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Abstract

This paper discusses set invariance notions for decentralized discrete time systems which are physically inter-
connected. We employ independent set–dynamics induced by the underlying subsystems subject to the available
information in the decentralized setting. The main novelty of the approach lies within the fact that the concept of
set invariance for independent set–dynamics is formalized by employing appropriate families of sets. The complex-
ity of the exact notion is alleviated by introducing a practical set invariance notion which is then complemented
with the corresponding relaxed stability analysis. Under mild assumptions, the introduced notion allows for safe,
stable and independent operation of the subsystems forming the overall decentralized system.
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1 Introduction

The control of large scale systems has been an ongoing research area for more then four decades. The main underlying
research dilemma is concerned with the trade–off between the centralized and decentralized synthesis methods. For
an overview of the area see the comprehensive monograph [14], more recent publications [4,17] and references therein.

Our contribution is concerned with set invariance and stability notions for decentralized discrete time control
systems, which are physically interconnected. Our prime objective is to develop both the flexible and practicable
notions allowing for safe, stable and independent operation of all subsystems (and, in turn, the overall system) despite
the presence of constraints as well as restrictions on the amount of information available locally (this “informational
restriction” is inevitably induced by the decentralization of the original system). The approach we employ is com-
patible, at the conceptual level, with the notion of the dynamics of so–called vector Lyapunov functions [6,10,14–16].
Motivated by this notion and the recent results on set invariance under state and output feedback utilizing set–
dynamics [1, 2], we consider the independent set–dynamics induced by the underlying subsystems subject to the
available information in the decentralized setting and discuss both the exact and practical set invariance concepts.
The exact set invariance notions are in this setting captured by considering invariant families of sets. The practical
set invariance notions are, however, obtained by considering a parameterized family of sets and utilizing the ap-
proximate, outer–bounding, set–dynamics whose evolution is described by ordinary, vector–valued, dynamics. The
employed family of sets is parameterized via a collection of sets {Si : i = 1, 2, . . . , N} and a set Θ. The sets Si are
associated with the corresponding subsystems while the set Θ is obtained by employing the classical set invariance
concepts for suitably designed vector–valued dynamics that describe the evolution of approximate, outer–bounding,
set–dynamics. We show that, under mild assumptions, the introduced notion allows for safe, stable and independent
operation of the subsystems forming the overall decentralized system. Motivated by computational tractability and
simplicity of necessary analysis, we focus on the case of constrained, decentralized, linear control systems controlled
by appropriate, static, linear control rules.

The paper is structured as follows: Section 2 provides preliminaries and problem formulation. Section 3 discusses
practical set invariance and stability notions. Sections 4 and 6 comment briefly on a possible approach for computing
local controllers and provide concluding remarks. The proofs for the subsequent results are given in the Appendix.

Basic Nomenclature and Definitions The sets of positive, non–negative integers and reals are denoted by N+,
N and R+. Given a positive integer q ∈ N+ we denote N[1:q] := {1, 2, . . . , q}. Given any positive integer q ∈ N+ and
a positive integer r ∈ N[1:q] we denote N(q,r) := {1, . . . , r − 1, r + 1, . . . , q} = N[1:q] \ {r}. A set X is said to be a
non–trivial set if it is a proper, non–empty, subset of Rn and it is not a singleton set. Given two sets X ⊂ Rn and
Y ⊂ Rn, the Minkowski set addition is defined by X ⊕ Y := {x + y : x ∈ X, y ∈ Y }. Given the sequence of sets

{Xi ⊂ Rn}bi=a, a ∈ N, b ∈ N, b > a, we denote
⊕b

i=aXi := Xa ⊕ · · · ⊕ Xb. Given a set X and a real matrix M
of compatible dimensions (possibly a scalar) we define MX := {Mx : x ∈ X} and M−1X := {x : Mx ∈ X}.
Given a matrix M ∈ Rn×n, ρ(M) denotes the largest absolute value of its eigenvalues. A polyhedron is the (convex)
intersection of a finite number of open and/or closed half–spaces and a polytope is the closed and bounded polyhedron.
A set X ⊂ Rn is a C–set if it is compact, convex, and contains the origin. A set X ⊂ Rn is a proper C–set or just
PC–set if it is a C–set and contains the origin in its (non–empty) interior. A collection of sets {Xi ⊂ Rn : i ∈ N[1:q]}
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is a PC–collection if each Xi is a PC–set. A set X ⊆ Rn is a symmetric set (with respect to the origin in Rn)
if X = −X. The family of all subsets of Rn is denoted by 2R

