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Abstract: Mathematical modeling has become an indispensable tool in the analysis, prediction
and control of chemical and biological systems. However, the estimation of consistent model
parametrizations and model invalidation are challenging tasks, but crucial for reliable model-
based analysis and prediction. Set-based estimation methods are useful to determine guaranteed
outer approximations of consistent parameter sets, i. e. consistent parametrizations are never
excluded. However, these conservative outer approximating sets often include inconsistent
parametrizations which lead to inconsistent models and hence possibly wrong model-based
predictions. This paper proposes a set-based framework to determine inner approximations, i. e.
the model is guaranteed consistent with measurement data for all parametrizations from this
set. Our approach is based on the reformulation and inversion of measurement data constraints
and by imposing nonlinear constraints on binary variables. The relaxation of the mixed-integer
nonlinear feasibility problem into a mixed-integer linear feasibility problem allows the inner
approximations to be determined efficiently. The applicability of this approach is demonstrated
considering a nonlinear biochemical reaction network.
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1. INTRODUCTION

In many applications, from chemical engineering to sys-
tems biology, mathematical models are crucial for the
analysis, design and control of the considered processes.
When building a model, parameters are often unknown
and cannot be measured directly, but have to be estimated
from experimental data. Often, however, it is not sufficient
to estimate just one model parameterization that mini-
mizes an objective function like model output and data
deviation. Instead one might be interested in parameter
bounds or sets for which the experimental data can be
reproduced. For this purpose, set-based model invalidation
and estimation methods are useful [Rumschinski et al.,
2010, Borchers et al., 2009].

Within a set-based estimation framework, measurement
data and parameter uncertainties can be taken directly
into account and outer approximations of consistent pa-
rameter sets can be obtained. These outer approximations
are guaranteed to include all consistent parameter values
(cf. Fig. 1a). However, due to the conservatism of set-based
methods and the outer approximation approach, inconsis-
tent parameter combinations can still be included in the
determined sets. It is therefore desired to determine inner
approximations, i. e. sets for which it is guaranteed that all
parameter values from the set are guaranteed consistent.
Even in the presence of uncertainties, this enables one
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to make reliable model-based predictions, which play an
important role e. g. in control and therapy design.

This work proposes an approach for the estimation of
inner approximations by means of an inverted reformu-
lation of constraints and their logical combination into
a mixed-integer nonlinear feasibility problem. Inner ap-
proximations and set-inversions have been considered be-
fore in the systems and control community. Jaulin and
Walter [1993] proposed an algorithm using set inversion
and interval analysis. Methods from robust control are
often employed to determine inner approximations [Zhou
et al., 1995]. Henrion and co-workers developed methods
for outer and inner approximations of region-of-attractions
and consistent parameter sets of continuous-time systems
with occupation measures [Korda et al., 2012, Streif et al.,
2013].

In this work, inner approximations of the a-priori unknown
consistent parameter sets for nonlinear discrete-time sys-
tems are derived. The problem is stated in Section 2. For
this, constraints on data and variables are reformulated us-
ing logical operators and constraint inversion. This allows
certificates on guaranteed consistent parameter sets to be
determined (Section 3) by checking infeasibility of a mixed-
integer nonlinear feasibility problem. Linear relaxations
are employed to solve the problems efficiently and two
algorithms are presented to derive inner approximations
(Section 4). The approach is applied to an example of a
biochemical reaction network in Section 5.
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2. PROBLEM SETUP

This section introduces the considered system class and
uncertainties, and states the problem of consistent param-
eter estimation.

2.1 Models and Uncertainties

Consider polynomial discrete-time systems given by

F (x(k + 1), x(k), p) = 0 (1a)

H(y(k), x(k), p) = 0, (1b)

where F : Rnx × Rnx × Rnp → Rnx are polynomial
functions, x(k) ∈ Rnx is the time-dependent state vector,
and p ∈ Rnp the time-invariant parameter vector. Time
is indexed by k ∈ N. The model output equations are
given by H : Rny ×Rnx ×Rnp → Rny , which are assumed
polynomial functions, and y(k) ∈ Rny denote the time-
dependent model outputs. Such a discrete-time model
(1) can be obtained from a continuous-time model by
numerical integration schemes.

