OTTO VON GUERICKE

UNIVERSITAT

MAGDEBURG

MUAO-MPC Documentation
Release 0.4.0

P. Zometa, M. Kogel, R. Findeisen

Institute for Automation Engineering
Chair for Systems Theory and Automatic Control

Apr 27, 2016



CONTENTS

1 Introduction

[.1  Whatis muAO-MPC? . . . . . e 1
1.2 Installation . . . . . . . . L L e e e e e e e 2
1.3 Aboutthedevelopers . . . . . . . . . . e e 3
1.4 Changelog . . . . . . . . 3
2 Tutorial 5
2.1 AshortPython tutorial . . . . . . . . . . .. 5
2.2 Abasic MPCoproblem . . . . . . . . . . . . e e e e e e 6
2.3 Amore complex MPC problem . . . . . . . . . . .. . e e 10
24 Where to 2o next? . . . . . . e e e e e e e e 13
3 MPC Controllers 14
3.1  Creating MPC controllers . . . . . . . . . . o 0 i e e e e e e e e 14
32 Using MPCcontrollers . . . . . . . . . . . o e e 17
4 Extra features 21
4.1 AsimulationclassinPython . . . . . . . . .. L L e 21
42 TUNING . . . oL e e e e e e e e e e e e e e 22
4.3  Automatic selection of stabilizing matrices . . . . . . . .. ... Lo o 24
44 MATLAB/Simulink interface . . . . . . . . . . . . . e 25
5 References 28
Bibliography 29
Index 30




CHAPTER
ONE

INTRODUCTION

1.1 What is muAO-MPC?

HAO-MPC stands for microcontroller applications online model predictive control. It mainly consists of the
muaompc Python package. The generated C code is fully compatible with the ISO C89/C90 standard, and
is platform independent. The code can be directly used in embedded applications, using popular platforms like
Arduino, and Raspberry, or any other application on which C/C++ code is accepted, like many current genera-
tion programable logic controllers (PLC). Additionally, MATLAB/Simulink interfaces to the generated code are
provided.

HAO-MPC is free software released under the terms of the three-clause BSD License.

1.1.1 The Itidt module

This module creates a model predictive control (MPC) controller for a linear time-invariant (/¢i) discrete-time
(dr) system with input and (optionally) state constraints, and a quadratic cost function. The MPC problem is
reformulated as a condensed convex quadratic program, which is solved using an augmented Lagrangian method
together with Nesterov’s gradient method, as described in [KZF 2], [KF11].

The MPC problem description is written in a file we call the system module (see The system module for details).
After writing this file, the next step is to actually auto-generate the C code. This is done in two easy steps:

1. create an muaompc object from to the system module, and

2. write the C-code based on that object.

The MPC setup

The plant to be controlled is described by 27 = Agx + Bgu, where z € C, € R™, and u € C, C R™ are
the current state and input vector, respectively. The the state at the next sampling time is denoted by xz+. The
discrete-time system and input matrices are denoted as A4 and By, respectively.

The MPC setup is as follows:

=2
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where the integer N > 2 is the prediction horizon. The symmetric matrices ), R, and P are the state, input,
and final state weighting matrices, respectively. The inputs are constrained by a box set, defined by the lower and
upper bound wu_Ib and u_ub, respectively. Furthermore, the state and input vectors are also constrained (mixed
constraints), using K, and K,, and delimited by the lower and upper bounds e_Ib and e_ub € RY, respectively.
Additionally, the terminal state needs to satisfy some constraints defined by f_Ib, f_ub € R", and the matrix F'.

The sequences z_ref and u_ref denote the state and input references, respectively. They are specified online.
By default, the reference is the origin.

For other setups, check out version 1.x of muaompc.

1.2 Installation

1.2.1 Dependencies

The following packages are required:
 Python interpreter. This code has been fully tested with Python versions 3.2.3, 3.4.3 and Python 2.7.3, 2.7.6.

e NumPy, tested with versions 1.6.2, 1.10.4. It basically manages the linear algebra operations, and some
extra features are used.

* A C89/C90 compiler. To compile the generated code, a C/C++ compiler that supports C89/C90 or later
standards is required.

Optionally, to get a few more features, the following are required:

e A C99 compiler. To compile the Python interface to the C code a compiler that supports variable length
arrays is needed. Any compiler that supports the C99 standard should work. This excludes old versions
of Microsoft Visual C++ Express Edition (it does not support C99, and thus will not work). The recently
released Microsoft Visual Studio 2015 added C99 support. We have extensively used GCC, tested with
version 4.6, and 4.8. GCC is a popular compiler that supports the C89/C90 and C99 standards of the C
programming language. A GCC port for Windows is MinGW.

» SciPy, version 0.11 or greater is strongly recommended. It is required for several features.
e Slycot. It is used to compute stabilizing matrices.

» matplotlib. It is required in some examples to plot results.

1.2.2 Building and installing

muaompc installation is made directly from source code.

Install from source in Linux and Mac OS X

Linux and OS X users typically have all required (and most optional) packages already installed. To install
muaompc, switch to the directory where you unpacked muaompc (you should find a file called setup.py in
that directory) and in a terminal type:

‘python setup.py install --user —-—-force

The ——user option indicates that no administrator privileges are required. The ——force option will overwritte
old files from previous installations (if any). Alternatively, for a global installation, type:

’sudo python setup.py install —--force

And that is all about installing the package. The rest of this document will show you how to use it.

1.2. Installation 2
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Install from source in Windows Systems

As Windows systems do not contain the required packages by default, we encourage you to install the toolbox
under Linux or OS X, if you have the option. If Windows is preferred, we recommend installing the Anaconda
platform, as it contains all of the necessary python packages.

If you have no prior experience with installing the software relying on C extensions under Windows, we advice to
try an installation of the muaompc toolbox without the Python interface (see below).

For a full installation of muaompc do the following:
¢ Install a C99 compiler, for example Visual Studio 2015 Community Edition or MinGW.
¢ Install Anaconda. Make sure Anaconda is properly configured to use your chosen compiler.

* Open an Ananconda Prompt, switch to the directory where you unpacked muaompc (the one contain-
ing the file setup.py), and type:

python setup.py install —-force ‘

If you prefer to install muaompc without a Python interface to the C code, it is enough to install Anaconda (no
Visual Studio or other compiler needed) and follow the instructions from the following section.

Install without Python interface (no compilation option)

For all operating systems (Linux, Windows, OS X)), if a C99 compiler is not available, or a Python interface to the
C code is not needed, (i.e. you just want to generate C code to use in a microcontroller, other C/C++ application,
or for the MATLAB interface) muaompc can be installed without the Python interface as follows:

e Switch to the directory where you unpacked muaompc (it contains the files setup.py and
install.cfq).

* Deactivate the Python interface by modifying the configuration file install.cfg:
replace {"interface": 1} with {"interface": 0} and save the file.

* Continue the installation of the toolbox as shown above, e.g. for Windows open an Ananconda Prompt,
switch to the muaompc directory and type:

python setup.py install —--force

1.3 About the developers

HAO-MPC has been developed at the Laboratory for System Theory and Automatic Control, Institute for Au-
tomation Engineering, Otto-von-Guericke University Magdeburg, Germany. The main authors are Pablo Zometa,
Markus Kogel and Rolf Findeisen. Additional contributions were made by Sebastian Horl and Yurii Pavlovskyi.

