable sets satisfy the original constraints. Then the constraints

are satisfied for all values of the uncertainty and Theorem 4 is proven.

Remark 4. Assumption 5 is a mild assumption that only requires that the bounding

procedure does not explode, giving thus bounded over-approximations. Assumption 6 might

be difficult to verify in general. However, the bound L(radDi) can be reduced arbitrarily
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by adding more branches to the scenario tree and thus reducing the size of the parameter

boxes Di, which will facilitate the fulfillment of Assumption 6. Note that it is not necessary

to know explicitly the bound, but only to assume its existence.

12.3 Case Study

The algorithm presented in the previous section is applied to the industrial batch poly-

merization reactor described in Section 8.2. For simplicity, only one parameter, the

reaction enthalpy ∆HR, is considered to be uncertain and it takes values that vary by

±30% with respect to its nominal value ∆Hnom
R = 950 kJ/kg. It is checked by simulations

that the bounding procedure provides tight bounds that satisfy Assumptions 5 and 6 for

this example.

The optimization problems are solved using CasADi to provide first and second order

derivatives to IPOPT. The dynamics of the system are discretized using orthogonal col-

location on finite elements as explained in Chapter 5. The reachable sets are calculated

using the library MC++ (http://projects.coin-or.org/MCpp), a C++ library em-

ploying operator overloading for bounding of factorable functions. Moreover, the nu-

merical integrator available through the GNU Scientific Library (GSL) is used. The

C++ class implementing the various bounding techniques based on differential inequali-

ties, ellipsoidal-based bounds and other techniques is freely available at: http://www3.

imperial.ac.uk/environmentenergyoptimisation/software.

Fig. 12.2 shows the predicted scenario trees (solid black lines) and the obtained bounds

for each scenario for a comparison of the different methods studied in this paper using a

prediction horizon NP = 8 and a robust horizon NR = 3. Fig. 12.2a shows the predicted

trees and the bounds over the prediction horizon at the initial time for the case of the

modified scenario tree obtained by solving (12.11) with ǫj
k = 0 (i.e. no initial tightening

of the constraints); the reachable sets are calculated using interval bounds. As it can

be seen the scenario tree is a good approximation of the reachable set but the over-

approximation introduced by the bounding technique causes constraints violations on the

reactor temperature constraint (TR). The same situation occurs when ellipsoidal bounds

are used for the calculation of the reachable sets, but as expected the over-approximation

is smaller as it can be seen in Fig. 12.2b. In contrast, if the simultaneous shrinking

of the constraints using the approximated sensitivities obtained in the scenario tree are

http://projects.coin-or.org/MCpp
http://www3.imperial.ac.uk/environmentenergyoptimisation/software
http://www3.imperial.ac.uk/environmentenergyoptimisation/software
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Figure 12.2: Tree predictions and bounds obtained for the reactor temperature TR at

the initial time for the modified scenario tree (NP = 8, NR = 3) with interval bounds

and ǫ = 0 (Fig. 12.2a), with ellipsoidal bounds and ǫ = 0 (Fig. 12.2b) and with interval

bounds and ǫ based on the approximated sensitivities (Fig. 12.2c). Fig. 12.2d is obtained

with the original scenario tree and interval bounds.

used together with interval bounds as bounding technique, no constraint violations occur

even in the iteration 0 of Algorithm 2 (see Fig. 12.2c). Fig. 12.2d shows the same results

obtained by solving the original multi-stage problem (3.5). As it can be seen, the scenario

tree is a good approximation of the reachable sets until the robust horizon NR = 3 but

then the computed over-approximation and the scenario tree are very different. It is

important to note that this does not mean that the real use of this controller will result in

constraint violations. It rather shows that the assumption made after the robust horizon

– the uncertainty remains constant – causes that the control inputs are independently

adapted for each scenario. When they are used to calculate the reachable sets for all

the possible values of the uncertainty, they produce very different bounds compared to
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the scenario tree because they were calculated for a single and constant value of the

uncertainty. This problem can be significantly reduced by increasing the robust horizon

NR. This analysis can be useful to test the quality of a given scenario tree.

Next, the scenario tree used in Fig. 12.2c (with NP = 6) is chosen and the controller

is tested for random values of the uncertainty parameters. 100 batch runs are consid-

ered for random values of ∆HR ∼ N (µ, σ) = N (∆Hnom
R , 0.15 · ∆Hnom

R ) truncated at

2σ. The uncertain parameter is maintained constant during each run, and the obtained

batch times are reported in Fig. 12.3. As it can be seen, multi-stage NMPC with verified

constraint satisfaction achieves a significantly better performance than open-loop NMPC

with verified constraint satisfaction and worse performance than multi-stage NMPC with-

out robust constraint satisfaction guarantee. It is important to note that if the ellipsoidal

bounds are used or especially if the robust horizon NR is increased, the conservativeness

of the approach can be further reduced. In this way, NR provides a trade-off between

computational effort and conservativeness w.r.t the non-guaranteed case, but even for

small values of NR, the proposed method performs significantly better than an open-loop

NMPC approach. The reactor temperature trajectory TR as well as the control inputs ṁF,

T IN
M for the case of ∆HR = 1142.05 kJ/kg are presented in Fig. 12.4. The average com-

putation time per NMPC iteration is of 3.52 seconds. The sampling time is tstep = 80 s

which makes it possible to apply the proposed scheme in real-time. Only 0 or 1 iterations

of the proposed Algorithm 2 were needed at each sampling time in the presented case

study.

This chapter presented an extension of multi-stage NMPC for the verification of robust

constraint satisfaction for all possible values of the uncertainty within given bounds. The

use of a scenario tree makes it possible to introduce feedback in the prediction and to

decrease the parameter range that the bounding techniques have to take into account.

This leads to a less conservative solution. The algorithm is computationally demanding,

and might be difficult to solve for a high cardinality of the set of uncertain parameters, or

for problems where bounding techniques provide very conservative results. On the other

hand, the use of efficient tools to solve the optimization and bounding problems made it

possible to solve in real-time an industrially relevant problem with a rigorous guarantee

of robust constraint satisfaction.
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Figure 12.3: Distribution of the batch times obtained for 100 simulations with random

values of ∆HR for different controllers.
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Figure 12.4: Reactor temperature TR, and control inputs ṁF, T IN
M for the case of ∆HR =

1142.05 kJ/kg for different controllers.





Chapter 13

Multi-stage NMPC with Reduction

of the Uncertainty

The control strategy presented in this thesis is based on the use of a scenario tree which

is generated using different realizations d
r(j)
k of the uncertainty. A usual strategy to

choose the realizations included in the tree is to use the combinations of the lower, upper

and middle (or nominal) values of the assumed range of the uncertain parameters. The

bounds of the parameters are denoted in this chapter as D := [dL, dU ]. The superscripts
L and U represent the lower and upper bounds of an interval box and are understood

component-wise.

By reducing the range of the parametric uncertainty D, i.e. narrowing the employed

scenario tree, a significant improvement can be achieved in terms of the conservative-

ness of the resulting robustly optimal control input. Dual control, originally proposed

in (Feldbaum, 1960) and also studied in (Åström and Wittenmark, 1971), tackles a similar

problem.

