
Implementation Aspects of Model Predictive Control for Embedded Systems

Pablo Zometa, Markus Kögel, Timm Faulwasser, and Rolf Findeisen

Abstract— In this paper we discuss implementation related
aspects of model predictive control schemes on embedded
platforms. Exemplarily, we focus on fast gradient methods
and present results from an implementation on an embedded
low-cost ARM processor. We show that input quantization
happening in actuators should be taken into account in order
to determine the suboptimality level of the online optimization.
Furthermore, we present results which allow the off-line de-
termination of the online memory demand of the fast-gradient
MPC algorithm on the embedded system. As a case study we
consider a Segway-like robot, modeled by an LTI-system with
8 states and 2 inputs subject to box input constraints. The test
system runs with a sampling period of 4 ms and uses MPC
horizons up to 20 steps in a hard real-time system with limited
CPU time and memory.

Index Terms— model predictive control, embedded systems,
real-time implementation, Fast Gradient method, LEGO NXT

I. INTRODUCTION

Model Predictive Control (MPC) has a long and successful
history in the chemical industry, where it is used to control
high-performance processes with slow dynamics [1]. One
of the main strengths of MPC is its ability to deal with
input, output and state constraints as well as with multi-input
multi-output systems in a systematic way. One of its main
drawbacks is that high computational demands are typically
associated with it, which makes real-time implementations
challenging. The continuous development of more efficient
MPC algorithms continues to reduce these demands. How-
ever, it is still challenging to implement MPC on embed-
ded platforms that control fast mechatronic systems with
sampling times in range of miliseconds. These challenges
arise because embedded platforms are typically based on
processors with clock frequencies in the MHz range and
memories in the range of kB.

MPC is built upon the repetitive solution of an optimal
control problem (OCP). In case of linear, time-invariant,
discrete-time systems with affine input and state constraints
and a quadratic cost function, the OCP is equivalent to a
quadratic program (QP). The OCP arising in MPC can be
solved using off-line or online methods. The former approach
(known as explicit MPC [2]) is particularly fast for small
systems, but has a much larger memory footprint than the
latter (especially for medium and large size problems), since
the explicit solution needs to be stored in a table or tree,
which become very large for larger problems. An online

P.Z., M.K., T.F. and R.F. are with the Institute for Automation Engineer-
ing, OvG University Magdeburg, Germany. M.K. and T.F. are also with
the International Max Planck Research School for Analysis, Design and
Optimization in Chemical and Biochemical Process Engineering, Magde-
burg, Germany e-mail: {pablo.zometa, markus.koegel, timm.faulwasser,
rolf.findeisen}@ovgu.de.

MPC scheme with a good balance between computational
speed and memory demand is the Fast Gradient method
(FGM) which was presented in [3]. It is based on Nesterov’s
gradient method [4]. In [3] an upper bound for the maximum
number of iterations needed to ensure a pre-defined accuracy
is provided, and the computational complexity is shown to be
quadratic with respect to the horizon length and the number
of inputs. In [5], the method is implemented on a high
performance digital signal processor to control a simulated
plant, where FGM performs better than explicit MPC. In [6],
the structure of the MPC problem is exploited to derive an
algorithm with computational and memory demands linearly
increasing with the horizon length and the number of inputs.
A simulation example shows that it is of advantage for large
horizon lengths.

In this work we focus on the implementation aspects
of FGM-based MPC on embedded systems. In constrast to
previous works on FGM-based MPC [3], [5], [6] we present
results from an implementation on a real system, using a
hard real-time operating system (RTOS), and a low-cost 32-
bit 48-MHz embedded microcontroller. We stabilize a system
with 8 states and 2 inputs using horizon lengths of up to 20
steps with sampling times of 4 ms. In addition, we derive
a relation to determine off-line the memory demand of the
algorithm. For the considered example the memory required
is in the order of kilobytes even for long horizons. Moreover,
we propose the use of the input quantization taking place
in the system actuators to determine the suboptimality level
of the approximate QP solution, instead of using an ad-hoc
value based on the MPC cost function. Furthermore, we show
with several Monte Carlo experiments that the theoretical
upper bound for the number of iterations is a factor two
to three higher than the number observed in practice. We
implement the algorithm using fixed-point and floating-point
arithmetics, and show that even in the former case the
error is less than one quantization level of the inputs. Note
that we focus on outlining the challenges and solutions for
implementing MPC on limited embedded platforms. Explicit
stability and robustness guarantees are beyond the scope of
this paper.