If you have some comment, suggestions, bug reports, etc. please contact Pablo Zometa at
pablo.zometaQovgu.de.

1.4 Changelog

¢ Version 0.4.0

Remove the need to specify reference vector that are not required (in C code)

Simplify installation by optionally not requiring a compiler

Improve compatiblity of integer typedefs

Add option to generate code in a single directory

1.3. About the developers 3
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— Add Arduino example
* Version 0.3.2

— Fix warm starting of Lagrange multipliers

— Fix simulation for input constraint examples
* Version 0.3.1

— Fix a bug computing the terminal weight matrix with ‘auto’ keyword
* Version 0.3.0

— Improved documentation (more examples and docstrings)

— Fully check the correctness of the MPC setup

— Improve the "auto" keyword error messages

— Penalty parameter is now optional

— Check that the generated QP is strictly convex

— Add the simulation class

— Several bug fixes

— Some code clean up
* Version 0.2.1

— Slight overall improvements

— Improved documentation (e.g. more examples)

— Improved Windows installation (support MSVC++ compiler)
* Version 0.2.0

— Initial release.

1.4. Changelog 4



CHAPTER
TWO

TUTORIAL

In this chapter we present a very simple step-by-step tutorial, which highlights the main features of muaompc.
We consider two examples for the 1t idt module. The tutorials for this module consider two types of MPC
problems:

1. a small system with input constraints only, and
2. alarger system with mixed constraints.

The former helps understand the automatic code generation procedure. The latter show some of the most common
features of the muaompc package.

Before we proceed with the muaompc tutorials, we give a brief tutorial of the Python skills required to write the
system module.

2.1 A short Python tutorial

Note: If you are already familiar with Python, you can skip this section. All you need to know is that the matrices
describing the MPC setup can be entered as a list of lists, or as 2-dimensional NumPy arrays or NumPy matrices.

Although Python knowledge is not required to use this tool, there are a few things that users not familiar with
Python should know before going into next sections:

1. white spaces count,

2. Python lists help build matrices,

3. NumPy provides some MATLAB-like functionality, and
4. array indices start at 0.

A detailed explanation of each item follows.

2.1.1 White spaces

When writing the system module in the following sections, make sure there are no white spaces (tabs, spaces, etc.)
at the beginning of each line.

2.1.2 Python lists

Python lists are simply a collection of objects separated by commas within squared brackets. Matrices and vectors
are entered as a list of numeric lists. For example, a 2x2 identity matrix is entered as:

I =101, 01, [0, 1]]

whereas a 2x1 column vector is entered as:
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c = [[5], [5]]

Strictly speaking, I and c are not really matrices, but they are internally converted to such by the 1t idt module.

2.1.3 NumPy

At the top of the systerm module, you can write:

‘from numpy import =«

This makes available some functions similar to MATLAB. Of interest are diag, eye, zeros, ones. For
example, a 2x2 identity matrix can also be entered as:

[T = eye(2)

or:

\1 = diag([1, 1])

The zeros and ones commands have a special notation, as they require the size of the matrix as a list. For
example, the ¢ column vector from above can be written for example as:

\c = 5 « ones([2, 11)

2.1.4 Indexing

Finally, a few remark on indexing. We could also create the 2x2 identity matrix as follows:

I = zeros([2, 2])
I[0, 0] =1
I[(1, 1] =1

Note that indexing starts at 0. Slicing rules are similar to those of MATLAB.

2.1.5 More information

For more details see the Python tutorial, and the NumPy for MATLAB users tutorial.

2.2 A basic MPC problem

The code generation described in this section basically consist of the following steps:
1. write the system module with the MPC problem description,
2. create a muaompc object out of that problem, and

3. write the C-code from that object.

2.2.1 The MPC problem description

The simplest problem that can be setup with the 1t idt module is an input constrained problem. The code for this
example can be found inside the tutorial directory muaompc_root /muaompc/_ltidt/tutorial, where
muaompc_root is the path to the root directory where muaompc sources were extracted.

2.2. A basic MPC problem 6
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The system description

We consider as system a DC-motor, which can be modeled as:

1
Y= T(KU—Z))

where T is the time constant in seconds, and K is amplification factor. The continuous-time state-space represen-
tation £ = A.x + B.u is given by the following matrices:

&:P ﬂ,&zﬁ}
0 —7 T

with the state vector x = [z xQ]T, where z; and x» are the rotor position and angular speed, respectively. The
input is the PWM voltage, which is the percentage of the full-scale voltage applied to the motor. It is therefore
constrained to be between -100% and 100%. This constraint can be written as —100 < u < 100.

As the continuous-time system should be controlled by the MPC digital controller, a suitable discretization time
must be chosen. A rule of thumb is to choose the discretization time as one-tenth of the system’s time constant. In

. _ T
this case, dt = i

Note: to discretize a system, SciPy needs to be installed.

The controller parameters

The horizon length is specified as steps through the parameter /N. In this case we choose the value N = 10.
The additional parameters for the controller are the weighting matrices. They are usually chosen via a tuning
procedure. For this example, we set them to be identity matrices of appropriate size, i.e. Q = I € R?*2, and
R = 1. Additionally we set P as "auto", which will compute it as a stabilizing matrix.

Note: to use the “auto” feature, Slycot needs to be installed.

The system module

We have now the required information to write the Python system module. The only requirements are that it should
contain valid Python syntax, the name of the matrices should be as described in section The system module, and
the file name should end with (the extension) .py. In your favorite text editor, type the following (note that in
Python tabs and spaces at the beginning of a line do matter, see A short Python tutorial):

T =20.1
K= 0.2
dt = T / 10
N = 10

# continuous time system
Ac = [[O0, 11, [0, -1/T]]
Bc = [[0], [K/TI]]

# input constraints

u_1lb [[-1001]

u_ub = [[100]]

# weighting matrices

= [ri, 01, 10, 171
[[1]]

= "auto"

U X O
Il

Save the file as sys_motor.py.

2.2.2 Generating the C-code

Now that we have written the sys_motor.py module, we proceed to create an mpc object. In the directory
containing sys_motor . py, launch your Python interpreter and in it type:

2.2. A basic MPC problem 7
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import muaompc

mpc = muaompc.ltidt.setup_mpc_problem("sys_motor™)
mpc.generate_c_files ()

And that’s it! If everything went allright, you should now see inside current directory a new directory called
cmpc. As an alternative to typing the above code, you can execute the file main_motor.py found in the
tutorial directory, which contains exactly that code. The tutorial directory already contains the sys_motor.py
example. In the next section, you will learn how to use the generated C code.

Tip: If the code generation was not succesful, try passing the verbose=True input parameter to the function
setup_mpc_problem. It will print extra information about the code generation procedure. For example:

mpc = muaompc.ltidt.setup_mpc_problem("sys_motor", verbose=True)

Tip: By default, the generated code uses double precision float (64-bit) for all computations. You can specify a
different numeric representation via the input parameter numeric of the function generate_c_files. For
example, to use single precision (32-bit) floating point numbers type:

mpc.generate_c_files (numeric="float32")

2.2.3 Using the generated C-code

In the cmpc directory you will find all the automatically generated code for the current example. Included is also
an example Makefile, which compiles the generated code into a library using the GNU Compiler Collection
(gcc). Adapt the Makefile to your compiler if necessary.