For parameter estimation and validation, we assume that
nt different measurements are taken at time-instances in-
dexed by k ∈ T := {0, 1, . . . , nt − 1}. For easier notation,
let my = [y1(0), . . . , y1(nt − 1), . . . , yny

(0), . . . , yny
(nt −

1)]T ∈ Rnynt be the vector of all output measurements
taken at the different time-instances. Typically, the mea-
surements are uncertain. This work assumes that the un-
certainties can be represented by polynomial inequality
constraints in the following form

M :=
{
my : gy,i(my) ≥ 0, i = 1, 2, . . . , cm

}
⊆ Y, (2)

where cm is the number of inequalities, and Y is assumed
a bounded subset in Rnynt . To shorten the notation, we
write my ∈ M to express that the measurements satisfy
all inequality constraints in (2).

In addition, we assume that initial knowledge on the pa-
rameter p and state values x(k) is available. Let this knowl-
edge be given by cp (resp. cx) polynomial constraints:

P :=
{
p : gp,i(p) ≥ 0, i = 1, 2, . . . , cp

}
⊂ Rnp , (3)

X :=
{
x : gx,i(x) ≥ 0, i = 1, 2, . . . , cx

}
⊂ Rnx . (4)

Here, gp(·) and gx(·) are polynomial functions and could,
e. g. correspond to simple upper and lower bounds. Typ-
ically, X and P can be derived from initial knowledge or
conservative assumptions about the investigated processes,
or from the physical meaning of the variables (e. g. concen-
trations have to be non-negative).

2.2 Estimating Consistent Parameter Sets

This contribution considers a set-based approach to pa-
rameter estimation using the following notion:

Definition 1. (Model consistency). Model (1) is said to
be consistent with the measurements M, if there exist
p ∈ P and x(k) ∈ X ∀k ∈ T , such that my ∈M.

The general aim of set-based parameter estimation is not
to estimate the best parameter values p ∈ P that minimize
e. g. the deviation between measurements and model out-
put. Instead, set-based estimation aims to determine the
entire set or outer bounds of parameters Pc ⊆ P for which
the model is consistent according to Definition 1 (see also
Fig. 1a).

To check model consistency, consider the following feasibil-
ity problem (FP) which aims to find any feasible solution
since optimality does not matter:

FP :


find ξFP
s.t. equations (1),

x(k) ∈ X ,∀k ∈ T ,
my ∈M,
p ∈ P,

where ξFP ∈ R(nx+ny)nt+np is a vector that contains all
the variables in (1), i. e. state and output variables at the
time-instances k ∈ T , and the parameters p.

The set of consistent parameters Pc is difficult to de-
rive owing to the nonlinearities and nonconvexities. As
previously shown [Borchers et al., 2009], it is possible
to relax the FP into a convex semi-definite feasibility
problem (SDP). Relaxation here refers to the fact that
the consistent parameter set Pc of FP is fully contained in
the solution set of the SDP, i. e. Pc ⊆ PSDP

c .

To deal with larger problems the SDP can be further
relaxed into a linear program (LP), and it holds Pc ⊆
PSDP
c ⊆ PLP

c . Consistency can then be checked efficiently
using the Lagrangian-dual of the linear relaxation. The
weak-duality theorem and the relaxation process guaran-
tee that if the objective of the dual program is unbounded,
then FP does not admit a solution [Borchers et al., 2009].

2.3 Outer Approximations

While the relaxations introduce some conservatism, they
allow guaranteed outer approximations of consistent pa-
rameter sets or model states, or to prove inconsistency of
entire parameter regions or models. Proofs of inconsistency
are particularly helpful in applications like systems biology
where often competing model hypotheses exist that can
then be ruled out.

Two conceptually different algorithms (cf. Fig. 1b) have
been suggested to obtain outer approximations Po. The
first algorithm outer-approximates Pc by sequentially and
iteratively tightening the lower (p

j
) and upper bounds (pj)

on single parameters pj , which then gives an hyperrectan-
gular outer approximation of the consistent parameter set.
The second approach is to divide the parameter space P
into partitions and to check each partition for consistency.
Using a recursive algorithm like bisectioning, Pc can be
approximated systematically and up to a chosen precision
[Borchers et al., 2009, Streif et al., 2009, Rumschinski
et al., 2010, Streif et al., 2012].