The aim of dual control is to strike the balance between finding the optimizing inputs

for the real control goal (e.g. an economic cost function) and inputs that excite the

process sufficiently to reduce the (a posteriori estimated) bounds on the parameter values

D. The dynamic programming formulation of the problem (Bertsekas, 2000) is often

found computationally intractable for nonlinear systems, but the minimization of the

uncertainty can also be achieved via means of optimal design of dynamic experiments.

The goal of this chapter is to study possible improvements of the multi-stage NMPC

165
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scheme via a combination of the inputs that optimize a chosen criterion of optimal ex-

periment design and the inputs that optimize an economic criterion in the framework of

multi-stage NMPC. The work presented in this chapter has been done in collaboration

with Radoslav Paulen and has been published in (Lucia and Paulen, 2014).

13.1 Robust Optimal Dynamic Experiment Design

Optimal dynamic experiment design has been widely used since the seventies of the

last century, especially in the field of system identification (see (Gevers et al., 2011)

for a review). In general, it can be formulated as the problem of designing the input

trajectories to the system (13.1) that generate measurements from which parameters can

be identified with the smallest possible uncertainty. As done in the rest of the thesis, a

discrete-time nonlinear system is considered. Here also the measurement equations are

used, defined by h : Rnx → Rny being ny the number of measurements. The system can

be written as:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), (13.1a)

yj
k = h(xj

k). (13.1b)

By applying the chain rule of differentiation to the system equations it is possible to

obtain the equations that define the nx × np matrix of the parametric state sensitivities

sj
k = ∂xj

k

∂d
r(j)
k

. The parametric state sensitivity equations at each node of the tree can be

calculated for each parameter m = 1, ..., nd can be written as:

sj
k+1(m) =

(

∂f

∂x
s

p(j)
k (m) +

∂f

∂d
r(j)
k (m)

)

, (13.2)

where s
p(j)
k (m) denotes the m-th row of the sensitivity matrix and d

r(j)
k (m) is the m-th

element of the uncertainty vector. In practice the system model is usually given by a set

of continuous ODEs, which implies that the sensitivity equations are also continuous. To

discretize them, they are collocated using orthogonal collocation on finite elements in the

same manner as the system equations. In order to take into account the possible different

magnitudes of the parameters, the sensitivities used within this chapter are defined in the

fully relative form as suggested by (Munack, 1991). That is, the sensitivities are scaled

according to the values of the states and parameters as:

ŝj
k+1(m) =

d
r(j)
k (m)

x
p(j)
k

(

∂f

∂x
s

p(j)
k (m) +

∂f

∂d
r(j)
k (m)

)

, (13.3)
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where the division by the state x
p(j)
k is understood element-wise. For the common case in

which the measurement function h(·) is linear, the ny × np matrix of parametric output

sensitivities (sj
y,k) can be calculated directly for each row as: sj

y,k(m) = h(sj
k(m)).

The robust optimal dynamic experiment design problem can be formulated via minimiza-

tion of an appropriate measure of the Fisher information matrix defined for each scenario

i of the scenario tree as:

F i
Ne

(Xi, Ui) :=
Ne−1∑

k=0

ŝj T
y,kQŝj

y,k, ∀ŝj
y,k ∈ Si (13.4)

where Ne stands for the horizon for which the optimal experiment is realized, and Q is

the inverse of the covariance matrix of the measurement noise.

Among the several different possible experiment design criteria (Munack, 1991), a modi-

fied E-design criterion is chosen here:

φmE(F ) =
(

max
l

λl(F )
)

/
(

min
l

λl(F )
)

, (13.5)

where λl represents l-th eigenvalue of F . This criterion provided good results during

the simulation studies even though it is nondifferentiable and therefore it is used in this

chapter. Other typical criteria can also be chosen (Franceschini and Macchietto, 2008),

some of which are differentiable and can make the resulting optimization problem easier,

facilitating the convergence of the NLP solver to a local solution.

The robust optimal experiment design problem can be formulated using the multi-stage

formulation:

min
xj

k
,uj

k
∀(j,k)∈I

N∑

i=1

ωiJi(Xi, Ui), (13.6a)

subject to:

xj
k+1 = f(xp(j)

k , uj
k, d

r(j)
k ), ∀ (j, k + 1) ∈ I, (13.6b)

g(xj
k+1, uj

k) ≤ 0 , ∀ (j, k + 1) ∈ I, (13.6c)

uj
k = ul

k if x
p(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I, (13.6d)

in which the cost of each scenario (Ji) for the case of robust OED with modified E-design

is the one defined in (13.5).

The main contribution of this chapter is the proposal of a new optimal experiment design

criterion, which takes into account the effect that a reduction in the uncertainty range has
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on the robust economic performance. For this purpose, the sensitivities of the optimal

robust economic cost in (13.6) (J̃∗) with respect to the uncertainty range (w(D)) are

calculated when an economic cost function is used as stage cost for each scenario. The

uncertainty range w(D) ∈ Rnd is a vector that contains the difference between the maxi-

mum and the minimum value of each uncertain parameter, so that the scenario tree can

be formulated as a function of w(D). These sensitivities can be obtained by computing

the NLP sensitivities of the multi-stage problem with an economic cost function, which

can be calculated by a linearization of the KKT conditions with a very low computational

effort (Pirnay et al., 2012) if no active set changes occur. In the case of active set changes

other procedures can be used as described in (Wolbert et al., 1994; Pirnay et al., 2012).

This information can be used to design a new OED criterion that tries to achieve a better

estimation (reduction of the range of the uncertainty) of those parameters which have a

higher influence in the robust economic operation of the system. We propose to use the

sensitivities described above

(

∂J̃∗

∂w(D)

)

to scale the Fisher information matrix such that

the new criterion is:

φ(F ) = φmE

(

diag−1

[

∂J̃∗

∂w(D)

]

F diag−1

[

∂J̃∗

∂w(D)

])

, (13.7)

A similar scaling was proposed in (Recker et al., 2013) where the sensitivity of the eco-

nomic cost is considered w.r.t. a parametric uncertainty. In contrast to their approach,

here it is directly taken into account that if parametric uncertainty is present, a robust

operation will be needed. As mentioned above, the conservativeness of the robust opera-

tion directly depends on the range of the uncertainty. Therefore the potential gain in the

robust economic operation w.r.t. reduction in the parameter uncertainty range is used as

scaling factor.

The next section presents the strategy used in this chapter for the calculation of the

uncertainty range D given noisy measurements of the process output.

13.2 Guaranteed Parameter Estimation

Given a set of output measurements ym at Ne time points 1, . . . , Ne, classical parameter

estimation seeks for one particular instance de of the parameters for which a (possibly

weighted) norm of the difference between measurements and the corresponding model
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outputs yk at each stage k is minimized. This optimization problem, for instance using

the l2-norm, i.e. in the least-square sense, is given by:

de ∈ arg min
d∈D

Ne∑

k=1

‖ym
k − yk‖2

2, (13.8a)

subject to: (13.8b)

xk+1 = f(xk, uk, d), (13.8c)

yk = h(xk). (13.8d)

The confidence of the parameter estimates subject to measurement noise can then be

approximated via an ellipsoidal set. The shaping matrix (variance-covariance matrix of

the estimates) of such an ellipsoidal set can be approximated by the inverse of the Fisher

information matrix defined in (13.4).