We now proceed to make use of the generated code. Let’s create a main_motor.c in the current direc-
tory (i.e. one level above the cmpc directory). The first thing to include is the header file of the library,
which is found under cmpc/include/mpc.h. Before we continue, there are a few things to note first.
The mpc.h header makes available to the programmer some helpful constants, for example: MPC_STATES
is the number of states, MPC_INPUTS is the number of inputs (all the available constants are found in
cmpc/include/mpc_const . h). This helps us easily define all variables with the appropriate size. Addition-
ally, cmpc/include/mpc_base.h includes the type definition real_t, which is the type for all numeric
operations of the algorithm. It is then easy to switch the numerical type of the entire algorithm (for example,
from single precision floating-point to double precision). For this example, it is by default set to double precision
floating point (64-bit). With this in mind, we can declare a state vector as real_t x[MPC_STATES]; inside
our main function.

We need to have access to some of the algorithm’s variables, for example the MPC system input and the algorithm
settings. This is done through the fields of the st ruct mpc_ctl structure (declared in mpc_base.h). An
instance of this structure has been automatically defined and named ct 1. To access it in our program, we need to
declare it inside our main function as extern struct mpc_ctl ctl;.

The next step is to configure the algorithm. In this case, we have an input constrained case. The only parameter to
configure is the number of iterations of the algorithm. For this simple case, let’s set it to 10 iterations, by setting
ctl.conf->in_iter = 10; (See section Basics of tuning for details).

Let us assume that the current state is # = [0.1 — 0.5]7. We can finally solve our MPC problem for
this state by calling mpc_ctl_solve_problem(&ctl, x);. The solution is stored in an array of size
MPC_HOR_INPUTS (the horizon length times the number of inputs) pointed by ct 1 .u_opt. We can get access
to its first element using array notation, e.g. ct1.u_opt [0]. The complete example code looks like:

#include <stdio.h> /x printf =+/
#include "cmpc/include/mpc.h" /* the auto-generated code */

/* This file is a test of the C routines of the ALM+FGM MPC
* algorithm. The same routines can be used in real systems.

2.2. A basic MPC problem 8
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*/

int main (void)

{
real_t x[MPC_STATES]; /* current state of the system «/
extern struct mpc_ctl ctl; /+ already defined «/

ctl.conf->in_iter = 10; /* number of iterations =*/

/+ The current state =*/
x[0] = 0.1;
x[1] = -0.5;

/* Solve MPC problem and print the first element of input sequence »*/
mpc_ctl_solve_problem(&ctl, x); /* solve the MPC problem */

printf ("ul[0] = \n", ctl.u_opt[0]);

printf ("\n SUCCESS! \n");

return 0;

}

In the tutorial directory you will find, among others, amain_motor. c file with the code above, together with a
Makefile. Compile the code by typing make motor (you might need to modify the provided Makefile or
create your own). If compilation was successful, you should see a new executable file called motor. If you run
it, the word SUCCESS! should be visible at the end of the text displayed in the console.

Warning: Everytime you auto generate the C files, the whole cmpc directory is deleted. For precaution, DO
NOT save in this directory any important file.

2.2.4 Testing with Python
The Python interface presents the user with almost the same functionality as the generated code. However,
Python’s simpler syntax and powerful scientific libraries makes it an excellent platform for prototyping.

Let’s compare it to the pure C implementation. Just like in the C tutorial, change to the tuforial directory, launch
your Python interpreter, and in it type:

import muaompc
import numpy as np

mpc = muaompc.ltidt.setup_mpc_problem("sys_motor™)

The mpc object contains many methods and data structures that will help you test your controller before imple-
menting it in C. We’ve already learned about the method generate_c_files. The Python interface to the
MPC controller will be set up automatically when you access the ct 1 attribute of your mpc object, without the
need to compile anything. Thus, we can do exactly the same as in the C-code above with a simpler Python syntax.
Continue typing in the Python interpreter the following:

ctl = mpc.ctl
ctl.conf.in_iter = 10

x = np.matrix([[0.1], [-0.511)
ctl.solve_problem(x)

print (ctl.u_opt[0])

print ("SUCCESS!")

Compare with the C code above.

2.2. A basic MPC problem 9
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2.3 A more complex MPC problem

In this section we consider a more elaborated example. However, the procedure to follow is the same: describe
the problem, generate C-code from it, and finally use the generated code.

2.3.1 The MPC problem Description
We now consider a problem that presents many of the features available in the 1t idt module. The code for this

example can be found inside the tutorial directory muaompc_root /muaompc/_ltidt/tutorial, where
muaompc_root is the path to the root directory of muaompc.

The system description

The system considered is the Cessna Citation 500 aircraft presented in (/M02], p.64). A continuous-time linear
model is given by £ = A.x + B.u,y = Cz, where

. 1.3822 8 0.;)8 8 o 8.3 . 8 (1) 8 (1)
¢ —5.4293 0 —1.8366 0|’ ¢ 17|’ _1982 1282 0 0 ’
—128.2 128.2 0 0 0

and the state vector is given by z = [z1 5 23 x4]T, where:

e 17 is the angle of attack (rad),

* x4 is the pitch angle (rad),

 xg3 is the pitch angle rate (rad/s), and

e x4 is the altitude (m).
The only input w4 is the elevator angle (rad). The outputs are y1 = 9, Y3 = T4, and y3 = —128.2x1 4 128.2z9

is the altitude rate (m/s)
The system is subject to the following constraints:
e input constraints —0.262 < u; < 0.262,
¢ slew rate constraint in the input —0.524 < 17 < 0.524
¢ state constraints —0.349 < x5 < 0.349,
* output constraints —30.0 < y3 < 30.0.

To consider the slew rate constraint in the input, we introduce an additional state x5. The sampling interval is
dt = 0.5 s, and the horizon length is N = 10 steps.

The controller parameters

The book [M02] proposes to use identity matrices of appropriate size for the weighting matrices @ and R. We
instead select them diagonal with values that give a similar controller performance and much lower condition
number of the Hessian of the MPC quadratic program (see Conditioning the Hessian), a desirable property for any
numerical algorithm.

The system module

In this case, our system module is called sys_aircraft.py. The system matrices Ac and Bc have been already
discretized, because the slew rate constraint is easier to include in this way. It looks as follows:

2.3. A more complex MPC problem 10
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from numpy import diag # similar effect with: from numpy import x*

dt = 0.5

N = 10

mu = 100

# discrete-time system

Ad = [[ 0.23996015, 0., 0.17871287, 0., 0.1,
-0.37221757, 1., 0.27026411, 0., 0.1,
-0.99008755, 0., 0.13885973, 0., 0.1,
48.93540655, 64.1, 2.39923411, 1., 0.1,

0., 0., 0., 0., 0.11

1 2346445 1,

1.438282237,

4.48282454],

1.799890437,

[1.11

Weighting matrices for a problem with a better condition number
= diag([1014.7, 3.2407, 5674.8, 0.3695, 471.75])
diag([471.65])
=0

# input constraints
eui = 0.262 # rad (15 degrees). Elevator angle.
u_lb = [[-eui]]
u_ub = [[euil]]

# mixed constraints
ex2 = 0.349 # rad/s (20 degrees). Pitch angle constraint.

[
[
[~
[
Bd = [[-
[~
(-
(-

U WO =

ex5 = 0.524 « dt # rad/s * dt input slew rate constraint in discrete time
ey3 = 30.