2.4 Inner Approximations

On the one hand, outer approximations allow the inval-
idation of entire models and parameter regions. But on
the other hand, outer approximations are also conservative
and usually contain inconsistent parameters (cf. Fig. 1).
Using parameters from the derived outer approximations
may therefore lead to wrong or arbitrary model-based pre-
dictions. This might be less problematic during the model
building process, but it might be problematic whenever
model-based predictions are important, such as in control
or therapy design.
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This contribution aims to determine sets that are guaran-
teed to only include consistent parameter sets. We refer to
these sets as inner approximations Pi ⊆ Pc.

Problem 1. (Guaranteed consistent parameter sets).
Derive an inner approximation Pi of the consistent
parameter set Pc such that for all p ∈ Pi, the model is
consistent with the measurements, i. e. my ∈M.

Fig. 1a describes the relation between the consistent pa-
rameter sets and outer and inner approximations thereof.

(a) (b)

Fig. 1. (a) Illustration of relationships between outer Po and
inner approximation Pi of the consistent parameter set Pc. (b)
Algorithmic determination of outer and inner approximations.
The dashed box shows a hyperrectangular outer approximation.
The dark boxes show an outer approximation determined by
testing the different regions whether they contain consistent
parameters. The white boxes show an inner approximation
guaranteed to contain only consistent parameters.

The proposed and novel approach to find inner approxi-
mations Pi basically consists of two steps. First, the con-
straints gy(·) are reformulated using binary variables and
by imposing suitable constraints on the binary variables.
By this, one obtains a feasibility problem that involves
binary variables and which solution set (in parameter
space) equals the solution set of FP. The second and
crucial step is the inversion of the logical constraints on
the binary variables. Using a mixed-integer linear program
(MILP) it can be checked whether the logical constraints
are violated or not, which then allows one to determine
inner approximations. The following sections present these
steps in detail.

3. CERTIFICATES FOR GUARANTEED SOLUTION
SETS

To estimate inner approximations of consistent parameter
sets, this paper extends the work by Rumschinski et al.
[2012], in which quantitative constraints and qualitative
knowledge are formulated via binary variables and logical
conditions. By inversion of the logical constraints and by
proving infeasibility of the inverted feasibility problem, it
can be guaranteed that no constraint is violated – which
provides an inner approximation.

3.1 Mixed-integer Reformulation of Constraints

The key idea is to express constraints by means of log-
ical relationships between additionally introduced binary
variables φi ∈ {0, 1}, i = 1, 2, . . . , cm. In particular, we
reformulate the quantitative measurement constraints M
using this framework. The variable φi indicates whether
the constraint gy,i is satisfied (φi = 1) or not (φi = 0).
To this end, we introduce additional constraints such that

φi takes the desired value. This can be achieved by (see
Rumschinski et al. [2012] and references therein)

φi ≥
gy,i(my)

Mi
,

φi ≤
gy,i(my)

Mi
+ 1, i = 1, 2, . . . , cm,

(5)

where Mi > max∀my∈Y |gy,i(my)|. Note that φi can be
both 0 and 1 if a solution satisfies gy,i(·) = 0. However,
this does not restrict the following analysis.

To consider more complicated setsM described by cm in-
equalities, it has to be demanded that all binary variables
φi are equal to 1. One thus obtains a linear constraint:

cm∑
i=1

φi = cm. (6)

As can be easily seen, if any φi is 0, then constraint (6) is
not satisfied. The derived constraints therefore correspond
to a conjunction, i. e. a logical and -combination of the
binary variables.

The constraints (5) and (6) can be added to FP, which
then is denoted by MIFP due to the integrality constraints
involving the binary variables:

MIFP :



find ξMIFP

s.t. equations (1),
x(k) ∈ X ,∀k ∈ T ,
p ∈ P,
equations (5),
cm∑
i=1

φi = cm.

(7)

Then, one can state:

Lemma 1. (Equivalence of FP and MIFP). The solution
sets in parameter space of FP and MIFP are equal, i. e.
PFP
c = PMIFP

c .

Proof: The proof is obvious and follows from the conversion
of the FP into a MIFP. �

In Rumschinski et al. [2012], a theorem was presented
giving inconsistency certificates based on the FP. Using
Lemma 1 and the theorem from Rumschinski et al. [2012],
one can now state (without the need of a formal proof):

Theorem 1. (MIFP inconsistency certificate). If MIFP
does not admit a solution, then there exists no
parametrization p ∈ P and corresponding state trajectory
x(k) ∈ X such that my ∈M.