The structure of this paper is as follows. Section II intro-
duces the system to be controlled, and briefly describes the
microcontroller and the RTOS used. In Section III we briefly
recall the Fast Gradient method in the context of MPC,
and we present an alternative way to select the maximum
number of iterations based on the hardware. In Section IV
we present the analysis of the computational requirements
of the implementation. Finally, in Section V we state our
conclusions.



II. TEST SYSTEM

The system to be controlled is a Segway-like mobile robot.
Our goal is to use MPC to stabilize a two-wheel vehicle at
an unstable equilibrium point, see Figure 1.

We use a popular educational system (Lego mindstorm
NXT) as test platform. The electronic system (called Brick)
contains an ARM-based microcontroller. Two DC motors
are used as actuators, one gyroscope and two incremental
encoders (one for each motor) are used as sensors. Each
wheel is described by three states: wheel rotation angle,
wheel angular speed, and the integration of the wheel rotation
angle. We add this last state to improve the performance of
the system. Two additional states are the body tilt, and the
body angular speed. Using this information, we model our
system as linear time-invariant with 8 states, 2 inputs and 3
outputs. The system is shown in Figure 1. The gravity vector
is represented by g. The input to the system is the pulse-
width modulated (PWM) voltage applied to the motors in
percentage (−100 ≤ upwm ≤ 100), and the measured values
are the θ̇body and θmotor = θwheel − θbody . See Appendix I
for the continuous-time system matrices. We discretized our
system using a zero-order hold discretization on the inputs.

Part of our work is based on [7]. The mechanical construc-
tion is identical. We rely on the same model structure, but
use a different set of parameters. The states are estimated by
discrete integration and differentiation of the measurements,
as done in [7]. The fastest component in our system are
the DC motors, with time constant of around 50 ms. The
gyroscopic sensor delivers a new measurement about every
3 ms. We set 4 ms as our sampling period, and our goal is to
solve the resulting OCP in MPC in hard real-time. A video
of the controlled system can be found in [8].

Embedded hardware

The NXT Brick uses an Atmel AT91SAM7S256 micro-
controller which includes an ARM7TDMI processor core, 64
kB RAM, and 256 kB flash memory. The clock frequency
is 48 MHz. ARM-based processors are general purpose 32-
bit reduced instruction set computer (RISC). An ARM7
processor has a 32-bit integer arithmetic logic unit, but lacks
a floating-point unit (FPU). Floating point operations are
therefore emulated by software. ARM7TDMI provides two
instruction sets: ARM and Thumb. We only use the former
(the standard 32-bit instruction set), as the latter did not bring
any advandtage in this application.

Embedded software

To deploy the MPC algorithm (presented in Section III)
in hard real-time, we use the open-source nxtOSEK real-
time operating system (RTOS) [9]. nxtOSEK is based on the
OSEK-VDX open specification for embedded RTOS (stan-
dard ISO 17356) [10]. nxtOSEK allows us to develop real-
time applications written in C for the NXT, using different
task scheduling policies with timer resolutions down to 1
ms. We use a rate-monotonic scheduler with 3 tasks: outputs,
inputs, and controller. We can guarantee that all the tasks are
executed within the specified deadline if CPU utilisation is

(a)

front

θbody
θmotor

θwheel

x=0

g

upwm

(b)

Fig. 1. The test platform: a two-wheeled vehicle constructed using the
LEGO NXT hardware, see also [7].