# bounds

e_1lb = [[-ex2], [-ey3], [-ex5]]

e_ub = [[ex2], [ey3], [ex5]]

# constraint matrices
Kx = [[0O, 1, O, O, O],
[-128.2, 128.2, 0O, O, O],
[0 0., 0., 0., -1.11]
[]
(01,
(111
# terminal state constraints
f_1b = e_1b
f ub = e_ub
F = Kx

Ku = [

Before we continue, let us make a few remarks. We use numpy to help us build the diagonal matrices Q and
R, using the function diag. Finally, compare the name of the variables used in the system module against the
MPC problem described in Section The Itidt module. Additionally, the optional penalty parameter mu has been
selected using the procedure described in Section Basics of tuning. Finally, the weighting matrices Q and R where
transformed from identity matrices to the ones shown above using the functions presented in Section Conditioning
the Hessian.

2.3.2 Generating the C-code

Now that we have written the system module, we proceed to create an instance of a muaompc.ltidt class.
Change to the directory containing the file sys_aircraft.py and in a Python interpreter type:

import muaompc

mpc = muaompc.ltidt.setup_mpc_problem('sys_ aircraft')
mpc.generate_c_files()

If everything went okay, you should now see a new directory called cmpc. Alternatively, switch to the tutorial

2.3. A more complex MPC problem 11
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directory and execute the file called main_aircraft .py, which contains the same Python code as above.

2.3.3 Using the generated C-code

In the cmpc directory you will find the automatically generated code for the current example (if you previously
generated code for the basic tutorial, it will be overwritten). Included is also an example Makefile, which
compiles the generated code into a library using the GNU Compiler Collection (gcc).

The next step is to make use of the generated code. The first part of the main_aircraft.c file found in the
tutorial directory is identical to the first part of the main_motor. c file found in A basic MPC problem.

Algorithm configuration

The next step is to configure the algorithm. In this case, we have a system with input and state constraints. The
only parameters to configure are the number of iterations of the algorithm. The state constrained algorithm is
an augmented Lagrangian method, which means it requires a double iteration loop (an internal and an external
loop). From simulation we determine that 24 internal iterations, and 2 external iterations provide an acceptable
approximation of the MPC problem using the warmstart strategy:

ctl.conf.in_iter = 24; /% number of internal iterations */
ctl.conf.ex_iter = 2; /+ number of external iterations =/
ctl.conf.warmstart = 1; /* automatically warmstart algorithm */

Closed loop simulation

We can finally simulate our system. We start at some state 2 = (0,0,0, —400,0)7, and the controller should
bring the system to the origin. In this case, we simulate for s=40 steps. We solve the problem for the cur-
rent state by calling mpc_ctl_solve_problem(&ctl, x);. The solution is stored in an array of size
MPC_HOR_INPUTS (the number of inputs times the horizon length) pointed by ct 1 .u_opt. We can get access
to its first element using array notation, e.g. ctl.u_opt [0]. The function mpc_predict_next_state
replaces the current state with the successor state. The complete example code looks like:

#include <stdio.h> /x printf =*/
#include "cmpc/include/mpc.h" /+ the auto-generated code */

/+ This file is a test of the C routines of the ALM+FGM MPC
* algorithm. The same routines can be used in real systems.
*/

int main (void)

{

real_t x[MPC_STATES]; /* current state of the system «/
extern struct mpc_ctl ctl; /+ already defined =/

int i; /*» loop iterator =/

int j; /% print state iterator x/

int s = 40; /* number of simulation steps */

ctl.conf->in_iter = 24; /* iterations internal loop =/
ctl.conf->ex_iter = 2; /x iterations external loop */

ctl.conf->warmstart = 1; /* warmstart each iteration =*/

/* The current state */

x[0] = 0.;

x[1] = 0.;

x[2] = 0.;

x[3] = —400.;

x[4] = 0.;

for (i = 0; 1 < s; i++) {

/* Solve and simulate MPC problem =/

2.3. A more complex MPC problem 12
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mpc_ctl_solve_problem(&ctl, x); /* solve the MPC problem «*/
mpc_predict_next_state(&ctl, x);
/* print first element of input sequence and predicted state =/

printf ("\n step: - ", 1);

printf ("ul0] = ;0 ", ctl.u_opt[0]);

for (j = 0; j < MPC_STATES; Jj++) {
printf ("x[5d] = P " 3, x[31)

}
}
printf ("\n SUCCESS! \n");

return 0O;

Running the code

In the current directory, you will find among others, the file main_aircraft.c which contains the code
above, together with a Makefile. Compile the code by typing make aircraft (you might need to edit
your Makefile). If compilation was successful, you should see a new executable file called aircraft. If you
run it, the word SUCCESS! should be visible at the end of the text displayed in the console.

2.3.4 Testing with Python

Let’s try doing the same using the Python interface. As usual, go to the to the futorial directory, launch your
Python interpreter, and in it type:

import muaompc
import numpy as np
mpc = muaompc.ltidt.setup_mpc_problem("sys_ aircraft")
ctl = mpc.ctl
s = 40
ctl.conf.in_iter = 24
ctl.conf.ex_iter = 2
ctl.conf.warmstart = True
n, m = mpc.size.states, mpc.size.inputs
x = np.zeros([n, 11)
x[3] = —-400
for i in range(s):
ctl.solve_problem(x)
X = mpc.sim.predict_next_state(x, ctl.u_opt[:m])
# x = ctl.sys.Ad.dot (x) + ctl.sys.Bd.dot (ctl.u opt[:m]) # predict
print ("step:", i, "- ul[0] =", ctl.u_opt[O], "; x =", x.T)
print ("SUCCESS!")

Compared to the C code above, there are a few things to note. A function similar to
mpc_predict_next_state is available in Python under the object sim (see A simulation class in
Python). This is a convenience function for C and Python that computes exactly what the line marked with #
predict does. Note that in Python and in C the structure ct 1. sys (the system) and many other data structures
are available. The MPC object (not available in C) offers in Python additional data structures. In this example we
used mpc . size, which contains the size of all relevant vectors and matrices. Also note that ct1.sys.Ad and
x are NumPy arrays, therefore the need to use the dot method.

2.4 Where to go next?

Several examples are included in the folder muaompc_root/examples. Detailed explanation of uAO-MPC
functionality are presented in the following chapters.

2.4. Where to go next? 13




CHAPTER
THREE

MPC CONTROLLERS

This chapter deals with the implementation of MPC controllers. This basically consists on generating the code
offline and finding approximate solutions to the MPC optimitization problem online. It explains in detail all the
functions available to the user of uAO-MPC. Note that this chapter is not intended as a introduction or tutorial to
MPC. It rather intends to serve as reference to the software functionality.