In contrast, guaranteed (bounded-error) parameter estimation accounts explicitly for the

fact that the true process outputs, yp, are known to be corrupted by some bounded

measurement errors e ∈ E := [eL, eU ], so that

yp
k ∈ ym

k + [eL, eU ] =: Yk. (13.9)

Here, the main objective is to estimate the set De of all possible parameter values d such

that yk ∈ Yk for every k = 1, . . . , Ne; that is,

De :=







d ∈ D0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∃x, y :

xk+1 = f(xk, uk, d),

yk = h(xk),

yk ∈ Yk, ∀k ∈ {1, . . . , Ne}







. (13.10)

Depicted in red in Fig. 13.1 (left) is the set of parameters De projected in the (d1, d2)

space that generate trajectories satisfying yk ∈ Yk, k = 1, . . . , Ne (Fig. 13.1 (right)).

Obtaining an exact characterization of the set De is not possible in general, and one has

to resort to approximation techniques to make the problem computationally tractable.

Here, a variant of the Set Inversion Via Interval Analysis (SIVIA) algorithm by (Jaulin

and Walter, 1993) is used in order to approximate the solution set De as closely as

possible. More concretely, the set De is approximated using the union of parameter sub-

boxes that approximate its interior (Dint) and over-approximate its boundary (Dbnd). An

illustration of such parameter sub-boxes is shown in Fig. 13.1 where Dout stands for one

partition of the parameter space which is guaranteed to have an empty intersection with
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d2
D ∈ Dint

D ∈ Dout
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D ∈ Dbnd

D0

yi(t)

t

Ybnd

Yint

Yout

Figure 13.1: Illustration of the concept of guaranteed parameter estimation in the param-

eter space (left) and the corresponding output trajectories in the time domain (right).

De. For each parameter box in Fig. 13.1 (left), bounding techniques as the ones described

in Chapter 12 are used so that the parameter box can be classified as belonging to the

interior (if the bounds are inside the measurement error for all steps), to the exterior (if

the reachable sets are outside the measurement error for all steps) or to the boundary

in an intermediate case. This is illustrated in Fig. 13.1 (right). Upon termination, this

algorithm returns partitions Dint and Dbnd such that

⋃

D∈Pint

D ⊆ De ⊆



⋃

D∈Dint

D



 ∪



⋃

D∈Dbnd

D



 =: DNe . (13.11)

That is, the union of the interior boxes Dint and the boxes of the boundary Dbnd defines

the over-approximation of the true set of parameters that explain the obtained process

outputs given a bounded measurement noise and a model of the process. Further details

on possible implementation variants of the described procedure can be found in (Paulen

et al., 2013a,b).

13.3 Proposed Algorithm

The central idea of this chapter is the presentation of a novel algorithm for the reduction

of the uncertainty of the model by applying robust optimal design of experiments and

thus reducing the conservativeness introduced by a robust NMPC approach. The main

motivation for proposing the novel OED criterion (13.7) is to estimate better those pa-
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rameters that have a higher impact on the robust economic operation of the system. Since

the Fisher information matrix provides only an approximation of the variance-covariance

matrix of the estimated parameters, the use of guaranteed parameter estimation is pro-

posed to ensure more accurate approximation of the possible parameter values taking

into account the measurement noise.

We propose to divide the operation of the system into two different stages. In the first

stage, an identification procedure is used, via the proposed robust OED criterion defined

in (13.7). In order to be robust during this identification stage, a scenario tree is formu-

lated using some a priori known bounds of the uncertainty (D0). Then the multi-stage

NMPC problem (13.6) is solved at each sampling time in which the cost of each scenario

Ji is the OED criterion defined in (13.7). For this, it is necessary to previously solve

the multi-stage NMPC problem (13.6) with an economic cost function in order to obtain

the sensitivities of the optimal robust cost with respect to the range of the uncertainty
(

∂J̃∗

∂w(D)

)

. We consider a fixed length for the identification stage of Ne sampling times.

Since this length is known a priori, the multi-stage NMPC problems are formulated in a

shrinking horizon fashion, in which the prediction horizon at the start of the operation is

NP = Ne and it is reduced at each sampling time.

Once the identification stage is finished, guaranteed parameter estimation is used to

determine the new set of uncertain parameters DNe , which is used to build a new scenario

tree using the combination of the maximum, minimum, and center values of the new

parameter set. Then the second stage of the operation starts, in which multi-stage NMPC

(13.6) is solved with the new scenario tree based on DNe and using an economic cost

function as stage cost inside the cost of each scenario Ji until the end of the control

problem (e.g. the end of the batch). The complete procedure is described in Algorithm 3.

The proposed algorithm is applied to a case study that is described in the next section.

Its performance is compared to two different algorithms. First, the proposed algorithm is

compared to the use of pure economic multi-stage NMPC (i.e., no OED), in which after

Ne steps, parameter estimation is performed to generate a new tree, as in the proposed

Algorithm 3. After that, multi-stage NMPC with the same economic cost function is

applied (using the new scenario tree) until the end of the control problem. The proposed

Algorithm 3 is also compared with a method in which instead of using the proposed

scaling of the Fisher information matrix (13.7), the original modified E-design (13.5) is

used as cost for each scenario. In order to have a fair comparison (as in the previous
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Algorithm 3 Robust NMPC with uncertainty reduction
Input: iiter = 0; Ne > 0; x0; D0

1. while iiter < Ne do

1.1 Calculate
∂J̃∗

∂w(D)
with D = D0. For this it is necessary to solve (13.6) with

an economic cost function as stage cost inside the cost of each scenario Ji.

1.2 Solve the robust OED problem by solving (13.6) using as cost for each scenario

the proposed OED criterion defined in (13.7) with a prediction horizon Ne −
iiter.

1.3 Increment iiter. Measure (or estimate) the new states x0 at the next sampling

time.

end of while

2. Run guaranteed parameter estimation using the obtained measurements, getting

DNe as a result.

3. Generate a new scenario tree using the guaranteed maximum, middle and minimum

values of the parameters from DNe .

4. Run multi-stage NMPC by solving (13.6) with an economic cost function inside the

cost of each scenario until the end of the control problem (e.g. until the end of the

batch).
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case) the robust OED with modified E-design is performed for Ne steps, then guaranteed

parameter estimation is used to generate a new tree and the rest of the control problem

is done using multi-stage NMPC with an economic cost function. That is, the three

controllers that will be compared only differ in the way that the identification phase (the

first Ne steps) is performed. After the identification phase, the three controllers perform

guaranteed parameter estimation and generate a new scenario tree which is used to apply

multi-stage NMPC with an economic cost function until the end of the batch.

All the optimization problems reported in this Chapter are solved using IPOPT via

CasADi as explained in Chapter 5. The sensitivities entering in (13.7) are calculated using

sIPOPT (Pirnay et al., 2012) and the guaranteed parameter estimation is implemented us-

ing GOLIB (http://www3.imperial.ac.uk/environmentenergyoptimisation/software)

and the library MC++ (http://projects.coin-or.org/MCpp).

13.4 Case study

In order to illustrate the advantages of the proposed approach, the following problem of

the optimal control of a chemical reactor is considered. An exothermic chemical reaction

A + B →C is run in a fed-batch reactor equipped with a cooling jacket. This example

has been adapted from (Srinivasan et al., 2003) and (Ubrich et al., 1999).