kept under η = m(21/m−1) ≈ 0.78, with m = 3 tasks [11].
This is a worst case sufficient, but not necessary, condition.
The whole RTOS and the application code are first cross-
compiled in a standard PC, then downloaded into the flash
memory. During runtime, they both (the RTOS and the user
application) are copied from flash into RAM. This means,
that although we have 256 kB of flash available, we are
limited by RAM to 64 kB of memory. The MPC controller is
implemented in plain C. We do not rely on external libraries
(such as BLAS/ATLAS), nor include assembler code. We
perform matrix-vector multiplication using a naive approach.

III. MPC FOR EMBEDDED SYSTEMS

The plant is a linear, time-invariant, discrete-time system
with hard input constraints and no state constraints (see
Appendix I). The system is described by

x+ =Ax +Bu, (1)
y =Cx,

where x ∈ Rn, u ∈ Rp, and y ∈ Rq are the state, input, and
output vector at the current sampling time, respectively. x+ is
the successor state. The matrices have their typical meaning
and the proper dimensions. The system is assumed to be
stabilizable, which is easily verifiable for the considered test
system.

The inputs are subject to the following box constraints

U = l[i] ≤ u[i] ≤ r[i],∀ i = 1, ..., p, (2)

where U is a closed, convex set containing the origin. The
performance index is a quadratic function of the form

V (x,u) =
1

2
xTNPxN +

N−1∑
j=0

(
1

2
xTj Qxj +

1

2
uTj Ruj) (3)

where the integer N ≥ 1 is the prediction horizon, the
matrices Q ∈ Rn×n, R ∈ Rp×p, and P ∈ Rn×n are the
state, input, and final state weighting matrix, respectively.
They are chosen such that Q=QT ≥ 0, R = RT > 0, and
P =PT ≥0. The sequences x = {x0, ..., xN} is the state and
u = {u0, ...,uN−1} is the control sequence. The elements
of x and u need to satisfy the system dynamics (1), and the



elements of satisfy (2), such that u ∈ U = {uj ∈ U , ∀j =
0, . . . , N − 1}. The OCP that needs to be solved in MPC at
each sampling time becomes

min
u
V (x,u), (4)

subject to (1), u ∈ U , and x0 = x.
The MPC controller aims to bring the state of the system to

the origin x = 0 by penalising deviations through the control
sequence u. Under the conditions that N is large enough
[12], (A,B) is stabilizable, and (A,Q

1
2 ) is detectable, choos-

ing the matrix P as the solution of the Ricatti algebraic
equation, we obtain a controller that is stabilizing [13]. The
optimal control sequence that minimizes V and satisfies the
input constraints is denoted by u∗. Usually, only the first
element from the sequence u∗ is used as input to the system
at sampling time k (i.e. u = u∗0). For an in-depth description
of MPC see [1].

OCP (4) for system (1) with input constraints (2) can be
expressed in condensed form as the following QP

min
u∈U

J(x,u) = min
u∈U

1

2
uTHu + uTFx. (5)

The constant matrices F ∈ RNp×n and H=HT ∈ RNp×Np
(the Hessian of J) depend on the system (1) and the
performance index (3) (for a detailed description on how
to compute these matrices see [14]). MPC solves the QP
problem at every sampling time with a new x.

Solution of the OCP using the Fast Gradient method

Next we briefly recall the FGM (which is also called
Nesterov’s gradient method [4], [15]) and its application to
MPC [3], [6]. Our aim is to employ this method to solve (5)
in hard realtime. To simplify notation, we denote J(x,u) as
J(u).