As mentioned in Section 2, it is difficult to check consis-
tency or inconsistency of the FP or MIFP directly. How-
ever, by applying relaxations (cf. Section 2.2) to obtain
a mixed-integer linear feasibility problem (MILP) and by
using weak-duality and Theorem 1, one is then able to
derive outer approximations of consistent parameter sets.

Note that the reformulation into a MIFP results in an
increased problem size in terms of the number of vari-
ables and constraints. To be more specific, there are cm
additional binary variables φi, 2cm additional nonlinear
constraints (5), and one constraint representing the com-
bination of the binary variables (6). However, efficient and
parallel implementations of branch-and-bound algorithms
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in state-of-the-art mixed-integer solvers are able to deal
with it efficiently.

3.2 Inner Approximations by Constraint-inversion

Due to the convex relaxations into mixed-integer linear
programs (MILP), it is likely to happen that the solution
set increases such that it contains inconsistent parameter
sets. Thus, it might happen that there are parameter
values for which

cm∑
i=1

φi ≤ cm − 1. (8)

Note that constraint (8) corresponds to the inversion of
the consistency constraint (6). The crucial idea is now
to reformulate the MIFP and check whether parameters
satisfying (8) exist. This is achieved by adding the inverted
consistency constraint (8) to the FP instead of the original
constraint (6) leading to

M̂IFP :



find ξMIFP

s.t. equations (1),
x(k) ∈ X ,∀k ∈ T ,
p ∈ P,
equations (5),
cm∑
i=1

φi ≤ cm − 1.

(9)

If one can show that M̂IFP is infeasible, then all parameter
values p ∈ P are guaranteed consistent with the measure-
mentsM. Before one can formulate this in a theorem, two
assumptions are needed:

Assumption 1. (Existence of solutions). For every p ∈
P there exists a solution x(0), x(1), . . . , x(nt − 1) and
y(0), y(1), . . . , y(nt − 1).

This is a mild assumption which many systems fulfill, such
as in particular polynomial systems given in the explicit
form x(k + 1) = F̃ (x(k), p).

Furthermore it has to be assumed:

Assumption 2. (Bounds on solutions). For all p ∈ P, it
holds that x(k) ∈ X∀k ∈ T .

This assumption demands known guaranteed enclosures
on the states on the time interval T . Note that this is
also a mild assumption because conservative bounds can
be chosen for X or can be derived from system insight like
mass conservation in biochemical reaction networks. The
main purpose of Assumption 2 is to reduce the number of
constraints that have to be tested for consistency. Then,
one only needs to check and invert constraints gy,i and
does not have to consider gx,i Eq. (4).

With M̂ILP denoting the mixed-integer linear relaxation

of the mixed-integer nonlinear feasibility problem M̂IFP,
one is now able to state the following:

Theorem 2. (Consistency certificate). The model (1) is
guaranteed consistent with the measurements (my ∈ M)

for all p ∈ P, if the Lagrangian-dual of the M̂ILP is
unbounded.

Proof: The weak-duality theorem and the relaxation pro-

cess guarantee that if the dual M̂ILP is unbounded, then

the M̂IFP does not admit a solution. Due to Assumptions 1
and 2 it follows that (8) is not satisfied, hence (6) is
satisfied for all p ∈ P. �

By inversion of the logical representation of the measure-
ment constraints (5) and (6), we were able to derive a
theorem that can be used to address Problem 1.

4. ALGORITHMS FOR INNER APPROXIMATIONS

This section presents two algorithms to determine inner
approximations Pi based on Theorem 2. Since the theorem
builds on infeasibility, i. e. no solution exists, it is not
straightforward to use optimization that returns optimal
feasible solutions. Instead, entire parameter regions are
either recursively (Algorithm 1) or incrementally (Algo-
rithm 2) proved to be an inner approximation by virtue
of Theorem 2. Both algorithms terminate in finite time.
Application of the algorithms is shown in the next section.