3.1 Creating MPC controllers

This section will explain in detail the generation of MPC controllers for a given MPC setup.

3.1.1 The MPC setup

The plant to be controlled is described by 27 = Agx + Bgu, where z € C, € R™, and u € C, C R™ are
the current state and input vector, respectively. The the state at the next sampling time is denoted by xz+. The
discrete-time system and input matrices are denoted as A4 and By, respectively.

The MPC setup is as follows:

| Nl
miniumize 3 ((z; — x_refj)TQ(a:j —x_ref;)+
§=0
(uj —u_ref;)" R(u; —u_ref;))+
%(mN —z_refn) Plxy — r_refn)

subjectto zj41 = Aqx; + Bgu;, j=0,--- ,N -1

u_lb<wu; <u_ub, 7=0,---,N—-1

e lb< Kyr; + Kyu; <e_ub, j=0,--- ,N—1

fA< Fxn < f_ub

o=
where the integer N > 2 is the prediction horizon. The symmetric matrices ), R, and P are the state, input,
and final state weighting matrices, respectively. The inputs are constrained by a box set, defined by the lower and
upper bound wu_Ib and u_ub, respectively. Furthermore, the state and input vectors are also constrained (mixed

constraints), using K, and K, and delimited by the lower and upper bounds e_Ilb and e_ub € RY, respectively.
Additionally, the terminal state needs to satisfy some constraints defined by f_Ib, f_ub € R", and the matrix F'.

The sequences x_ref and u_ref denote the state and input references, respectively. They are specified online.
By default, the reference is the origin.

3.1.2 The system module

The matrices describing the MPC setup are read from the sysfem module. It basically contains the matrices that
describe the MPC setup.

14
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* The system matrices can be given either in discrete or continuous time.
— In the first case, they must be called Ac and Bc, respectively (in this case SciPy is required).
— In the discrete-time case, they must be called Ad and Bd, respectively.
— The zero-order hold discretization time should be specified as dt in both cases.

¢ The state and input weighting matrices (Q and R must be called Q and R, respectively.

* The terminal weight matrix P is called P. It can be declared as "auto", in which case it will be computed
as a stabilizing matrix (the Python package Slycot is required).

* The lower and upper input constraints bounds u_Ilb, u_ub are called u_1b and u_ub, respectively.

* The MPC horizon length N represents steps (not time) and is an integer greater than one called N.
Additionally, for a state constrained problem, the following are required:

* Mixed constraints

— The lower and upper mixed constraints bounds e_Ilb, e_ub € RY should be called e_1b, and e_ub,
respectively.

- K, must be called Kx.

- K, is optional and is called Ku. If not specified (or None), it is set to a zero matrix of appropriate
size.

If any of e_1b, e_ub, or Kx is not specified (or None), then the MPC setup is considered to be without state
constraints.

¢ Terminal state constraints are optional:
— The terminal state bounds f_lb, f_ub € RY, are called £_1b, and £_ub, respectively.
— F, the terminal state constraint matrix, must be called F'.

— If any of F, £_1b, or £_ub is not specified (or None), each of them is set to Kx, e_1b, and e_ub,
respectively.

* The penalty parameter p of the augmented Lagrangian method is optional. If specified, it must be called mu,
and must be a positive real number. If not specified (or None), it is computed automatically (recommended).

All matrices are accepted as Python lists of lists, or as numpy arrays, or numpy matrices. The system module can
also be written as a MATLAB mat file containing the required matrices using the names above.

For example, an input-constrained second-order continuous-time LTI system could be described by the following
system.py Python module:

Ac = [[O0, 11, [-1, -11]
Bc = [[0], [1]]
dt = 0.5

N = 10

Q= [[1, 0], [0, 11]
R = [[1]]

P =20

u_lb = [[-10]]
u_ub = [[10]

3.1.3 Creating a Python MPC object

The following function creates the MPC object for the system module. This function belongs to the 1tidt
module.

1tidt.setup_mpc_problem (system_name, verbose=False)
Create an MPC object from a given system module.

Parameters

3.1. Creating MPC controllers 15
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* system name (a string or a Python module) — a string with the name
of a Python module containing the system description, e.g. for a system.py,
system_name="system", or system_name="system.py". It can also
be the name of a MATLAB mat file. In that case, the file name must end
with the extension .mat, e.g. for a system.mat the parameter is given as
system_name="system.mat"

Alternatively, a Python module can be given as input. For example, if you import
system, then system_name=system.

* verbose (boo1l) —if True, print on-screen information about the problem.
Returns an instance of the appropriate MPC class according to the given system module.

For example, assuming systeml.py and system?2.mat both contain exactly the same MPC setup, we
can write:

import muaompc

mpcx = muaompc.ltidt.setup_mpc_problem("systeml™) # short way
mpcy = muaompc.ltidt.setup_mpc_problem("systeml.py", verbose=True)
mpcz = muaompc.ltidt.setup_mpc_problem("system2.mat") # MATLAB way

# The three objects, mpcx, mpcy, and mpcz contain the same information

Additionally, you can quickly create setups that differ only slighlty between them:

from muaompc.ltidt import setup_mpc_problem
import system

system.N = 10 # set horizon length to 10 steps

mpcx = setup_mpc_problem(system) # system is a module, not a string
system.N = 5 # same setup but with a shorter horizon
mpcy = setup_mpc_problem(system) # mpcx 1s not the same as mpcy

3.1.4 Generating the C code

The following function is available for all MPC objects, and generates C-code from the MPC object data.

_MPCBase.generate_c_files (numeric="float64’, fracbits=None, matlab="False, singledir=False)
Write, in the current path, C code for the current MPC problem.

Parameters

* numeric (string) — indicates the numeric representation of the C variables, valid
strings are:

— "float64": double precision floating point (64 bits)
— "float32": single precision floating point (32 bits)

— "accum": fixed-point data type of the C extension to support embedded processors
(signed 32 bits). Your compiler must support the extension.

- "fip": (EXPERIMENTAL) fixed-point (signed 32 bits).

» fracbits (integer or None)- an integer greater than O that indicates the num-
ber of fractional bits of fixed-point representation. (EXPERIMENTAL) Only required
if numeric is “fip”.

* matlab (bool) - if True, generate code for MATLAB/Simulink interfaces.

* singledir (bool)—if True, all generated code is saved in a single directory. Useful
for example for Arduino microcontrollers.

For example, assuming that system. py contains a valid MPC setup, and we want to generate code appro-
priate for a microcontroller to be programmed via Simulink:

3.1. Creating MPC controllers 16
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import muaompc

mpc = muaompc.ltidt.setup_mpc_problem("system™)
mpc.generate_c_files (numeric="float32", matlab=True)

# you will find the generated C code in the current directory

The next section will show you how to use the generated code.

3.2 Using MPC controllers

As seen in the tutorials, to make basic use of yAO-MPC there’s no need to know too much about MPC theory.
However, to make use of more advanced features, a better understanding of MPC internals is required. This
section will start with some basic theory about MPC and continue with a detailed description of the several ways
HAO-MPC can help solve MPC problems.