n

. The family of non–empty compact subsets in Rn
is denoted by Com(Rn). For X ∈ Com(Rn) and Y ∈ Com(Rn), the Hausdorff semi–distance and the Hausdorff
distance of X and Y are given by:

h(L,X, Y ) := min
α
{α : X ⊆ Y ⊕ αL, α ≥ 0} and

H(L,X, Y ) := max{h(L,X, Y ), h(L, Y,X)},

where L is a given, symmetric, proper C–set in Rn inducing also the vector–norm |x|L := minµ{µ : x ∈ µL, µ ≥ 0}.
For typographical convenience, we distinguish row vectors from column vectors only when needed and employ the
same symbol for a variable x and its vectorized form in the algebraic expressions.

2 Preliminaries & Problem Description

We consider a set of N discrete–time, time–invariant, linear interconnected control systems given by:

∀i ∈ N[1:N ], x
+
i = Aixi +Biui +

∑
j∈N(N,i)

C(i,j)xj , (1)

where ∀i ∈ N[1:N ], xi ∈ Rni is the current state of the ith subsystem, ui ∈ Rmi is the current control of the

ith subsystem, x = (x1, x2, . . . , xN ) ∈ Rn with n =
∑
i∈N[1:N]

ni is the current state of the overall system, u =

(u1, u2, . . . , uN ) ∈ Rm with m =
∑
i∈N[1:N]

mi is the current control of the overall system, for each i ∈ N[1:N ], Ai ∈
Rni×ni , Bi ∈ Rni×mi and for each i ∈ N[1:N ] and each j ∈ N(N,i), C(i,j) ∈ Rni×nj .

Besides the physical interconnections defined by the matrices C(i,j), the subsystem variables xi ∈ Rni and ui ∈ Rmi

are subject to hard constraints, namely:

∀i ∈ N[1:N ], xi ∈ Xi and ui ∈ Ui, (2)

where ∀i ∈ N[1:N ], Xi ⊆ Rni and Ui ⊆ Rmi are the state and control constraint sets for the ith subsystem. We invoke
the following standard assumption:

Assumption 1 For each i ∈ N[1:N ],

(i) the matrix pairs (Ai, Bi) are controllable, and,

(ii) the sets Xi and Ui are proper C–sets in Rni and Rmi .

We examine practical set invariance and stability notions under two clarifying interpretations; the first considers
the case when the local controller has only summarized information about the other subsystems:

Interpretation 1 For any i ∈ N[1:N ] and at any time instance k ∈ N, the current state x(k;i) of the subsystem i

and the value of the total sum
∑
j∈N(N,i)

C(i,j)x(k;j) is known to the ith decision maker when deciding on the control

action u(k;i) for the subsystem i.

The second interpretation is concerned with the case when the local controller has individual information about the
interactions with other subsystems:

Interpretation 2 For any i ∈ N[1:N ] and at any time instance k ∈ N, the current state x(k;i) of the subsystem i and

the values of the individual summands C(i,j)x(k;j), j ∈ N(N,i) are known to the ith decision maker when deciding on
the control action u(k;i) for the subsystem i.