Generally speaking gradient methods are recursive algo-
rithms that base their solution on the fact that, in the case of
unconstrained minimization, ∇J(u∗) = 0, i.e., the gradient
of J is zero at the minimum of J . Convergence is then
guaranteed if J(u) is strictly convex and the value of the cost
function decreases in the next iteration, i.e. J(ui+1) < J(ui).
Often one starts an algorithm for a gradient method with an
initial guess u0, and stops it after imax iterations, such that

ε ≥ J(uimax)− J(u∗), (6)

where ε > 0 is the suboptimality level, and uimax is called an
ε-suboptimal point. In general, imax depends on the initial
guess and is unknown when the algorithm starts. As it will
become clear later, a theoretical bound for imax can be found
by performing a convergence analysis on the FGM.

The cost function in (5) has two important properties: it
is strongly convex and its gradient is Lipschitz continuous.
Strong convexity implies

J(uimax)− J(u∗) ≥ 1

2
µ‖uimax − u∗‖22. (7)

Furthermore, under the conditions Q ≥ 0 and R > 0, the
convexity parameter µ > 0 and the Lipschitz constant L >

0 are given by the minimum and maximum eigenvalues of
H , respectively. These two constants are key in finding the
solution of the QP (5) via the FGM.

The algorithm of the FGM starts computing the gradient
of J at a point w, which is the initial guess for u∗, as follows

∇J(w) = Hw + Fx. (8a)

Next an unconstrained gradient step is performed

v(w) = w− 1

L
∇J(w). (8b)

Input constraints are considered by the projection of v onto
the set of admissible solutions

PU (v(w)) = argmin
q∈U
‖q− v(w)‖22. (8c)

PU (·) is called the projected gradient step. If the input is
subject to box constraints this projection is efficiently done
by saturating v. In that case we have

PU (v(w)) =z,

zj [i] =

 l[i] if vj [i] < l[i]
r[i] if vj [i] > r[i]
vj [i] otherwise

(8d)

i = 1, . . . , p, j = 0, . . . , N − 1.

The iterative process of the FGM to find an ε-suboptimal
point uimax is

ui =PU
(
v(wi−1)

)
(8e)

wi =ui + c(ui − ui−1) (8f)
i =1, . . . , imax,

where c ≥ 0 is a constant defined as

c =

√
L−√µ
√
L+
√
µ
, (8g)

see [15], and w0 = u0 is our initial guess for u∗. The
computation of wi in (8f) at iteration i can be understood as
the computation of a suitable initial guess for next iteration.
The FGM (8) is summarized in Algorithm 1.

An upper bound imax, for the number of iterations that
guarantee (6) is given in [15]. In the case of cold-starting
imax is given by

imax =min

{⌈
ln 2ε− ln(L+µ)d2

ln(1−
√

µ
L )

⌉
,

⌈√
2(L+µ)d2

ε
− 2

⌉}
,

(9)

where d·e denotes rounding up to the next integer and
the cold start initial guess is u0

j [i] = (r[i] + l[i])/2, i =
1, . . . , p, j = 0, . . . , N − 1. For box constraints the constant
d is

d2 = N

p∑
i=1

(
r[i]− l[i]

2

)2

.

Refer to [3] for details on computing an imax for the warm-
start strategy.



Algorithm 1 Fast Gradient Method
Require: state x, initial guess u0,

and the scalar constants imax, L, c, the constant vectors
l, r, and the constant matrices H , F .
set w = u0

for i = 1→ imax do
compute ui = PU (v(w))
compute w = ui + c(ui − ui−1)

end for
return ui

Numerical analysis

In the previous subsection we pointed out that for the
FGM we can determine the maximum number of itera-
tions imax that guarantee an ε-suboptimal solution. It is
important to note that imax can be determined off-line.
Next we discuss how to make a choice of ε that takes
into account the numerical errors in the CPU computations
and the quantization happening in the system actuators. In
a practical environment, this choise might deliver a good
trade-off between acceptable solutions and low number of
iterations.

In Fig. 2, we represent the three main sources of numerical
error in the generation of an optimal input to the system.
Roughly speaking, first the FGM introduces a truncation
error, as defined in (6). Afterwards, the central processing
unit (CPU) of our digital computer calculates a numeric
approximation of the FGM (round-off error). Finally, the
digital-to-analogue converter (DAC) of the system actuator
rounds the CPU solution (quantization).