4.1 Recursive Inner Approximation

The following algorithm assumes that the initial parameter
set P is given by lower bounds p

j
and upper bounds pj in

the following form:

P :=
{
p
j
≤ pj ≤ pj , j = 1, 2, . . . , np

}
. (10)

Eq. (10) represent a hyperrectangular description of the
parameter uncertainties. The recursive Algorithm 1 uses
bisectioning and it tests whether a hyperrectangle is an
inner approximation or not. In case it is not, then the
hyperrectangle is split into two parts along a heuristi-
cally or randomly chosen direction and the two obtained
hyperrectangles are tested. The recursion terminates ei-
ther if a hyperrectangle is proved an inner approxima-
tion, or if a predefined recursion depth Nmax is reached.

Algorithm 1. (Recursive Inner Approximation).

Input: index set I
counters Nj ∀ j ∈ I
hyperrectangular bounds P

IF Lagrangian-dual of M̂ILP is unbounded

ECHO ‘P is an inner approximation’

RETURN

END IF

WHILE I 6= ∅
PICK index j corresponding to

largest interval width pj − pj in P
IF Nj ≤ Nmax:

SET Nj ← Nj + 1
STORE and SET p

j
← p

j
+ 1/2 · (pj − pj)

CALL Algorithm 1 with Njs, I and modified P
RESET p

j

STORE and SET pj ← pj − 1/2 · (pj − pj)

CALL Algorithm 1 with Njs, I and modified P
RESET pj

ELSE

SET I ← I \ j
ECHO ‘P is not considered an inner approximation’

END IF

END WHILE

The algorithm is initially called with the parameter
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index set I := {1, 2, . . . , np}, a set of np counters Nj

which are all set to 1, and the initial uncertain parameter
description (10).

The recursion depth Nmax and the dimension of P de-
termine the number of hyperrectangles to be checked and
thereby the accuracy of the inner approximation. In gen-
eral, the number of hyperrectangles grows exponentially,
but the algorithm terminates after a finite number of steps.
The algorithm is suited to explore the parameter space for
inner approximations. However, it is computationally more
demanding to prove a region to be an inner approximation
than to check the same region whether it contains no
solutions at all using certificates for outer approximations.
It is therefore beneficial to combine both outer and inner
approximations by, first, using certificates for outer ap-
proximations up to a certain recursion depth and, second,
to check the remaining boxes whether they are valid inner
approximations or not.

4.2 Incremental Polytopic Expansion

The motivation and starting point for the second algo-
rithm is the fact that often consistent parameter values are
available. Such parameter values could be obtained e. g.
by Monte-Carlo sampling [Robert and Casella, 2005] or
by local nonlinear optimization. The following algorithm
relies on such samples and aims for a polytopic inner
approximation. This is done by first testing whether the
parameter set defined by the polytopic convex hull of the
samples is an inner approximation or not. If this is the
case, then the algorithm tries to get a bigger (in terms of its
volume) inner approximation by expanding the polytope.
This is done by incrementally moving the facets of the
polytope outwards, thus increasing the volume of the poly-
tope, until the inner approximation cannot be guaranteed.

Assume that a polytopic convex hull of a number of
samples is given by

P :=
{
p : aTj p ≥ bj , ‖aj‖2 = 1, j = 1, 2, . . . , cf

}
, (11)

where aj are the (outwards-facing) unit normal vec-
tors of the cf facets of the polytope. In addition,
assume that P is bounded and represents a poly-
tope of full dimension in Rnp . One can then propose:

Algorithm 2. (Incremental Polytopic Expansion).

Input: index set I = 1, 2, . . . , cf
incremental step-size ν
polytopic uncertainty description P

IF Lagrangian-dual of M̂ILP is NOT unbounded

ECHO ‘P is not considered an inner approximation’

RETURN

END IF

WHILE I 6= ∅
PICK random j from I
STORE AND REPLACE jth equation

in P by aTj p ≥ bj + ν

IF Lagrangian-dual of M̂ILP is NOT unbounded

RESET jth equation

SET I = I \ j
END IF

END WHILE

The algorithm terminates after a finite number of steps
if the consistent parameter set is bounded. Due to the
heuristics, such as the random choice of the next facets
and the step size ν, the obtained polytopic description of
the inner approximation is not unique and might not be
the optimum in terms of maximal volume.

Note that one might have to add additional checks in
Algorithm 2 to verify that the shifting of a facet does not
render this facet empty, i. e. leads to an inactive constraint.

If the polytope P has initially degenerated dimension,
additional facets can be introduced heuristically. Note that
also in the special case of only one consistent sample, the
polytope to be expanded can e. g. be assumed an axes-
aligned hyperrectangle or hypercube with zero length.
Then this hyperrectangle can be expanded similarly.