The reaction system is described by the following set of ODEs:

dcA

dt
= −kcAcB −

u

V
cA, cA(0) = cA,0, (13.12a)

dcB

dt
= −kcAcB +

u

V
(cB,in − cB), cB(0) = cB,0, (13.12b)

dcC

dt
= kcAcB −

u

V
cC, cC(0) = 0, (13.12c)

dV

dt
= u, V (0) = V0, (13.12d)

where ci represents concentration of the substance i, k stands for the reaction rate, V is the

volume of the reactor, and u represents the feed flowrate of reactant B with concentration

cB,in.

The reaction is run under isothermal conditions where the inlet cooling jacket temperature

is assumed to be adjusted to maintain the temperature in the reactor at T = 70◦C. The

http://www3.imperial.ac.uk/environmentenergyoptimisation/software
http://projects.coin-or.org/MCpp
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evolution of the temperature of the cooling medium inside the jacket obeys:

Tj(t) = T − (−∆H)kcA(t)cB(t)V (t)
αA(t)

, (13.13)

where ∆H is the reaction enthalpy, α is a heat transfer coefficient and A is the contact

area between the jacket and the reactor content.

In order to prevent an uncontrollable behavior of the reaction under a cooling failure, the

maximum attainable temperature is restricted to:

Tcf = T (t) + min
i∈{A,B}

ci
(−∆H)

ρcp
≤ Tmax, (13.14)

where ρ denotes the density and cp the heat capacity of the reaction mixture. Additionally,

the volume of the reactor is bounded by its maximum value, V ≤ Vmax and the control

input is bounded (umin ≤ u ≤ umax) as well.

The control task is to achieve a desired mass of the product C as fast as possible, nC =

cCV ≥ nC,des. The minimum time problem is approximated by the maximization of the

mass of product C (nC) over a finite prediction horizon, since simulation studies showed

that the results obtained are almost equivalent. The initial conditions, values of the

parameters and constraints are given in Table 13.1.

It is considered that the parameters k and ∆H are uncertain and have constant but

unknown values in the range ±30% with respect to their nominal values. The measured

quantities (cA, cB and Tj) are subject to bounded noise Eci
= [−0.05, 0.05] and ETj

=

[−0.5, 0.5] which is simulated using rounding of the values of the simulated outputs for

the purpose of reproducibility of the results obtained here.

The results of applying Algorithm 3 to the presented case study are shown in the remain-

der of this chapter. The first step is the robust optimal dynamic experiment design. In

order to achieve robust performance and satisfaction of the constraints for all the possible

values of the uncertainty (±30%), the OED problem is formulated using a scenario tree

that contains the maximum, minimum and nominal value of the uncertain parameters

with a robust horizon equal to 1. The OED problem is solved in a shrinking horizon fash-

ion for Ne = 10 steps and a sampling time tstep = 0.1 h. The results for three algorithms

described before are shown in Fig. 13.2. The purely economic design (no OED) uses as
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Table 13.1: Parameter values, initial conditions and bounds.

Parameter Value Units

k 0.0482 L mol−1 h−1

∆H -60000 J mol−1

T 70 ◦C

ρ 900 g L−1

cp 4.2 J g−1 K−1

cB,in 10 mol L−1

cA,0 2 mol L−1

cB,0 0.46 mol L−1

cB,0 0 mol L−1

V0 0.7 L

umin 0 L h−1

umax 0.1 L h−1

Tmax 80 ◦C

Vmax 1 L

nC,des 0.6 mol
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Figure 13.2: Concentration cC, temperature Tcf and control input u obtained from run-

ning economic multi-stage NMPC and robust OED for different design criteria.

objective function the maximization of the product C (nC), the OED with modified E-

design uses as cost for each scenario the equation (13.5) and the OED with the proposed

criterion minimizes (13.7) for each scenario.

After Ne = 10 steps, guaranteed parameter estimation is run. The obtained sets of

guaranteed parameter estimates are shown in Fig. 13.3. The projections of the resulting

sets on the parameter axes determine the generation of the new scenario tree for the

solution of the multi-stage NMPC problem. As expected, the use of a purely economic

cost yields the biggest ranges of the parameters which justifies the utilization of OED

information in this case study. The use of OED with modified E-design gives smaller

parameter ranges. The proposed algorithm with the OED criterion (13.7) yields a smaller

range for ∆H and a larger range for the parameter k in comparison to the ranges obtained

for the modified E-design. All the sets contain the real values of the parameters that in

this case were assumed to be 20% larger (in absolute value) than the nominal values.

Due to the novel scaling of the Fisher matrix introduced in (13.7), ∆H is estimated with

a higher accuracy when the proposed algorithm is used and this results in a superior

performance compared to the other algorithms (see Fig. 13.4) when multi-stage NMPC

is run with the new scenario tree based on the parameter estimates and with an eco-

nomic cost function (maximization of nC). The reason for this is that ∆H has a higher

impact on the robust economic operation of the plant, since it influences directly the
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Figure 13.3: Sets of guaranteed parameter estimates resulting from the measurements

and control inputs obtained from running economic multi-stage NMPC and robust OED

for different design criteria.

constraint on the temperature Tcf . This information is given by the sensitivity of the

robust economic cost with respect to the range of the uncertainty, which is used to scale

the Fisher information matrix. For all the algorithms the same economic cost function

is used (maximization of product C (nC)), with a scenario tree given by the guaranteed

parameter estimates using a prediction horizon NP = 10 and a robust horizon NR = 1.

As it is shown in Fig. 13.4, the economic optimal operation of the plant consists in driving

the system as close as possible to the temperature constraint Tcf . Multi-stage NMPC

calculates automatically a back-off from the constraint to ensure that the constraint is

not violated for any value of the uncertainty. If the range of the uncertainty that has

to be taken into account is wider, then the necessary back-off is larger and the resulting

economic performance decreases. In this case, the lower bound on the uncertain param-

eter ∆H is the most important factor for the back-off. Therefore the dual control-like

procedure that uses the OED with modified E design criterion gives a performance similar

to the performance achieved by pure robust economic cost optimization (without OED)

despite yielding a narrower range of parameter uncertainty. The algorithm proposed in

this chapter achieves a batch time reduction by 1.5 hours which stands for a 7.5 % im-
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Figure 13.4: Concentration cC , temperature Tcf and control input u obtained from run-

ning multi-stage NMPC with a scenario tree generated with parameter bounds obtained

by the guaranteed parameter estimation for the different algorithms. During the first

hour the inputs used are the ones obtained during the identification phase.

provement over running robust NMPC with economical cost and the same procedure for

estimation of the uncertainty.

13.5 Using the Correct Sensitivity Information

Recently, the work presented in (Recker et al., 2013), proposed the use of sensitivity

information of the economic cost with respect to the uncertain parameters to scale the

Fisher information matrix, in a similar manner as proposed in this chapter. This section

studies the difference between both approaches and shows an example that illustrates

that relying on the sensitivity of the cost w.r.t the parameter as proposed in (Recker

et al., 2013) can lead to wrong conclusions.

