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Warning: muAO-MPC is on an early alpha-stage development. Some functionality is still quite fragile. See
the list of Known issues for details.

Warning: This document is still a work in progress. If you find errors, or have any comments, please contact
Pablo Zometa at pablo.zometaQovgu.de.
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CHAPTER
ONE

INTRODUCTION

1.1 What is muAO-MPC?

HAO-MPC is a code and data generation tool for model predictive control. uAO-MPC is free software released
under the terms of the GNU general public license version 3 (GPLv3).

HAO-MPC mainly consists of the muaompc Python package.

1.1.1 The muaompc package

This package automatically generates self-contained C-code specific for a model predictive control (MPC) prob-
lem. The generated code consist of C-code for the problem, and C-code for data corresponding to that problem.
The problem, as well as the data, are specified by the user in two separate text files using a high-level description
language. The generated C-code is a ready-to-use fast MPC implementation.

The generated C code is fully compatible with the ISO C89/C90 standard, and is platform independent. The code
can be directly used in embedded applications, using popular platforms like Arduino, and Raspberry Pi, or any
other application on which C/C++ code is accepted, like many current generation programable logic controllers
(PLC). Additionally, MATLAB/Simulink interfaces to the generated code are provided.

At the moment, we consider the following types of systems:

* linear discrete-time sytems (the 1dt module)

1.1.2 The Idt module

This module creates a model predictive control (MPC) controller for a linear discrete-time (Idf) system with
input and (optionally) state constraints, and a convex cost function. The MPC problem is reformulated as a
condensed convex mathematical program, which can be solved using off-the-shelf optimization algorithms, or the
ones included in muaompc.

1.2 Installation

1.2.1 Dependencies

The following packages are required:
 Python interpreter. This code has been fully tested with Python versions 3.2.3, 3.4.3 and Python 2.7.3, 2.7.6.

e NumPy, tested with versions 1.6.2, 1.10.4. It basically manages the linear algebra operations, and some
extra features are used.

* SciPy, tested with versions 0.10. It is used for some tiny features are used.

» PyParsing, tested with versions 2.1.4. It is used for parsing the problem.



http://www.arduino.cc/
https://www.raspberrypi.org/
http://www.python.org/download/releases/
http://www.numpy.org
http://www.scipy.org
http://pyparsing.wikispaces.com

muAO-MPC Documentation, Release 1.0.0-alpha-20160805

* A C89/C90 compiler. To compile the generated code, a C/C++ compiler that supports C89/C90 or later
standards is required.

Optional packages are:

¢ Cython to compile the Python interface to the generated C-code.

1.2.2 Building and installing

muaompc installation is made directly from source code.

Install from source in Linux and Mac OS X

Linux and OS X users typically have all required (and most optional) packages already installed. To install
muaompc, switch to the directory where you unpacked muaompc (you should find a file called setup.py in

that directory) and in a terminal type:

‘python setup.py install --user —-force

The ——user option indicates that no administrator privileges are required. The ——force option will overwritte
old files from previous installations (if any). Alternatively, for a global installation, type:

’sudo python setup.py install —--force

And that is all about installing the package. The rest of this document will show you how to use it.

Install from source in Windows Systems

For Windows users, we recommend installing the Anaconda platform, as it contains all of the necessary python
packages.

For a full installation of muaompc do the following:
* Install Anaconda.

e Open an Ananconda Prompt, switch to the directory where you unpacked muaompc (the one contain-
ing the file setup.py), and type:

’ python setup.py install --force

1.3 About the developers

HAO-MPC has been developed at the Laboratory for System Theory and Automatic Control, Institute for Au-
tomation Engineering, Otto-von-Guericke University Magdeburg, Germany. The main authors are Pablo Zometa,
Markus Kogel and Rolf Findeisen. Additional contributions were made by Sankar Datta, Sebastian Horl, and Yurii
Pavlovskyi.

If you have some comment, suggestions, bug reports, etc. please contact Pablo Zometa at
pablo.zometaQovgu.de.