At the mathematical level, where numbers are represented
exactly, we first introduce a truncation error as defined in
(6). This error is caused by the algorithm used to solve (5)
and not by the computational platform. We define an upper
bound on the error of the ε-suboptimal solutions as

δ ≥ ‖uimax − u∗‖∞ ≥ ‖uimax
0 − u∗0‖∞. (10)

From (6), (7), and ‖uimax−u∗‖2 ≥ ‖uimax−u∗‖∞, relation
(10) holds if

ε ≤ 1

2
µδ2. (11)

This means that, if we can find a reasonable value for δ, we
can use it to select a value for ε that might also be reasonable.
We will see that finding such δ is for many practical cases
straightforward.

The truncation error is introduced by the FGM in Fig.
2. We denote ‖uimax

0 − u∗0‖∞ = max |uimax
0 [i]− u∗0[i]|, i=

1, . . . , p, simply as |u − u∗|, and the corresponding lower
and upper bounds as l and r, respectively. An additional
numerical error stems from the execution of the algorithm
in a machine with limited numerical precision (represented
in Fig. 2 by the box CPU). The FGM might also increase
the error if inexact gradient information is used (see [16]).
Formally the CPU process is represented by a function C :
u 7→ u, u ∈ C. The set of machine numbers C depends

J(u∗)

δ≥|u−u∗|

u u û

FGM

C:u7→u D:u7→û
CPU DAC

M
imax(δ)

γ=|u−u| |û−u∗|≤δ+β+γ

Fig. 2. Propagation of numeric errors

on the numeric representation (fixed point, floating point,
etc.) and the number of bits it uses. The accumulation of
rounding errors after imax iterations is represented by γ =
|u−u|, where γ ∈ R . Finding an upper bound for γ requires
an extensive analysis of the algorithm and the computing
platform, which is beyond the scope of this work.

The next block in Fig. 2 is the DAC, placed between the
CPU and the actuator M. The actual physical analogue output
is not of interest here. We consider a linear DAC, which is
commonly found in practice. We loosely use the term DAC to
refer to other technologies which rely on quantization and for
which this analysis holds (e.g. a pulse-width modulator). The
DAC can be represented as a scalar quantisation function D :
C → D that rounds a number u in the CPU representation,
to the nearest number û in the DAC set D = {û ∈ U | û =
sρ(r− l)+ l}, where ρ = 2−B is the DAC resolution, B ∈ Z
is the number of bits of the DAC, s ∈ Z, 0 ≤ s < 2B is the
digital value to be converted, and r− l is the analogue range
of the converter. The absolute rounding error for the DAC is

β =
1

2
(r − l)ρ ≥ |u− û|, (12)

which implies that even if u = u∗, the input applied to
the system will be û = u∗ ± β. Equivalently, we can write
|û − u∗| ≤ |u − u∗| + β. On the one hand, if we consider
the ideal case in which γ = 0, and we set δ = β, the choice
(11) guarantees that the difference between the value applied
to the system û and the solution u∗ is not greater than one
quantization level 2β of the DAC. On the other hand, in a
realistic scenario with a stable algorithm, a well-conditioned
problem, and a DAC with much lower numeric precision
than that of the CPU, we have β � γ. In that scenario,
requiring δ = β and (11) the relation |û−u∗| ≤ 2β provides
a good approximation of the overall error. Clearly the overall
tolerable error, and therefore the actual choice of ε, depends
on several requirements and side constraints: stability of the
system, performance, and available CPU time. Issues related
to stability are subject of future work.

IV. EXPERIMENTAL DATA

So far we have discussed how to choose the maximum
number of iterations imax based on the numerical properties
of the FGM, the CPU implementation of the algorithm and
quantization at the input of the actuators. However, imple-
menting an MPC scheme on an embedded platform usually
also implies that one has to fulfill rather strict requirements
in terms of computation time as well as in terms of memory
demand.