To illustrate this concept, both sensitivities are shown in Fig. 13.5 for the case study pre-

sented above when applying multi-stage NMPC with an economic cost function assuming

an uncertainty range of ±30% with respect to their nominal values. If the sensitivity of

the optimal robust cost with respect to the parameters is used, as proposed in (Recker

et al., 2013), the sensitivity of the optimal cost with respect to the reaction rate k is

5 times higher than the sensitivity with respect to the reaction enthalpy ∆H as shown

in Fig. 13.5 (left). The same happens if standard NMPC is used instead of multi-stage
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Figure 13.5: Sensitivity of the optimal robust cost with respect to the uncertain parame-

ters k and ∆H (left) and sensitivity of the optimal robust cost with respect to the range

of uncertain parameters w(k) and w(∆H) (right).

NMPC. This occurs because the economic cost function is to maximize nC, and if the

reaction occurs faster (higher k) then more nC will be produced. This sensitivity analysis

would lead to the conclusion that it is better to estimate k with a higher accuracy in

order to maximize the cost.

On the other hand, if the sensitivities of the parameters with respect to the uncertainty

range are calculated, as proposed in this thesis, the sensitivity of the uncertainty range

in ∆H is 30 times larger than the sensitivity of the uncertainty range in k as shown in

Fig. 13.5 (right), clearly contradicting the conclusions from the parametric sensitivities.

Three different simulation studies are conducted in order to illustrate the effects of the

different conclusions. Firstly, one batch is simulated assuming that there is no estimation

of any of the parameters and that the uncertainty range remains ±30% with respect to

the nominal values of both parameters. Secondly, following the conclusions extracted

from the sensitivities of the optimal robust cost with respect to the parameters it is as-

sumed that the parameter k can be perfectly estimated (no uncertainty) and that ∆H

remains uncertain in a range ±30% with respect to its nominal value because the sensi-

tivity analysis suggests that estimating k leads to a better performance than estimating

∆H . Thirdly, following the information of the sensitivity of the cost with respect to the

parameter ranges, a batch is run assuming that ∆H can be perfectly estimated and that

k remains uncertain.

Relying on the information of the sensitivity of the optimal cost with respect to the pa-

rameters (assuming that k can be perfectly and instantaneously estimated) leads to a
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minor improvement (0.04% shorter batch time) with respect to the case where no esti-

mation is performed at all as shown in Fig. 13.6. The reason is that using the sensitivity

of the robust optimal cost with respect to the parameter is misleading. That is, the fact

that one parameter has a higher influence on the robust optimal cost does not mean that

estimating it with a better accuracy would lead to an increased performance. The infor-

mation which should be used to decide which parameter to estimate better is a measure

of how much can the robust economic performance be improved if a better estimation is

achieved. The proposed sensitivity of the robust optimal cost with respect to the range of

the uncertainty provides such information. Following the conclusions that the proposed

sensitivities provide (assuming here as a consequence that ∆H can be perfectly and in-

stantaneously estimated) leads to a smaller back-off, which makes possible to increase

the performance as it can be seen in Fig. 13.6. The obtained batch time is 14% shorter

compared to the ones obtained when none of the parameters is estimated or when k

is perfectly estimated. The main reason for this improvement is that the performance

is strongly influenced by how close to the constraints the process can be operated, and

therefore the best way to operate the uncertain system is to estimate better the param-

eter that makes it possible to reduce this back-off. This information is included in the

proposed sensitivities with respect to the range of the uncertainty, but not in the sensi-

tivity of the optimal robust cost with respect to the uncertain parameters. In this case

the sensitivity with respect to the range of the uncertainty is used as a measure of the

knowledge of the uncertainty, but it is also possible to use other measures such as the

area of the confidence ellipsoids, or the upper and lower bounds of each parameter.

If standard NMPC is used, calculating the sensitivities of the optimal robust cost with

respect to the ranges of the uncertainty is not trivial. However, the use of multi-stage

NMPC on scenario trees makes this process straightforward since they can be obtained

with very cheap computations when solving the multi-stage problem, using e.g. sIPOPT.

This chapter shows how the performance of the multi-stage NMPC approach can be en-

hanced by reducing the uncertainty range. A new criterion for robust OED is proposed

in order to prioritize the more accurate estimation of the parameters that have a higher

influence on the robust economic operation of the system. In order to avoid the unreli-

able approximation of the parameter ranges associated with typical OED approaches, a

guaranteed parameter estimation approach is used to obtain the bounds of the uncertain

parameters. The obtained bounds are used to build a new scenario tree with reduced
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Figure 13.6: Concentration cC , temperature Tcf and control input u obtained from run-

ning multi-stage NMPC with a scenario tree generated for different knowledge of the

uncertain parameters.

uncertainty and a better economic performance is achieved. Simulation results of a chem-

ical reactor example show the potential of the approach and the possible improvements

compared to a typical OED design and to a standard robust economic operation of the

plant.
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Chapter 14

Conclusions and Future Work

14.1 Conclusions and Guidelines for the Use of Multi-

stage NMPC

The main goal of this thesis was to develop a new approach for the explicit consideration

of uncertainty in the field of optimization-based control of nonlinear systems which is not

overly conservative and is real-time implementable. This problem has been addressed

in the framework of nonlinear model predictive control using a novel formulation called

multi-stage NMPC. The theoretical basis, the efficient implementation and different sim-

ulation and experimental results have been presented in the four parts of this thesis.

The first part of the thesis presented multi-stage NMPC as a general framework that

includes other approaches for robust NMPC, such as min-max NMPC, or open-loop

robust NMPC. Here, the main advantage of the multi-stage approach was discussed: the

tree structure makes it possible to consider explicitly that new information will become

available in the future. This implies that the control inputs can act as recourse variables,

reducing the conservativeness of the approach significantly. This comes at the price of

an exponential growth of the scenario tree with the length of the prediction horizon

and with the number of uncertainties taken into account. Furthermore, a formulation of

multi-stage NMPC has been described which guarantees a priori stability and recursive

feasibility.

The second part presented the efficient implementation of the approach that has been
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developed in this thesis which is necessary to achieve a real-time solution of the large

optimization problems that result from the multi-stage NMPC formulation. In partic-

ular, the use of orthogonal collocation on finite elements with exact first and second

order derivative information calculated using automatic differentiation has been proven

to achieve excellent computational performance. This has been implemented using the

tools CasADi and IPOPT, which provide a very high performance with a low implementa-

tion effort. Additionally, a new tool called DO-MPC has been developed, by which MPC

can be implemented in a modular manner, using the four main parts of any model-based

optimizing control implementation: model, optimizer, observer and simulator. DO-MPC

provides an environment for the easy, simple and efficient use of multi-stage NMPC,

including the communication and control with real plants.

In the third part of this thesis it was shown that multi-stage NMPC with an efficient

implementation achieves very promising results for challenging problems, satisfying the

constraints for all the assumed possible values of the uncertainty. In particular the ap-

proach has been extensively tested for the control of highly nonlinear polymerization

processes. It has been shown that multi-stage NMPC achieves superior performance

compared to standard NMPC or to other robust approaches. Furthermore, multi-stage

NMPC has been tested successfully on a laboratory plant using DO-MPC, which illus-

trates that the necessary computations can be solved in real-time and thus can be applied

to real systems.

The fourth part of the thesis shows how the flexibility of the multi-stage NMPC approach

enables the extension of the method by combining it with other ideas to further enhance

its capabilities and performance. For example, it is possible to use multi-stage NMPC to

achieve a trade-off between variability of the system under uncertainty and its economic

performance. Furthermore, the approach can be extended by integrating it with reacha-

bility analysis tools for the rigorous guarantee of constraint satisfaction and with robust

optimal experiment design to reduce the uncertainty and improve performance.