1.4 Changelog

* Version 1.0.0-alpha
— Initial alpha release. (2016.07.18)

— Fix bug in data generation for problems with more than one parameter (2016.08.05)

1.3. About the developers 3


http://cython.org/
http://ifatwww.et.uni-magdeburg.de/syst/mpctool/#download
https://www.continuum.io/downloads#_windows
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1.4.1 Known issues

As an early alpha release, there are several things that are stil fragile, namely:
 Version 1.0.0-alpha

— The parsing capabilities are very limited. Only the most common cases are at the moment supported
(see the examples)

— The Python interface to the generated code is still not nearly as polished as the MATLAB interface.
— The SIMULINK interface is still missing.

1.4. Changelog 4



CHAPTER
TWO

TUTORIAL

In this chapter we present a very simple step-by-step tutorial, which highlights the main features of muaompc.
We start with an overview of the code generation process followed by a tutorial using a simple example.

2.1 Code generation at a glance

The MPC problem description is written in a file called the problem file. The data file for a specific problem is
given in a different text file called the data file.

After writing these files, the next step is to actually auto-generate the C code. This is done in two easy steps:
1. create an mpc object from the problem file.
2. generate code for the data using the newly created mpc object and the data file.

The first step will automatically generate the C-code for the problem. The second step will generate code for the
data for two cases: static memory allocation and dynamic memory allocation. In the first case, the data consists
on several C files that statically allocate memory and need to be compiled. In the second case, a single data file in
json format is written. This data contained in the json file that can be dynamically loaded. The first case (C-code)
is useful for deployment in embedded systems, whereas the second case (json file) allows more flexibility during
simulation (no need to compile the data).

2.2 A basic MPC problem

The code generation described in this section basically consist of the following steps:
1. write the problem file with the MPC problem description,
2. write a data file corresponding to the problem,
3. create a muaompc object out of that problem, and
4. create data from that object based on the data file.

The simplest problem that can be setup with the 1dt module is an input constrained problem. The code for
this example can be found inside the futorial directory muaompc_root /examples/ldt/tutorial, where
muaompc_root is the path to the root directory where muaompc sources were extracted.

2.2.1 The MPC setup description

Consider the following setup. The plant to be controlled is described by the prediction model 27 = Az + Bu,
where € R", and v € R™ are the current state and input vector, respectively. The state at the next sampling
time is denoted by . The discrete-time system and input matrices are denoted as A and B, respectively.

The inputs are constrained to be in a box set C,, = {u | u_lb < u < u_ub}.
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The MPC setup is thus as follows:

N—1
minimize > il + llwllz) + llzn 17
i=0
subjectto x;41 = Ax; + Bu;, i=0,--- , N —1
u lb<wu; <u_ub, 1=0,---,N—1
To =212
where the integer NV > 2 is the prediction horizon. The symmetric matrices ), R, and P are the state, input, and

final state weighting matrices, respectively. The vector Z represents the system state at the current sampling time,
which is given online as a parameter to the optimization problem.

The optimization variable u € RM™ is defined as the sequence u = {ug uy ... uy_1}. Similarly, we define the
(auxiliary) state sequence x = {zp 1 ... xn}, withx € RWV+n

2.2.2 The MPC problem file

The MPC setup can be rather intuitively described in the problem file. In your favorite text editor write the
following:

variable u[0:N-1] (m);

auxs x[0:N] (n);

parameters x_bar(n);

minimize sum(quad(x[i],Q)+quad(ul[i], R), i=0:N-1)+quad(x[N],P);
subject to x[i+1l] = Axx[i]+B*u[i], 1i=0:N-1;

u_lb <= ul[i] <= u_ub, i=0:N-1;

x[0]=x_bar;

Save the file as myprb.prb. The resemblance of this file to the mathematical description should be apparent.
Let us make a few remarks about the notation.

The problem description is based on sequences, which are defined using the format v [a:Db] (m), where v is the
name of the sequence, m is the length of each vector in the sequence, and a and b denote the index of the first and
last element of the sequence. To refer to the element i of this sequence, we use the notation v [1]. In the case
that a sequence consist of a single element, only the vector length need to be specified, i.e. v (m) . To refer to this
vector no indexing is required in later parts of the problem specification, i.e. it suffices to write v.