Computational requirements and complexity

The online computation of the Fast Gradient algorithm
does not require arithmetic division, nor matrix-matrix mul-



0 5 10 15
0

2

4

6

8

Horizon length

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
]

ARM − floating point

0 5 10 15
0

0.5

1

1.5

Horizon length

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
]

ARM − fixed point

Fig. 3. Computation time vs. horizon length, for number of iterations
imax = 0 (◦), imax = 1 (�), and imax = 2 (4). From top to bottom:
floating-point arithmetic, fixed-point arithmetic using ARM instruction set.

tiplications. The term Fx in (8a) is constant, so it needs
to be computed only once per evaluation of the MPC. The
computational complexity for this operation is O(Npn). The
main computational burden comes from the term Hw, which
has complexity O((Np)2) and needs to be computed imax
times per sample. Figure 3 shows the relation between the
computation time required to solve the QP problem and the
horizon length for different numeric representations. imax =
0 represents the computation of Fx alone. The depicted
results correspond to the average of 100 computations.

The CPU utilization of the inputs and outputs RT tasks
can be neglected. From our CPU utilization limit η ≈ 78%,
we can safely assume that we can meet our RT deadlines if
we compute the controller task (the FGM) in less than 3 ms.
As illustrated in Fig. 3 the floating-point operations show
a linear increase of computational time with respect to the
number of iterations (i.e. timax

≈ timax=0+ imax(timax=1−
timax=0)). We use this property to extrapolate the data for
imax ≥ 3. The fixed-point computations do not follow this
trend precisely, however we extrapolate in a similar way to
cautiously make some remarks later in this section.

Memory requirements

As explained in Section II, we only have 64kB of memory
available for the implementation of our MPC controller.
In general, it is difficult to know beforehand how much
memory is available for user data due to different factors
(compiler flags, RTOS memory management, the code itself,
etc.). We have empirically determined that around 16kB of
RAM are available for user data (volatile and non-volatile).
Therefore, we determine the amount of memory required for
the variables of the FGM, which is a function of the number
of states n, number of inputs p, horizon length N , and the
number of bytes required to represent a number b. Algorithm
1 can be logically split in two memory blocks: the variables
computed off-line (F and H), and the variables computed
online (mainly the output of the algorithm uimax ). To store
the off-line variables H ∈ RNp×Np (not taking into account

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Horizon length

i m
a

x

ARM − floating point

 

 

δ = 0.5, Eq.

δ = 0.5, M.C.

δ = 0.02, Eq.

δ = 0.02, M.C.

Fig. 4. Theoretical vs. Practical maximum number of iterations imax.
The theoretical bounds were computed using eq. (9) and are denoted in
the legend as ’Eq.’. The practical ones were estimated with a Monte Carlo
experiment, and are denoted as M.C.

the symmetry of H), and F ∈ RNp×n we need in bytes
bA = (Np+ n)Npb.

The memory required for the online computations depends
on how the program has been written. We introduce an
integer a to represent the number of variables needed to store
intermediate computations. In our particular implementation,
we need to allocate space for ui, ui+1, w, Fx, u0, and a
auxiliary variables (all of them are arrays with Np elements
of size b bytes). Therefore for the online computations we
need in bytes bB = (5 + a)Npb. We use single precision
floating-point numbers or 32-bit fixed-point numbers, which
implies b = 4 in both cases. To compute the algorithm in
C we require a = 2 auxiliary variables to store intermediate
computations. For our test system we empirically determined
the FGM with a horizon lengths of at most N = 28 fits into
the available free memory.