Overall it can be concluded that multi-stage NMPC provides excellent results for medium

size problems with tight constraints on inputs and on states. It has been shown that this

can be especially beneficial if an economic cost function is chosen, and that the result-

ing optimization problems can be solved in real-time using the efficient implementation

proposed in this thesis.

The main limitations of the approach can be summarized in the following two points.
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Firstly, the consideration of high dimensions of the uncertainty space poses an important

challenge because the size of the scenario tree grows exponentially with the number

of uncertainties considered. Secondly, although it has been shown that it is possible

to provide rigorous guarantees for stability and constraint satisfaction, the necessary

assumptions and tools needed for these guarantees limit the applicability of the approach,

as it occurs with any MPC approach.

14.2 When and How to Use Multi-stage NMPC?

This section presents some guidelines that provide insight on the kind of problems that

can be tackled by multi-stage NMPC and on the problems where its use can be more

advantageous with respect to other approaches.

Once it has been decided that multi-stage NMPC is a suitable approach for the problem

under consideration the controller has to be designed. This section also presents some

guidelines for the design of the multi-stage NMPC controller and the use of the different

extensions and modifications that have been presented in this thesis. Parts of this section

have been published in (Lucia and Engell, 2015).

14.2.1 When to Use Multi-stage NMPC

Multi-stage NMPC is a robust NMPC approach and as such, it is in general suboptimal

when compared to a standard NMPC that uses the perfect model of the system, because

the multi-stage approach accounts for possible uncertainties. Therefore, the best option

to achieve a robust NMPC scheme is to estimate the uncertainties if it is possible, re-

moving the uncertainty of the problem. However, if the uncertainties vary over time, the

application of standard NMPC (even in the case of exact and instantaneous estimation)

may result in constraint violations. On the other hand, the use of multi-stage NMPC

can prevent the constraint violations because it takes into account in advance that the

uncertainty might change as illustrated in Chapter 8.

For the cases when the uncertainty cannot be exactly estimated, the use of multi-stage

NMPC is beneficial in comparison with standard NMPC or with other robust approaches

that do not take feedback into account. The benefits can be seen in the form of increased
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average performance over the different possible scenarios of the uncertainty or in the

form of robust constraint satisfaction. Furthermore, the flexibility of the approach makes

it possible to integrate it with estimation techniques (see Chapter 8) or with optimal

experiment design (see Chapter 13) to enhance the performance based on measurement

information.

For the case of an economic cost function and tight constraints, an important improve-

ment in the performance is expected by using multi-stage NMPC as it has been shown

in several results (see Chapter 8). If the control task is the unconstrained tracking of a

pre-defined setpoint the benefits of multi-stage NMPC can be very small or nonexistent

(depending on the problem) compared to the use of standard NMPC with a bias term

to achieve steady-state accuracy as illustrated in Appendix A. In that case, it is neces-

sary to analyze for each problem if the possible improvements justify the increase in the

complexity of the controller.

Stochastic information about the uncertainty can be incorporated in the multi-stage for-

mulation using the weights for each scenario. However, it is not possible to handle directly

stochastic formulations of the constraints (chance constraints) with the tools presented

in this thesis. If such constraints are necessary, other approaches can be considered such

as the scenario approach in the convex case (Calafiore and Campi, 2006) or the use of

polynomial chaos expansions (Mesbah et al., 2014).

For simple cases where it is possible to find the invariant sets that are necessary for

the design of tube-based controllers, they can be preferred to the multi-stage NMPC

controller because they can be implemented with the same computational complexity

as standard NMPC (see (Yu et al., 2011)) and they provide set-theoretic guarantees

about the possible trajectories of the controlled system. However, for general nonlinear

systems it is very difficult to find the necessary elements for the design of tube-based

NMPC. Furthermore, these controllers ignore the question of optimal performance under

uncertainty.

For a real-world example in which the most important uncertainties can be summarized

in only a few parameters (or disturbances) with known bounds, multi-stage NMPC rep-

resents a very promising strategy that provides excellent performance satisfying tight

constraints if enough computation power is available. Industrially relevant case studies

can be solved in real-time if an efficient implementation of multi-stage NMPC is used, as

described in Chapter 5.
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14.2.2 How to Use Multi-stage NMPC

Once multi-stage NMPC has been chosen as the control approach for a given system, the

following steps must be taken to design the controller.

The first step consists in designing the scenario tree. An easy rule to generate a suitable

scenario tree is to consider the combination of the maximum, minimum, and optionally

also the nominal values of the different uncertain parameters as scenarios. This is the

main limiting factor of the approach. If there are many uncertain parameters the resulting

scenario tree might be intractable, and it is therefore necessary to lump the effect of several

uncertainties into a few critical uncertainties.

Then the robust horizon has to be chosen. In this thesis it has been shown that branching

the tree only in the first stage (robust horizon NR = 1) results in very good results with

low computational effort. Nevertheless, it has to be kept in mind that this assumes

that at the next sampling time different control inputs can be taken depending on the

uncertainty. This is not true because at the next sampling time a new scenario tree

(shifted in time) will be solved which imposes that all the control inputs have to be the

same in the first stage. This can potentially lead to recursive infeasibility of the controller,

although it has not been encountered during the case studies solved in this thesis.

Then it is possible to make use of the different enhancements and extensions that have

been provided in this thesis to improve the performance of multi-stage NMPC.

If some information about the uncertainty is available, it can be introduced on-line into

the scenario tree. This can be done either by adjusting the probabilities of the different

scenarios of the tree (see Chapter 8), or by narrowing the tree based on the new bounds of

the uncertainty that are provided by confidence ellipsoids or other estimation techniques

(see Chapter 13).

If theoretical guarantees are required it is possible to have an a priori guarantee of stability

and recursive feasibility under the usual assumptions (terminal set and terminal penalty

term) as shown in Chapter 4 for the case of a tracking cost function. If only a guarantee

of robust constraint satisfaction is needed, the reachable sets of each scenario can be

computed as shown in Chapter 12.

The multi-stage formulation can also be used to achieve a trade-off between performance

and variability of the controlled system under uncertainty by penalizing the distance
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between the different scenarios of the tree in the state space. However, enforcing a low

variability might result in a significant loss of performance as shown in Chapter 11.

14.3 Future Work

In the following, several ideas for future work are described which can enhance the capa-

bilities of the multi-stage approach.

Throughout this thesis, it has been usually assumed for the design of the controller that

the states of the system can be exactly measured, which is in general not true. Although

it has been shown in simulations and in real experiments that in some cases ignoring

measurement and estimation errors can lead to good results, it is important to study

more rigorously the interplay between the estimation strategy, which is necessary for any

MPC implementation in which some of the states cannot be measured, and the controller

itself. The propagation of the uncertainty introduced by measurement and estimation

errors into the future poses an extraordinary challenge due to the exponential growth

of the scenario tree. First steps in this direction have been published in (Subramanian

et al., 2014).

The presence of many uncertainties is the most important challenge of the proposed

approach. In this case the enumeration of all the possible combinations of the extreme

values might lead to an intractable optimization problem and the multi-stage NMPC

approach should be combined with other methods. One possibility is to use reachability

analysis combined with the scenario tree, so that only a few critical uncertainties are taken

into account in the tree and the rest are considered by the calculation of the reachable

sets.