3.2.1 Basics of MPC

The MPC setup can be equivalently expressed as a parametric quadratic program (QP), a special type of optimiza-
tion problem. Under certain conditions (which nAO-MPC ensures are always met), the QP is strictly convex. It
basically means that the QP can be efficiently solved applying convex optimizaton theory.

Parametric QP

The QP depends on the current system state and on the reference trajectories, if any. We express our parametric
QP in the following form:

L1
minimize iuTHu + uTg(x, Xpef; Uref)
u

subjectto u<u<u
z(z) < Eu <Z(x)

A MPC controller is based on the repetitive solution of a QP which is parameterized by the current state x, and the
current state and input reference trajectories X, s, U, respectively. In other words, at every sampling time we
find an approximate solution to a different QP. We emphasize the fact that the MPC solution u is only a (rough)
approximation of the exact solution u*. In some applications, even rough approximations may deliver acceptable
controller performance. Exploiting this fact is of extreme importance for embedded applications, which have low
computational resources.

There is another important property to note. Some optimization algorithms require an initial guess to the solution
of the QP. Clearly, a good (bad) guess, i.e. close (far) to the solution, will deliver a good (bad) approximate solution
(all other conditions being equal). This property is used for the controller’s advantage. There are basically two
strategies on how good initial guesses can be computed. One is called cold-start strategy. This means that the
initial guess is always the same for all QP problems. This strategy is mainly used when sudden changes on the state
are expected (e.g. high frequency electrical applications). The other strategy is called warm-start. It means that the
previous MPC approximate solution is used to compute the inital guess for the current QP. In applications where
the state changes slowly with respect to the sampling frequency (e.g. most mechanical systems), two consecutive
QPs arising from the MPC scheme have very similar solutions.

A last thing to note is that g(-) is the only term that depends on the reference trajectories. For the special case of
regulation to the origin (where both references are zero) we will simply write g(x).

3.2.2 Using the Python interface

In this section we describe the two main controller functions available to users of ©AO-MPC. For easier explana-
tion, we will first discuss the Python interface. Later we will discuss the equivalent, albeit slightly more complex,
C functions. The Python interface can be used for prototyping and simulating MPC controllers. The C functions
are the actual controller implementation.

3.2. Using MPC controllers 17
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Solving MPC problems

The most straightforward way to solve the MPC optimization problem is using pAO-MPC*s default QP solver.

ctl.solve_problem(x)
Solve the MPC problem for the given state using the default solver.

Parameters x (numpy array) - the current state. It must be of size states.
This method is an interface to the C code. See its documentation for further details.
This method relies on other fields of the ct 1 structure:
l.conf configuration structure.
2.x_ref state reference trajectory
3.u_ref input reference trajectory
4.u_1ini initial guess for the optimization variable
5.1_ini initial guess for the Lagrange multipliers
6.u_opt approximate solution to the optimization problem
7.1_opt approximate optimal Lagrange multiplier
8.x_trj state trajectory under the current u_opt
conf contains the basic configuration parameters of the optimization algorithm. It consist of the fields:
swarmstart: if True, use a warmstart strategy (default: False)
ein_iter: number of internal iterations (default: 1)

*ex_iter: number of external iterations. If mixed constraints are not present, it should be set to 1.
(default: 1)

x_ref is an array of shape (hor_states, 1), whereas u_ref is an array of shape (hor_inputs, 1).
By default, x_ref and u_ref are zero vectors of appropriate size. In other words, the default case is MPC
regulation to the origin.

u_ini is an array of shape (hor_inputs, 1). 1_ini is an array of shape (hor_mxconstrs, 1).
1_ini is only of interest for problems with mixed constraints. By default, these are also zero. These mainly
need to be set by the user in the case of manually coldstarting the MPC algorithm (conf.warmstart
= False). If conf.warmstart = True, they are automatically computed based on the previous
solution.

u_opt is an array of shape (hor_inputs, 1). 1_opt is an array of shape (hor_mxconstrs,
1). 1_opt is only of interest for problems with mixed constraints. x_trj is an array of shape
(hor_states+states, ).

Usually in an MPC scheme, only the first input vector of the optimal input sequence u_opt is of interest,
i.e. the first input s elements of u_opt.

For example, assuming mpc is an MPC object with only input constraints, and we want all states to be
regulated to 2, starting at states all 3:

mpc.ctl.conf.in_iter = 5 # configuration done only once
mpc.ctl.conf.warmstart = True # use warmstart

mpc.ctl.x_ref = numpy.ones (mpc.ctl.x_ref.shape) * 2

# repeat the following lines for every new state x

X = numpy.ones (mpc.ctl.x_ref.shape) * 3

mpc.ctl.solve_problem(x)

u0 = mpc.ctl.u_opt[:mpc.size.inputs] # Ilst input vector in sequence

3.2. Using MPC controllers 18
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Using a different solver
Optionally, the user can use a different QP solver together with pAO-MPC. This can be used for example for
prototyping MPC algorithms, or for finding exact solutions using standard QP solvers.

ctl.form_gp (x)
Compute the parametric quadratic program data using x as parameter.

Parameters x (numpy array) - the current state. It must be of size states.
This method is an interface to the C code. See its documentation for further details.
This method relies on other fields of the ct 1 structure:
1.x_ref state reference trajectory
2.u_ref input reference trajectory
3.gpx the structure with the created quadratic program data

x_ref is an array of shape (hor_states, 1), whereas u_ref is an array of shape (hor_inputs, 1).
By default, x_ref and u_ref are zero vectors of appropriate size. In other words, the default case is MPC
regulation to the origin.

gpx contains the computed data of the Parametric QP using the given state and references. It consist of the
fields:

*HoL Hessian matrix
*gxoL gradient vector for the current state and references
*u_1b lower bound on the optimization variable
*u_ub upper bound on the optimization variable
*E matrix of state dependent constraints
*zx_1Db lower bound on the state dependent constraints
*zx_ub upper bound on the state dependent constraints
Refer to the MPC description for a precise definition of these fields.

For example, assuming mpc is an MPC object with only input constraints, and we want all states to be
regulated to 2, starting at states all 3:

mpc.ctl.x_ref = numpy.ones (mpc.ctl.x_ref.shape) * 2

# repeat the following lines for every new state x

X = numpy.ones (mpc.ctl.x_ref.shape) * 3

mpc.ctl.form gp (x)

# use mpc.ctl.gpx together with the QP solver of your preference

An example on how to use form_gp together with the QP solver CVXOPT in Python can be found at
examples/ltidt/solver_cvxopt. Additionally, an example on how to use form_gp together with the
QP solver qpOASES in C can be found at examples/ltidt/solver_gpoases.

3.2.3 Using the C implementation

The C functions

The functions available to the user are described in the C API in the mpc.h file. The Python and MATLAB
interfaces offer exactly the same functionality as the C interface, but with a simplified syntax.

For example, the C function void mpc_ctl_solve_problem(struct mpc_ctl *ctl, real_t
x[1) will be called in C as mpc_ctl_solve_problem(&ctl, x), assuming both arguments exist. In
Python it is called as mpc.ctl.solve_problem(x), assuming the MPC Python object was called mpc.
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Similarly, in MATLAB, the same function is called using ct1.solve_problem (x), assuming the MPC con-
troller was called ct 1.