Numerical convergence

In Section III, we proposed using the numerical precision
of the DAC to set the maximum number of iterations of
the FGM. In our case we have a PWM with range 200%
and β = 0.5% (which corresponds to ρ = 2−8 with the
binary range only partially used). We additionally consider
a different scenario of practical relevance: we assume our
system has ρ = 2−12, which for the same range corresponds
to β ≈ 0.02%. We computed imax using (9) for the two
values of ρ, with δ = β and ε = 1

2µδ
2. Furthermore, we

run an off-line Monte Carlo experiment for each ε that stops
iterating once the required ε is reached. We use 1 × 106

uniformly distributed random states vectors x for different
horizon lengths. In Fig. 4, we show the maximum imax
for each Monte Carlo experiment together with the values
predicted by (9) for different horizons.

Table I is based on extrapolated data from Fig. 3 and Fig.
4. We see that a Monte-Carlo-based number of iterations
increases the maximum real-time feasible horizon length by
50% (worst case). The use of warm-starting can further
decrease imax in many applications. Furthermore, for the
case of N = 20 we required around 8 kB of memory. The
main drawback of fixed-point arithmetic is lower numeric



TABLE I
REAL-TIME FEASIBLE HORIZON LENGTHS

Precision Arithmetic Nmax Eq. (9) Nmax M.C.
δ = 0.5 fixed point 12 20
δ = 0.5 floating point 6 12
δ = 0.02 fixed point 10 15
δ = 0.02 floating point 4 7

precision compared to single or double precision floating-
point arithmetic. The Hessian computed using the matrices in
Appendix I has a small condition number, which allows the
use of low precision numerics. The notation Q15.16 repre-
sents 32-bit binary fixed point arithmetic, with 15 integer bits
plus 1 sign bit and 16-bit fractional bits. We computed the
difference between the solution computed by the algorithm
using Q15.16 arithmetic and the double precision arithmetic
solution (computed in Matlab) (γ ≈ |udouble − ufixed|).
Using 1 × 106 random state vectors for N = 5, 10, 15, 20
and the corresponding imax = 2, 3, 3, 4 in Fig. 4, for a
δ = β = 0.02, γ was below 0.25β in all cases. The
assumption β � γ does not hold in this case, and implies
|û− u∗| ≤ δ + β + γ ≈ 2.25β.

Results and Discussion

So far we have found the computational and memory
demands as well as the numerical characteristics of an
FGM based MPC implemtation on a low-cost embedded
processor. As result we see that even for a problem with
8 states, 2 inputs, and a horizon length of 20 steps the
solution is computed efficiently on a low-cost platform. We
employed a hard real-time 4-milisecond deadline and an
48-MHz microcontroller based on the ARM7 architecture.
Furthermore, the algorithm shows good numerical properties.
It converges to a solution using 32-bit fixed-point arithmetic
with 16 fractional bits with a small numeric error (below one
quantization level of the DAC).

The theoretical upper bound for the number of iterations
required to find a solution within a specified precision might
be too high for very restricted embedded computers. In such
cases, a heuristic upper bound should be used. We propose
choosing the suboptimality level based on the hardware
characteristics of the system actuators, instead of choosing
it arbitrarily based on the value of the cost function or
based on the performance of a simulation. The latter case
can be misleading, and can predict an excessive number of
iterations. We provided a relation to exactly compute the
memory required for storing the FGM variables. The case
with N = 20 required around 8 kB of memory.

V. CONCLUSIONS

We discussed the implementation related aspects of MPC
on embedded systems relying on a case study of an MPC
scheme based on a Fast Gradient method. We propose to not
only account for the properties of the employed algorithm
but also the for the CPU round-off error as well as for
the quantization happening in the system actuators. Relying

on this, a maximum number of iterations of practical use
can be chosen for the optimization algorithm. Additionally,
one can conclude from the considered case study that the
memory as well as the computational demand of an MPC
implementation are decisive for real-time use on low-cost
embedded systems.

Furthermore we have shown by means of a real system
implementation that the FGM is well suited for use on low-
cost embedded platforms because it is both memory and
computationally efficient even for long horizons. We used
the fact that the FGM allows the off-line determination of
the maximum number of iterations to run the MPC scheme in
hard real time. Future work will focus on the stability issues
related to numerical errors as well as on a comparison with
other online MPC schemes based on different optimization
algorithms.