The flexibility of the approach facilitates its integration with other methods. Especially,

multi-stage NMPC is suitable for the formulation of dual-control approaches, because the

scenario tree enables the explicit consideration of the future reduction of the uncertainty

that could be achieved thanks to future measurements by considering different values of

the uncertainty at each time stage.

The stability guaranteeing formulation of multi-stage NMPC that has been presented in

this thesis requires typical assumptions for the stability of NMPC which are necessary to

prove that the optimal value of the cost function is a Lyapunov function. For the general
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case of economic MPC, this is not always the case. Recent work on stability of economic

MPC (Angeli et al., 2012) can be used to extend the stability proof for the case of an

economic cost function.

Finally, this thesis presented simulation results for an industrial batch polymerization

reactor provided by BASF SE. The application of the approach to a real industrial reactor

is an important step for the validation of multi-stage NMPC as a powerful strategy to

deal with uncertainty in the framework of nonlinear model predictive control in industrial

practice.





Appendix A

Multi-stage NMPC for Setpoint

Tracking

Most of the results presented in this thesis were obtained with the use of an economic

cost function. This problem is particularly interesting because it leads very often to an

operation of the process close to the constraints, leading to constraint violations in the

case of plant-model mismatch or disturbances. However, the classical goal of tracking

a predefined setpoint under uncertainty is also an important control task. This chapter

shows how multi-stage NMPC can be used for tracking setpoints using the same strategies

employed for standard NMPC. An important part of this appendix has been published

in (Lucia and Engell, 2015).

A.1 Case Study

The results of this appendix are illustrated using a nonlinear CSTR benchmark problem

adapted from (Klatt and Engell, 1998). The dynamics of the CSTR are described by the

following differential equations:

ċA = F (cA0 − cA)− k1cA − k3c
2
A, (A.1a)

ċB = −FcB + k1cA − k2cB, (A.1b)

ṪR = F (Tin − TR) +
kWA

ρcpVR
(TK − TR)− k1cA∆HAB + k2cB∆HBC + k3c

2
A∆HAD

ρcp
, (A.1c)

ṪK =
1

mKcpK

(Q̇K + kWA(TR − TK)), (A.1d)
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where the reaction rates ki follow the Arrhenius law:

ki = k0,ie
−EA,i

R(TR+273.15) . (A.2)

The ODEs are derived from component balances for the concentration of component A

(cA) and for the the concentration of component B (cB). The energy balances for the

temperature of the reactor TR and for the coolant temperature (TK) form the last two

differential equations. The control inputs are the inflow (F ) normalized by the volume

of the reactor and the heat removed by the coolant (Q̇K). The parameters that appear

in the model equations are described in Table A.1.

Table A.1: Parameter values of the CSTR.

Parameter Value Unit

k0,1 1.287 1012 h−1

k0,2 1.287 1012 h−1

k0,3 9.043 109 l mol−1h−1

EA,1/R 9758.3 K

EA,2/R 9758.3 K

EA,3/R 8560.0 K

∆HAB 4.2 KJ mol−1

∆HBC -11.0 KJ mol−1

∆HAD -41.85 KJ mol−1

ρ 0.9342 kg l−1

cp 3.01 kJ kg−1 K−1

cpK 2.0 kJ kg−1 K−1

A 0.215 m2

VR 10.01 l

mk 5.0 kg

Tin 130.0 ◦C

kW 4032 KJ h−1 m−2 K−1

The initial conditions of the states together with the constraints on the states are de-

scribed in Table A.2. The constraints for the control inputs are shown in Table A.3.
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Table A.2: Initial conditions and state constraints.

State Init. cond. Min. Max. Unit

cA 0.8 0.1 5.0 mol l−1

cB 0.5 0.1 5.0 mol l−1

TR 134.14 50.0 180.0 ◦C

TJ 134.0 50.0 180.0 ◦C

Table A.3: Bounds on the manipulated variables.

Control Min. Max. Unit

F 5 100 h−1

Q̇K -8500 0 kJ h−1

A.2 Setpoint Tracking under uncertainty

The control task of the presented case study is to track a predefined setpoint for the

concentration of component B (cB). It is considered that the activation energy EA,3 is

uncertain and it is assumed that it varies by ±10% with respect to the nominal value

described in Table A.1.

The stage cost that is minimized at each time stage and for each scenario is chosen as:

L = (cB − cref
B )2 + r1∆F 2 + r2∆Q̇2

K, (A.3)

where the penalty terms for the control movements are chosen as r1 = 10−5 and r2 = 10−7.

The setpoint is chosen to be cref
B = 0.5 for t ≤ 0.3 h and cref

B = 0.7 for t > 0.3 h. The

prediction horizon is NP = 40 steps and the sampling time of the controller is tstep = 0.005

h. For the multi-stage case, a scenario tree is generated using the maximum, minimum

and nominal value of the uncertainty and a robust horizon NR = 1.

The results of the tracking problem for standard and for multi-stage NMPC are shown in

Fig. A.1. The state constraints are chosen such that they remain inactive to analyze only

the tracking performance. Standard NMPC results in a steady state error (Fig. A.1 (left))

for all the cases of the uncertainty except when a perfect model is used (0% variation with

respect to the nominal value of the parameter). If multi-stage NMPC is used, the steady

state error cannot be completely avoided, but the reason for this offset is different than in
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Figure A.1: Concentration of component B, reactor temperature, and control inputs

obtained by standard NMPC (left) and by multi-stage NMPC (right) tracking a pre-

defined setpoint for different values of the uncertain parameter (±10% w.r.t. the nominal

value).

the standard NMPC case. In standard NMPC the steady-state error occurs because the

controller minimizes the tracking cost function using a wrong model for the predictions.

According to this model the calculated input would drive the system to the setpoint but

once the control is applied to the system, it remains in the same position. For multi-stage

NMPC the controller calculates sequences of control inputs (one for each scenario) that

minimizes the distance to the setpoint on the average. Since the first control input is

common due to the non-anticipativity constraints, it is not possible to drive the system to

the setpoint for all the scenarios in the first stage and this results in the steady-state error

that can be seen in Fig. A.1 (right). Table A.4 shows that multi-stage NMPC achieves

a better performance in average (~11%) comparing the average accumulated cost over

the three scenarios. The accumulated cost is calculated by integrating the tracking error

over the whole time period. Standard NMPC has better performance when the model

is perfect, but it has no control about the loss of performance for the rest of the cases.

Multi-stage NMPC calculates the inputs that result on minimum average performance.

If the performance of standard NMPC is very similar to the average performance (e.g. in

the linear case), standard NMPC and multi-stage will provide almost identical solutions.
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Table A.4: Performance comparison between standard NMPC and multi-stage NMPC.