The variable keyword identifies the optimization variable. The parameters keyword identify sequences
that are to be specified online. The keyword auxs is used to specify the dimensions of the sequence x.

The keyword minimi ze identifies the text following it as the cost function to be minimized. Several special key-
words are accepted, for example the sum (h[1], i=a:b) denotes the summation of the real valued functions
h; fori=a,..., b. The keyword quad (v, M) denotes the quadratic form ||v||3,.

As seen in problem file, the equality and inequality constraints follow after the keyword subject to. The
constraints optionally accept an index variable and its range. For example, the prediction model is written as
x[1+1] = Axx[i] + B*u[i], 1=0:N-1.

With the problem file already finished, we can now write the data file.

2.2.3 The MPC data file

The data file must contain the numerical values for the matrices, vectors, and scalars found in the problem file.
Values for the sequences defined by the keywords variable, parameters and aux are not required. Thus, in
our example, values for u, x_bar, and x do not need to be specified. The following elements need to be specified:
the matrices Q, R, P, A, B, the vectors u__1b, u_ub, and the scalars N, m, n.

The matrices are specified using MATLAB syntax. For example, an identity matrix I € R?*?2 could be written in
the following ways:

2.2. A basic MPC problem 6
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Without going into further details, let us write data file. In your favourite text editor write:

weighting matrices
= [1, 0; 0, 1]
= [1]
= [1, 0; 0, 1]
system matrices
= [1., 0.01; 0., 0.9]
= [1.e-04; 0.02]
input constraints
_1b = [-100]
_ub = [100]
dimensions
=5
=2
=1

835 Z s c C s WP s YO %

Save this file as mydat . dat. The matrices A and B represent the discrete time model of a DC-motor. The state
vector is given by x = [x1 25]T € R™, where 1 and x5 are the rotor position and angular speed, respectively.
The input is constrained to be between -100% and 100%.

For this example, we chose the weighting matrices to be identity matrices of appropriate size,i.e. P=Q =1 €
R™ " ‘and R = 1. Clearly, the value of dimension of the state and input vector are n = 2 and m = 1. The horizon
length is specified as steps through the parameter N = 5.

2.2.4 Generating the C-code

Now that we have written the myprb . prb problem file, we proceed to create an mpc object. In the directory
containing myprb . prb, launch your Python interpreter and in it type:

from muaompc import 1dt

mpc = 1ldt.setup_mpc_problem('myprb.prb')

This will generate code specific for the problem described by myprb . prb. By itself, the code we just generated
is very not useful. It only contains and abstract description of an MPC problem without any data. The next step is
to generate code for data that can be used with the problem code for myprb.prb we just generated. To generate
code that represents the data in mydat . dat, continue typing in your Python interpreter:

ldt .generate_mpc_data (mpc, 'mydat.dat')

And that’s it! If everything went allright, you should now see inside current directory a new folder called
myprb_mpc. As an alternative to typing the above code, you can execute the file main.py found in the fu-
torial directory, which contains exactly that code. The tutorial directory already contains the files myprb.prb
and mydat . dat. In the next section, you will learn how to use the generated C code.

Tip: If the code generation was not succesful, try passing the verbose=True input parameter to the function
setup_mpc_problem. It will print extra information about the code generation procedure. For example:

mpc = ldt.setup_mpc_problem (’'myprb’, verbose=True)

Tip: By default, the generated code uses double precision float (64-bit) for all computations. You can specify a
different numeric representation via the input parameter numeric of the function setup_mpc_problem. For
example, to use single precision (32-bit) floating point numbers type:

mpc = ldt.setup_mpc_problem ('myprb.prb’, numeric=’float32’)

2.2. A basic MPC problem 7
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2.2.5 Using the generated code
In the folder myprb_mpc you will find all the automatically generated code for the current example. To use the
generated code in a control loop, the following steps are to be followed:
1. setup a MPC controller
configure the optimization algorithm
set the parameters for the MPC controller
solve the MPC problem

apply the control input

SAE U T

repeat from step 3

We now proceed to exemplify the use of the generated code from steps 1 to 5. We start our tutorial using the
MATLAB interface, as it is simpler to explain. Later we show how it is done in pure C.