In all cases, the approximate solution u_opt is found inside the ctl structure. For example, in C the first
element of the sequence is accessed via ct 1->u_opt [0], in Python via ct1.u_opt [0], and in MATLAB
viactl.u_opt[1l].

The full C documentation is available as doxygen documentation.
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CHAPTER
FOUR

EXTRA FEATURES

This chapter explains some of the additional functionality that helps create improved MPC controllers.

4.1 A simulation class in Python

This subsection shows how a simulation of the system behavior can be easily done. Any created MPC object
contains an instance of the simulation class MPCSim, which by default is called sim.

4.1.1 One step simulation
The most basic method simply computes the succesor state, i.e. the state at the next sampling time for a given
input.

MPCSim.predict_next_state (xk, uk)
Compute the succesor state xk1 = A*xk + B*uk

Parameters

* xk (numpy array) - the current system state. It must be of size states.

* uk (numpy array) - the input to apply to the system. It must be of size inputs.
Returns the succesor state.
Return type numpy array of size states.

For example, assuming the mpc object exist and x represents the current system state, we can do:

uk = mpc.ctl.u_opt[:mpc.size.inputs, 0] # use only the first input
xkl = mpc.sim.predict_next_state (xk, uk)

4.1.2 Multi-step simulation

An additional method considers regulation to a fixed reference.

MPCSim.regulate_ref (steps, x_ini)
Simulate MPC regulation to a reference point for a number of steps.

Parameters

* steps (int) — number of discret steps to simulate. The period of each step is the
discretization time dt.

* x_ini (numpy array) - initial state where the simulation starts. It must be of size
states.
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Starting at a point x_ini, this function will apply to the discrete time system (sys.Ad, sys.Bd) the
first input vector of the control sequence ct1.u_opt at each time instant for the given number of steps.
The goal of the controller is to stabilize the system at the point specified by ct1.x_refand ctl.u_ref.
The simulation results are stored in the structure sim.data.

For example, assuming mpc is a valid MPC object, and mpc . ct1 has been already configured, we can
simulate the regulation to the origin starting at all states 1 (one) for ' = 10 steps, i.e. from time ¢; = 0, to
tr=(T—1)=dt:

import numpy as np

T = 10

mpc.ctl.x_ref = np.zeros (mpc.size.hor_states)
mpc.ctl.u_ref = np.zeros (mpc.size.hor_inputs)
mpc.sim.regulate_ref (T, np.ones(mpc.size.states))
mpc.sim.data.x # contains the state evolution
mpc.sim.data.u0 # contains the applied inputs

After each run of regulate_ref, the member sim.data will contain the simulation data. It is an instance of
the following class:

class muaompc._ltidt.simula._DataPlot (mpc, steps)
This class contains the simulation data after running regulate_ref.

The available members are described below:

J = None
The value of the cost function at each sampling time.

t = None
The discrete time vector, i.e. the sampling times.

u = None
The input sequence computed by the MPC controller at each sampling time.

u0 = None
The input vector applied to the system at each sampling time.

x = None
The system state vector at each sampling time.

Example

An example that plots the simulation results wusing matplotlib is available under
examples/ltidt/sim _matplotlib.

4.2 Tuning

4.2.1 Basics of tuning

There are only two tuning parameters: the number of internal and external iterations. We find that in many cases
the tuning procedure is easy and intuitive. For problems without state constraints, only the number of internal
iterations is of importance. These parameters are specified online.

At the moment, the selection of these parameters is made entirely by the user. In many embedded systems, the
number of iterations may be limited by the processor computational power. More generally, the user may need
to compare the MPC controller performance given by the solution of an exact solver (like CVXOPT) against that
given by the solution of tAO-MPC for a given number of iterations. For example, the comparison could be made
using the stage cost at each point of a given trajectory (see /ZKF13]). In the end, the precise number of iterations
strongly depends on the application.
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4.2.2 The penalty parameter

An optional third tuning value is the penalty parameter 11, which is selected off-line (i.e. specified in the system
module). pAO-MPC will by default automatically compute a good value for (i if none is specified (recommended).
Roughly speaking, a large penalty parameter implies that a low number of external iterations are required to
reach good performance, especially when constraints are active. However, more internal iterations are necessary,
because the condition number of the internal problem increases. The opposite is also true, a small  makes the
internal problem easier to solve, especially if no state constraints are active. When the state constraint are active,
however, the required number of external iterations is higher.

By now it should be clear that the selection of an appropriate value of 1 (not too low, not too high) is crucial.

Although in general not recommended, pAO-MPC allows experienced users to explicitely set a value for
p in the system module. The selection of the penalty parameter p is easily done via the function
find_penalty_parameter under the tun object. For example, using the aircraft system from the tuto-
rial:

import muaompc
mpc = muaompc.ltidt.setup_mpc_problem('sys_aircraft')
mu = mpc.tun.find_penalty_parameter ()

mu now contains a value of the penalty parameter that is not too high but not too low. This is just an initial value
that may help as starting point for further fine tuning. A function that may come in handy while fine tuning p
is calc_int_cn. It calculates the condition number of the internal problem for a list of penalty parameters.
Continuing with the example:

mpc.tun.calc_int_cn([0.5 % mu, 2 * mu])

will return the condition number for each penalty parameter on the list. This may help to check that the selected
mu does not make the internal problem ill-conditioned. Next section presents a procedure that may help reduce
the condition number of the Hessian of the QP, and therefore, also of the internal problem, allowing the use of
higher values of mu and making the solver faster.

4.2.3 Conditioning the Hessian

The underlying optimization algorithm used by pAO-MPC, greatly benefits from a low condition number (say,
below 100). To achieve this, we provide the function reduce_H_ cn, which basically solves a nonlinear program
(NLP). A description follows.

MPCTuning.reduce_H_cn (xref, uref, stw, inw, cn_ub=100, stwO=None, inwO=None)
Find weighting matrices that decrease the Hessian’s condition number.

Parameters

* xref (numpy array) — the trajectory the states should follow. xref has shape
(states, points).

* uref (numpy array) — the sequence of inputs for the given state trajectory xref.
uref has shape (inputs, points).

* stw (numpy array) — the relative weights for the states given as a vector of shape
(states,). This vector correspond to the diagonal of the state weighting matrix Q, i.e. Q
= diag(stw).

* inw (numpy array) — the relative weights for the inputs given as a vector of shape
(inputs,). This vector correspond to the diagonal of the input weighting matrix R, i.e. R
= diag(inw).

* cn_ub (scalar) — upper bound for the condition number of the Hessian. It must be
greater than 1.

* stw0 (None or numpy array)-initial guess of the solution for the state weights.
If None, it will be computed as an identity matrix of appropriate shape.
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* inw0 (None or numpy array) — initial guess of the solution for the inputs
weights of shape inputs If None, it will be computed as an identity matrix of appro-
priate shape.

Returns
a dictionary with the diagonals of the newly tuned weights. The keys are as follows:
* “stw” is the diagonal of the weighting matrix for the states.
* “inw” is the diagonal of the weighting matrix for the inputs.