Accumulated cost

Unc. in Standard Multi-stage

EA,3 NMPC NMPC

+10% 0.0602 0.0827

+0% 0.0389 0.0467

-10% 1.3041 1.1272

Average 1.403 1.256

A common strategy to achieve steady-state accuracy is to add a bias term to the cost

function so that the output of the system is corrected based on the difference between

the predicted output and the measured one. The reference (or equivalently the output)

is updated as:

c̃ref
B = cref

B + (cj
B − cmeas

B ), (A.4)

where c̃ref
B is the actual reference used in the cost function, cmeas

B is the measured concen-

tration and cj
B is the predicted concentration. The bias is assumed to be constant over

the prediction horizon. Such a simple correction improves the performance but fails to

achieve steady-state accuracy as can be seen in Fig. A.2. The reason for this is that due

to the high nonlinearity of the problem (the uncertain parameter enters in the exponen-

tial term in (A.2)), the inputs that the NMPC calculates for an adapted reference with

the wrong model are very different compared to the inputs that are necessary to drive

the real system to the original reference, resulting in an offset. The same occurs for the

multi-stage case. Augmenting the system with a disturbance model and an observer to

estimate its state makes it possible to achieve for offset-free tracking as shown e.g. in

(Morari and Maeder, 2012; Huang et al., 2012; Rajamani et al., 2009).

Another very simple strategy to achieve steady state accuracy is to adapt the reference

based on the integrated tracking error. This continuous update is given by:

c̃ref
B ← c̃ref

B + kbias(cref
B − cmeas

B ). (A.5)
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Figure A.2: Concentration of component B, reactor temperature (with constraint), and

control inputs obtained by standard NMPC with bias term tracking a pre-defined setpoint

for different values of the uncertain parameter (±10% w.r.t. the nominal value).

Using kbias = 0.2 steady-state accuracy is achieved for all scenarios for both standard

NMPC (Fig. A.3 (left)) and for multi-stage NMPC (Fig. A.3 (right)). There is no signifi-

cant difference between the performance of standard and multi-stage NMPC. The reason

for this is that the bias term adapts the output of the model based on the measurement

information. In particular when the plant reaches the steady state the input-output be-

havior is perfectly corrected for all the cases of the uncertainty. During the dynamic part

of the trajectory the bias update is an approximation of the exact correction, but this

does not have to be worse than optimizing an average performance for several scenarios

– where only one scenario is the real one – as it is done in multi-stage NMPC.

It is possible to improve the performance of the controllers using a combination of both

presented bias updates by using a varying value of kbias. This can be achieved by scaling

the bias term with the accuracy of the prediction of the model in the last step when

compared to the obtained measurement. The idea of this scaling is that if the effect of

the uncertainty on the output is large, then the corrections should also be large. On the

other hand, if the prediction given by the model coincides with the measurement or if

the plant is already at the desired setpoint, no correction should be performed. The bias
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Figure A.3: Concentration of component B, reactor temperature, and control inputs

obtained by standard NMPC (left) and by multi-stage NMPC (right) with bias term

tracking a pre-defined setpoint for different values of the uncertain parameter (±10%

w.r.t. the nominal value).

correction is calculated as:

c̃ref,j
B ← c̃ref,j

B + kbias(cref
B − cmeas

B ) |cj
B − cmeas

B |, (A.6)

where c̃ref,j
B is the reference that is used in the optimization problem. In this case there is a

different bias term for each scenario j, which is obtained when comparing the predictions

of the output at the last step cj
B with the obtained measurement cmeas

B . As it is shown in

Fig. A.4 both standard NMPC and multi-stage NMPC achieve a better performance with

this modification compared to the bias update in (A.5). Again, there is no significant

difference between standard and multi-stage NMPC.

The importance of using a robust approach can be seen in this case only if some constraints

are active. Now it is considered that there is an upper bound on the temperature of the

reactor that should not be violated, TR ≤ 155. If standard NMPC with the modified bias

term (A.6) is used, tracking is achieved but the constraint is violated (for the case when

the uncertainty is 10% smaller than the nominal value). In contrast, multi-stage NMPC

with the modified bias term realizes that the defined setpoint is unreachable and stays as

close as possible without violating the temperature constraint as can be seen in Fig. A.5.
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Figure A.4: Concentration of component B, reactor temperature, and control inputs

obtained by standard NMPC (left) and by multi-stage NMPC (right) with modified bias

term tracking a pre-defined setpoint for different values of the uncertain parameter (±10%

w.r.t. the nominal value).

The main goal of this appendix is to show that the classical techniques applied to achieve

steady-stage accuracy for standard NMPC can be applied in a straightforward manner to

multi-stage NMPC. The rigorous analysis of the offset-free behavior is out of the scope

of this appendix and the reader is referred to (Morari and Maeder, 2012) for an overview

on the theoretical assumptions required to guarantee offset-free tracking in NMPC. If

the use of measurement information results in a correction of the nominal model or

its adaptation (at least approximately) the performance of standard NMPC can be in

some cases comparable to the multi-stage case because uncertainty is (partially) removed.

This has been illustrated for the very simple case of bias updates, but the central idea

is applicable to other techniques used to achieve offset-free NMPC. Nevertheless, the use

of multi-stage NMPC can be beneficial in the case of active state constraints. In that

case, a modification of the cost function of the standard NMPC controller will not result

in robust constraint satisfaction unless additional measures are taken while multi-stage

NMPC achieves robustness without any modifications.
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Figure A.5: Concentration of component B, reactor temperature (with constraint), and

control inputs obtained by standard NMPC (left) and by multi-stage NMPC (right) with

modified bias term tracking a pre-defined setpoint for a value of the uncertain parameter

10% smaller than the nominal value).
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Appendix B

List of Symbols

Symbol Description

xj
k Node of a tree at stage k and position j

x
p(j)
k Parent node of the node xj

k+1

uj
k Control input associated with the node xj

k

yj
k Output of the system associated with node xj

k

ûj
k Fictitious control input associated with the node xj

k used in decomposition

d
r(j)
k Uncertainty realization r at stage k and position j

I Set containing all the occurring indices (j, k) for a given scenario tree

Si i-th scenario of a given scenario tree

Xi Set of states of the scenario tree that belong to the i-th scenario

Ui Set of control inputs of the scenario tree that belong to the i-th scenario

ωi Weight or probability of scenario Si

πj
k Accumulated probability of node xj

k

Ji Cost of scenario Si

L Stage cost of the scenario-wise formulation of multi-stage NMPC

ℓ Stage cost of the stage-wise formulation of multi-stage NMPC

V r
f Terminal penalty term associated with the realization r of the uncertainty

VNP
Optimal value of the cost function with prediction horizon NP

Xf Terminal set

XA(NP ) Feasibility region of an MPC controller with prediction horizon NP

203



204 List of Symbols

Symbol Description

X Set defining the state constraints

U Set defining the input constraints

D Set of uncertainty realizations considered in the scenario tree

f Discrete-time nonlinear dynamic model

g Constraints on inputs and states

h Output function (map of the state space to the output space)

nx Dimension of the state vector

nu Dimension of the control vector

nd Dimension of the uncertainty vector

NP Prediction horizon

NR Robust horizon

N Number of scenarios

tstep Sampling time of the NMPC controller

kvar Tuning parameter to control variability of multi-stage NMPC

X i
k Exact reachable set at time k for scenario i

X̄ i
k Over-approximation of the reachable set at time k for scenario i

ǫj
k Tightening of the constraints for the node xj

k

sj
k Sensitivities of the states with respect to the parameters at node xj

k

sj
y,k Sensitivities of the output with respect to the parameters at node xj

k

Di Uncertainty box associated to scenario i

D Bounds of the uncertainty D := [dL, dU ]

w(D) Range of the uncertainty

F i
Ne

Fisher Information Matrix associated to scenario i with a horizon Ne
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