APPENDIX I
SYSTEM MATRICES

We developed a continuous-time model for our system
ẋc = Acxc +Bcuc, yc = Cxc. A zero-order hold discretisa-
tion on the inputs was used to get the system in (1).

Ac =


0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 40 −12 12 0 0 0 0
0 40 3.5 −7 0 0 3.5 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 40 0 12 0 0 −12 0
0 0 0 0 0 1 0 0

 ,
BTc =

[
0 0 1.6 −0.45 0 0 0 0
0 0 0 −0.45 0 0 1.6 0

]
, Cc =

[
1 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −1 0 0 0 1 0 0

]
.

xTc = [ θw1 θb θ̇w1 θ̇b θiw1 θw2 θ̇w2 θiw2 ] ,

uTc = [ upwm1 upwm2 ] , yTc = [ θm1 θ̇b θm2 ] ,

with the notation w: wheel, b: body, i: integration, m:
motor, 1: left, 2: right (refer to Fig. 1). For example, θw1

refers to the rotation angle of the left wheel. The weighting
matrices in (3) are

Q = diag([ 1 6×105 1 400 250 1 1 250 ]), R = diag([ 500 500 ]),

P is selected as the discrete-time infinite horizon solution of
the Ricatti equation associated to these matrices.

REFERENCES

[1] J. Rawlings and D. Mayne, Model predictive control: Theory and
design. Nob Hill Pub., 2009.

[2] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems* 1,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[3] S. Richter, C. Jones, and M. Morari, “Real-time input-constrained
MPC using fast gradient methods,” in Proceedings of the 48th IEEE
Conference on Decision and Control and the 28th Chinese Control
Conference, CDC/CCC. IEEE, 2009, pp. 7387–7393.

[4] Y. Nesterov, “A method of solving a convex programming problem
with convergence rate O (1/k2),” in Soviet Mathematics Doklady,
vol. 27, no. 2, 1983, pp. 372–376.

[5] S. Richter, S. Mariethoz, and M. Morari, “High-speed online MPC
based on a fast gradient method applied to power converter control,”
in American Control Conference (ACC), 2010, pp. 4737–4743.

[6] M. Kögel and R. Findeisen, “A fast gradient method for embedded
linear predictive control,” in Proceedings of the 18th IFAC World
Congress, 2011.



[7] Y. Yamamoto, “NXTway-GS Model-Based Design-Control of self-
balancing two-wheeled robot built with LEGO Mindstorms NXT,”
www.pages.drexel.edu/.../NXTway-GS%20Model-Based Design.pdf,
2008.

[8] “Fast embedded MPC on Lego NXT,” http://ifatwww.et.uni-
magdeburg.de/syst/about us/people/zometa/, last accessed 09/2011.

[9] “nxtOSEK/JSP ANSI C/C++ with OSEK/ITRON RTOS for LEGO
MINDSTORMS NXT,” http://lejos-osek.sourceforge.net/, last ac-
cessed 09/2011.

[10] “OSEK VDX Portal,” http://portal.osek-vdx.org/.
[11] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming

in a hard-real-time environment,” Journal of the ACM (JACM), vol. 20,
no. 1, pp. 46–61, 1973.

[12] J. Primbs and V. Nevistic, “Constrained finite receding horizon linear
quadratic control,” in Proceedings of the 36th IEEE Conference on
Decision and Control, vol. 4, 1997, pp. 3196–3201.

[13] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, pp.
789–814, 2000.

[14] J. Maciejowski, Predictive control: with constraints. Pearson educa-
tion, 2002.

[15] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Kluwer Academic Publishers, 2004.

[16] O. Devolder, F. Glineur, and Y. Nesterov, “First-order Methods of
Smooth Convex Optimization with Inexact Oracle,” Available online
at http://www.optimization-online.org.