The advantage of Algorithm 2 is that once an inner
approximation has been found based on samples, then no
further sampling is required since it has been proved that
the polytope describes an inner approximation.

5. EXAMPLE

For illustration, consider an enzyme-catalyzed reaction:

S1 + E
p1−⇀↽−
p2

C1
p3→ P + E

S2 + E
p4−⇀↽−
p5

C2.
(12)

Here, enzyme E and a substrate S1 reversibly form a
complex C1 that is converted into product P . Furthermore,
the enzyme is bound by a second substrate S2 forming
the inhibitory complex C2. The parameters p1, p2, . . . , p5
denote the unknown rate constants for which we aim to
determine inner approximations. All results were obtained
using the toolbox ADMIT [Streif et al., 2012].

5.1 Model Description

The reaction mechanism (12) is modeled by

x1(k + 1) = x1(k) + h
(
p1x4(k)x5(k)− (p2 + p3)x1(k)

)
x2(k + 1) = x2(k) + h

(
p4x5(k)x6(k)− p5x2(k)

)
x3(k + 1) = x3(k) + h

(
p3x1(k)

)
,

with x1(k), x2(k), x3(k), x4(k), x5(k) and x6(k) repre-
senting the concentrations of C1, C2, P , S1, E and S2,
respectively. The following conservation relationships hold:
x4(k)+x1(k)+x3(k) = 1, x5(k)+x1(k)+x2(k) = 1, x6(k)+
x2(k) = 1. Artificial measurements of the product P were
obtained from the simulation of the system with nominal
initial condition [x1(0), x2(0), x3(0)]T = [0.10, 0.10, 0.05]T

for a step size of h = 0.1 hours, and all parameter values
set to 2. To simulate data uncertainties, an absolute error
of 5% was added. Initial parameter uncertainties were
assumed as 0.1 ≤ pj ≤ 10, j = 1, . . . , 5.

5.2 Results

By applying Algorithm 1, we determined an inner approx-
imation of the parameters by partitioning the parameter

space into boxes and checking if M̂IFP admits a solution or
not. Fig. 2a shows the obtained inner approximation which
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(a)

(b)

(c)

Fig. 2. (a) Estimation of Pc using bisectioning and Algorithm 1.
An outer approximation Po and inner approximation Pi
are given by the light blue and white boxes, respectively.
Black dots correspond to valid Monte-Carlo samples. The
black rectangle shows the inner approximation obtained by
Algorithm 2 (see also b) projected onto the (p1-p2)-space.
(b) Polytopic/hyperrectangular expansion (using Algorithm 2)
plotted in (p1-p2-p3)-space starting with the valid sample
[2.36, 4.98, 6.12, 1.62, 2.98] (red dot) lead to the inner approx-
imating hyperrectangle (gray box) [2.13, 2.39] × [3.88, 5.22] ×
[6.03, 6.25] × [1.45, 1.76] × [2.81, 3.03]. (c) Model simulations
using parameter samples from the outer (red) and inner ap-
proximations (blue).

covers 82% of the valid Monte-Carlo samples. These results
show that our approach yields good inner approximations.

Using Algorithm 2, we determined the polytope Fig. 2b
starting with a single valid parameter sample (red dot)
and setting ν = 0.01.

Fig. 2c shows the obtained time plots using parameter
samples from the outer approximations (red) and the
inner approximations (blue). The plots show that samples
from the inner approximations lead to solutions such that
initial constraints on e. g. artificially or experimentally
determined measurements (given as error bars) are always
satisfied. Samples from the outer approximations can
lead to invalid solutions as constraints on data might be
violated.

6. CONCLUSIONS AND OUTLOOK

This paper proposed a method for the estimation of inner
approximations of polynomial discrete-time system. Inner
approximations guarantee that for all possible parameter
combinations within this set the considered constraints
are satisfied. This enables one to make reliable model-
based predictions which play a significant role e. g. in the
development of disease-specific therapies.

The presented approach leads to a problem that scales
linearly with the number of constraints with respect to
which an inner approximation is searched for. This might
lead to an intractable problem if the number of constraints
is large. As a remedy, the inner approximation can be
refined by considering new or additional constraints or
measurements in a recursive manner.
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