Given a reference state and input trajectory (xref, uref), the difference of a simulated trajectory for
the unconstrained system (with initial condition the first point of the given trajectory (xref, uref))
should be minimized with respect to the diagonal weigthing matrices of the QP. This problem is posed as a
nonlinear program (NLP).

This NLP takes a reference trajectory as input (for the states and the input sequences), the reference weight-
ing matrices that set the desired controller performance, and an upper bound on the condition number of
the QP’s Hessian. The NLP returns weighting matrices that give a similar controller performance and make
kp (the condition number of the Hessian) lower than the specified upper bound. As this NLP is in general
nonconvex, there might be several local solutions, and finding a (good) solution or not might depend on the
initial guesses for the weighting matrices. For details see [WAD11].

The procedure to find suitable weighting matrices that reduce x is as follows:

1.Manually tune your MPC controller, as you would normally do. At the moment, only diagonal matri-
ces are accepted. These matrices will be used as base for the NLP.

2.Generate a trajectory for the states and the corresponding input sequences that is representative of the
MPC application.

3.Optionally, select an upper bound for k.
4.0Optionally, select an initial guess for the weighting matrices.

5.Repeat for different parameters if the optimization was not successful, or if you are not satisfied with
the results.

Take for example the system in A more complex MPC problem. We consider a change in the altitude to
represent the typical behaviour of the control system. A very brief example follows:

from numpy import eye, diag

import muaompc

mpc = muaompc.ltidt.setup_mpc_problem('sys_aircraft')

# xref, uref have been already generated via simulation

# the reference weighting matrices have been manually tuned as identity
Qref = diag(eye(5))

Rref = diag(eye (1))

r = mpc.tun.reduce_H_cn (xref, uref, Qref, Rref)

Qtun = r['stw']
Rtun = r['intw']
Example

A complete example of how to use this function can be found in the tutorial/ltidt/tun_h_cn.

4.3 Automatic selection of stabilizing matrices

4.3.1 The auto keyword

The auto keyword indicates that the terminal state weighting matrix P is to be selected automatically, such that
the terminal cost is a control Lyapunov function for the model predictive control setup. We consider the following
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special cases:

* the open-loop system is stable and there are only constraints on the inputs. The solution of a matrix Lya-
punov equation is returned. In this case the regulation point of the closed-loop system is globally exponen-
tially stable.

* the pair (Ad, Bd) is stabilizable and there are constraints on the inputs and states. The solution of a discrete
algebraic Riccati equation is returned. The regulation point is asymptotically (exponentially) stable with
region of attraction X (Xg).

The following conditions are expected on the MPC setup:
* () is symmetric positive definite.
* R is symmetric positive definite.
o The pair (A4, By) is stabilizable.
* If @ is positive semi-definite, the pair (Ag, Q%) must be detectable. This is not checked at the moment.
The following conditions are checked:
1. Does the problem have only input constraints?
2. Does Ay have all its eigenvalues strictly inside the unit circle?

If conditions 1. and 2. are both true, a discrete Lyapunov equation is solved. If any of the conditions 1. and 2. is
false, then a discrete algebraic Ricatti equation is solved.

In this context, X is defined as the set of states for which the MPC problem is feasible. The set Xg is any
sublevel set of the MPC optimal value /[RM09].

4.4 MATLAB/Simulink interface

The MATLAB and Simulink interfaces make it possible to use and control a precompiled solver from MAT-
LAB/Simulink.

4.4.1 Dependencies

To make use of this functionality, the following are required:
* MATLAB (tested using version 7.8.0 (R2009a))
e a C compiler (tested using GCC version 4.4 (gcc4.4))

4.4.2 Creating the interfaces

For basic usage, the procedure consist on writting the system module, generating and compiling the code, and
finally using the interface.

Create the system module

The sytem module can also be created in MATLAB. Simply define the required matrices (e.g. Ac, Bc, Q, u_1b,
e_1b) and save them in a mat file. In this example, we will assume the sys_motor.mat system module was
created, based on the MPC setup described on A basic MPC problem.

Note: to read mat files, SciPy is required.
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Generate the code

At first you have to generate the code that represents the MATLAB interface. Simply add the option
matlab=True to the code generation function. The following Python commands will generate the MAT-
LAB/Simulink interfaces for the sys_motor.mat example:

import muaompc
mpc = muaompc.ltidt.setup_mpc_problem('sys motor.mat')
mpc.generate_c_files (matlab=True)

The generated cmpc directory now contains two new directories called matlab and simulink besides the
usual C files. It contains all the code of the MATLAB and Simulink interfaces. A detailed description follows.

4.4.3 Using the MATLAB interface

Compiling the interface

Once the code the interfaces have been created, the next step is to compile the MATLAB interface. Start MAT-
LAB, set the generated cmpc /mat 1ab directory as the working directory and call make, which will execute the
make .m script. For example, assuming you are in the directory where you generated the data, inside MATLAB

type:

>> cd cmpc/matlab
>> make

After this the compiled code is put inside the @mpc_ct 1 directory.

Adding the interface to MATLAB’s path

The last step is to add the mat 1ab directory to the PATH environment in MATLAB.

Using the interface

Now you can use the interface which is encapsulated in a class called mpc_ct1, which represents the MPC
controller. Simply declare an instance of that class, which we usually call ct 1 (controller). For example:

ctl = mpc_ctl; % create an instance of the class
ctl.conf.in_iter = 10; % configure the algorithm
x = [0.1; -0.5]; % current state

ctl.form_gp (x) % form the QP for the current state

gpx = ctl.gpx; % gpx contains the QP in standard form

u = quadprog(gpx.HolL, gpx.gxoL, [], [1, [1, [], gpx.u_lb, gpx.u_ub);
ctl.solve_problem(x); % solve the MPC problem for current state
ctl.u_opt % display the computed input sequence

o

norm(u - ctl.u_opt) % ctl.u_opt is the MPC approximation of u

Example

The complete example can be found under the examples/ltidt/matlab_interface folder.

4.4.4 Using the Simulink interface
It is possible to use generated code in Simulink to build models for simulation and real time execution on targets
which are supported with MATLAB Coder, including compilation for embedded targets.

The Simulink feature that allows to do it is called system functions (S-Functions). S-functions provide a way to
execute C code as a Simulink block.
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Compiling the interface
As explained above, to generate preconfigured Simulink model you need to pass mat 1ab=True parameter to the
generator call. The model is placed in cmpc/simulink folder. To run the model follow the next steps:

1. In MATLAB change the current folder to cmpc/simulink.

2. Open cmpc/simulink/simulinkmpc.mdl in Simulink.

3. Double click the S-Function Builder block to open the block properties window.

4. Click Build to build the S-Function.

Now the model is ready to be extended and used in your design.

Example

The example system simulink_example.mdl is located in the folder
examples/ltidt/matlab_interface. It shows a sample use of a MPC controller. To run the
example follow the next steps:

1. Set the current MATLAB folder to examples/ltidt/matlab_interface.

2. Type open_simulink_example in the MATLAB console.

3. Press the Bui1d button in the block properties window which will appear on the screen.
4. Run the simulation.

The example includes the functionality of solving the control problem and prediction of the next state of the plant.
The model can operate using closed-loop and open-loop mode. Also the model shows how to check the execution
speed on the device.
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