Note: The Python interface to the generated C-code will be available in future releases.

Using the generated code in MATLAB

The MATLAB interface makes it possible to directly make of the generated code and data (i.e. the MPC controller)
from within MATLAB.

Once the code has been generated, the next step is to compile the MATLAB interface.

Start MATLAB, and switch to the folder myprb_mpc/src/matlab. In the MATLAB console type mpcmake,
which will execute the mpcmake.m script. The last step is to add the matlab directory to the PATH
environment in MATLAB. For example, assuming the MATLAB current directory is the tutorial directory
muaompc_root/examples/1ldt/tutorial, in the MATLAB console type:

cd myprb_mpc/src/matlab
mpcmake

cd ..

addpath matlab

Now you can use the interface which is encapsulated in a class called mpcct 1 which represents the MPC con-
troller. Simply declare an instance of that class, which we usually call ctl (controller). The input parameter
for the constructor of the class is the name of a json file contaning the generated data. muaompc by default
saves the data in the folder myprb_mpc/data/mydat. In our example, the generated json data file is called
mpcmydat . json. Continue typing in the console:

ctl = mpcctl ('myprb_mpc/data/mydat/mpcmydat. json');

The next step is to configure the optimization algorithm. In this case, we have an input constrained problem. The
only parameter to configure is the number of iterations of the algorithm (see section Tuning for details). For this
simple case, let’s set it to 10 iterations:

ctl.conf.in_iter = 10;

Let us assume that the current state is Z = [0.1 — 0.5]7. The controller object has a field for the parameters
defined in the problem file. The parameter x_bar can be set as follows:

’ctl.parameters.x_bar = [0.1; -0.5];

We can finally solve our MPC problem for this state by calling:

’ctl.solve_problem();

The solution is stored in an array ct1.u_opt, whose first m elements are commonly applied to the controlled
plant. The complete MATLAB example can be found in the tutorial folder under main . m.

2.2. A basic MPC problem 8
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Using the generated code in C

The folder myprb_mpc/data/mydat already contains a template for a main file, called mpcmydatmain. c.
Switch to the the folder mydat and open mpcmydatmain. c in your favourite editor. This template file shows
how to solve an MPC problem using dynamic or static memory allocation. This file might look at bit daunting at
first, but it just a template you can modify to fit your needs.

In the current directory you will find two main files with just the basics, that are based on the template file. The
file mpcmydatmain_dynmem. c exemplifies how the dynamic memory allocation is done in C code. The file
mpcmydatmain_staticmem. c exemplifies the how the static memory allocation version of the data can be
used. Both files follow the same structure as the MATLAB tutorial above.

Let us take the file mpcmydatmain_staticmem. c as example.
The first thing to include is the header file of the library called mpcctl.h.

We need to have access to some of the algorithm’s variables, for example the MPC system input, the param-
eters, and the algorithm settings. This is done through the fields of the struct mpc_ctl structure, which
we denote the controller structure. We first create an instance of this controller structure, and we set the con-
troller by passing a pointer to the structure to the function mpcmydat_ctl_setup_ctl, which is found in
mpcmydatctldata.h. For example, after including the corresponding headers, in the body of the main func-
tion we type:

struct mpc_ctl ctlst; /* Structure for static memory allocation =/
struct mpc_ctl xctl; /x pointer to the an allocated structure */

ctl = &ctlst;
mpcmydat_ctl_setup_ctl (ctl);

Once we controller is setup, we can continue in a similar fashion to the MATLAB case, that is first we setup the
parameters, then we configure the algorithm, solver the problem:

ctl->parameters—>x_bar[0] 0.1;
ctl->parameters—->x_bar[1] -0.5;
ctl->solver->conf->in_iter = 10;
mpc_ctl_solve_problem(ctl);

Finally, the computed control input is found in the array ct 1->u_opt.

Note: At the moment the user needs to know the length of the different arrays in the controller structure. This
information can be infered by the user from the problem and data files. The length of the different arrays will be
available in the controller structure in future releases.

To run an compile this code do the following. Copy the file mpcmydatmain_staticmem.c into
the folder myprb_mpc/data/mydat and remove the main template file mpcmydatmain.c found in
myprb_mpc/data/mydat (otherwise you will end up with two main functions in two different files, and
the compilation will fail). In that folder you will also find example Makefiles, called mpcmydatMakefile. *,
which compiles the generated code. The Makefile mpcmydatMakefile.mk compiles the code using the GNU
Compiler Collection (gcc). Adapt the Makefile to your compiler if necessary.

For example, to generate, compile and run the code in Linux you would type in a console:

cd muaompc_root/examples/ldt/tutorial # the tutorial folder

python main.py # generates code and data

cp mpcmydatmain_staticmem.c myprb_mpc/data/mydat # the tutorial main file
cd myprb_mpc/data/mydat

rm mpcmydatmain.c # remove template main file

make —f mpcmydatMakefile.mk # compile

./main # run the controller

If everything went okay, you will see the output:

2.2. A basic MPC problem 9
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ctl->u_opt[0] = 3.056814e-02

This concludes our tutorial!

2.3 Where to go next

In the folder muaompc_root/examples/1dt/ you will find further examples.

2.3. Where to go next 10



CHAPTER
THREE

TUNING

3.1 Basics of tuning

There are only two tuning parameters for the default optimization algorithm used by pAO-MPC: the number
of internal and external iterations. We find that in many cases the tuning procedure is easy and intuitive. For
problems without state constraints, only the number of internal iterations is of importance. These parameters are
specified online.

At the moment, the selection of these parameters is made entirely by the user. In many embedded systems, the
number of iterations may be limited by the processor computational power. More generally, the user may need
to compare the MPC controller performance given by the solution of an exact solver (like CVXOPT) against that
given by the solution of pAO-MPC for a given number of iterations. For example, the comparison could be made
using the stage cost at each point of a given trajectory (see /[ZKF13]). In the end, the precise number of iterations
strongly depends on the application.

3.2 The penalty parameter

An optional third tuning value is the penalty parameter i, which is selected off-line (i.e. specified in the data
file). tAO-MPC will by default automatically compute a good value for p if none is specified (recommended).
Roughly speaking, a large penalty parameter implies that a low number of external iterations are required to reach
good performance, especially when state constraints are active. However, more internal iterations are necessary,
because the condition number of the internal problem increases. The opposite is also true, a small ; makes the
internal problem easier to solve, especially if no state constraints are active. When the state constraint are active,
however, the required number of external iterations is higher.

By now it should be clear that the selection of an appropriate value of u (not too low, not too high) is crucial.

Although in general not recommended, pAO-MPC allows experienced users to explicitely set a value
for p in the data file. The selection of the penalty parameter p is easily done via the function
find_penalty_parameters in the 1dt module. For example, using the the problem and data files from
the tutorial:

from muaompc import 1dt
res = 1ldt.find_penalty_parameters ('myprb.prb', 'mydat.dat')

res is a dictionary that contains the keys params and condnums. In this case, each of them is a list consisting
of a single element. For params, it is the value of i used by default, and for condnums is the condition number
for the algorithm corresponding to that parameter. Thus, to get default value of u type:

’mu = res|['params'][0]

The default value of the penalty parameter is one that is not too high but not too low. By using the parameter
factors, several values of multiples of the default ; can be tried at once:

‘res = 1dt.find_penalty_parameters ('myprb.prb', 'mydat.dat', factors=[1l, 4])

11
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Now, res will contain the two penalty parameters with their corresponding condition number. For example, by
typing:

mu = res|['params'][0]
mud = res|['params'][1]
cnd = res|['condnums'][1]

we get in mu the default value for i (i.e. p * 1), and mu4 has the value p * 4, corresponding to the second factor
in the list given as input via factors. This may help to check that the parameter mu4 does not make the value
of cn4 too high (i.e. the internal problem is ill-conditioned).

Once you have found a new value of mu that better suit your needs, you need to include that information in your
data file. For example, if the new value of the penalty parameter is 123, modify the mydat .dat data file by
adding the line:

[mu = 123

Save the data file, and generate the data again as explained in the Section Code generation at a glance .

3.2. The penalty parameter 12
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