Note that, under Interpretations 1 and 2, the states x(k;j), j ∈ N(N,i) of the other subsystems (or the values of the
individual summands C(i,j)x(k;j), j ∈ N(N,i) under Interpretation 1) are, excluding special cases, not known to the

ith decision maker when deciding on the control action u(k;i).
For any i ∈ N[1:N ] we set, for notational compactness, C(i,i) = I ∈ Rni×ni . For any i ∈ N[1:N ], let ci : Rn → R2ni

be given by:

ci(x) = (C(i,i)xi,
∑

j∈N(N,i)

C(i,j)xj) (3)

and, similarly, let di : Rn → RNni be given by:

di(x) = (C(i,1)x1, . . . , C(i,i)xi, , . . . , C(i,N)xN ). (4)
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In addition to the invoked interpretations, we are concerned with the utilization of the static linear control rules
for control synthesis. In particular, for any i ∈ N[1:N ] under Interpretation 1, the ith decision maker can deploy, at
time k ∈ N, the linear control rules:

u(k;i)(ci(xk)) = Kix(k;i) + Li
∑

j∈N(N,i)

C(i,j)x(k;j), (5)

and, likewise, under Interpretation 2, the linear control rules:

u(k;i)(di(xk)) = Kix(k;i) +
∑

j∈N(N,i)

L(i,j)C(i,j)x(k;j), (6)

where, for all i ∈ N[1:N ], Ki ∈ Rni×ni , Li ∈ Rni×ni and, for all j ∈ N(N,i), L(i,j) ∈ Rni×ni .
The prime aim of our investigation is concerned with the practical set invariance and stability notions for the

set of N discrete–time autonomous systems specified in (1) induced by the linear control structures specified in (5)
and (6) and taking the form, ∀i ∈ N[1:N ],:

x+i = A(i,i)xi +
∑

j∈N(N,i)

A(i,j)xj , (7)

where, ∀i ∈ N[1:N ], A(i,i) := Ai + BiKi, and, under Interpretation 1, ∀j ∈ N(N,i), A(i,j) := (I + BiLi)C(i,j), while
under Interpretation 2, ∀j ∈ N(N,i), A(i,j) := (I + BiL(i,j))C(i,j). With these definitions, we utilize the form (7) for
the analysis throughout this note. We recall the classical definition in set invariance [3, 7, 8]:

Definition 1 A set Ω is a positively invariant set for the system x+ = Ax and constraint set X if and only if Ω ⊆ X
and for all x ∈ Ω it holds that Ax ∈ Ω (i.e. AΩ ⊆ Ω ⊆ X).

The most relaxed set invariance and stability notions can be obtained by utilizing Definition 1 and considering
the augmented form of the system in (7), namely:

x+ = Ax, (8)

where x = (x1, x2, . . . , xN ) ∈ Rn and A ∈ Rn×n is the matrix composed from the matrices A(i,j) specified as in (7).
The state and control constraints (2) are taken into account by introducing the constraint set X on the variables of
the system (8). The constraint set X takes the form

X := {x : x ∈ X1 × X2 × . . .× XN and ∀i ∈ N[1,N ],

Kixi +
∑

j∈N(N,i)

K(i,j)xj ∈ Ui}, (9)

where under Interpretation 1 and when the linear control rules (5) are employed K(i,j) := LiC(i,j) while under
Interpretation 2 and when the linear control rules (6) are employed K(i,j) := L(i,j)C(i,j). Within this setting strict
stability of the system (8) reduces to the requirement that ρ(A) < 1. In principle, standard set invariance methods
can be utilized for the computation of the maximal positively invariant set, say Ω∞, for the system (8) and constraint
set (9). However, such a setting does not permit independent operation of the subsystems (7). Furthermore, the
corresponding set invariance computations have to be carried out in Rn which in the case of large scale systems
induces inevitably serious computational obstacles.

The requirement for the independent operation of the set of N subsystems in (7) leads naturally to the induced,
independent, set–dynamics given, for all i ∈ N[1:N ] and all X = (X1, X2, . . . , XN ) ∈ 2R

n1 × 2R
n2 × . . .× 2R

nN ,

X+
i = Fi(X), with

Fi(X) := A(i,i)Xi ⊕
⊕

j∈N(N,i)

A(i,j)Xj (10)

Before proceeding, let also, for all i ∈ N[1:N ] and all X = (X1, X2, . . . , XN ) ∈ 2R
n1 × 2R

n2 × . . .× 2R
nN ,

Ui(X) := KiXi ⊕
⊕

j∈N(N,i)

K(i,j)Xj (11)

A natural and attractive alternative is to look for a positively invariant set of a particular form, namely to aim
for the characterization and computation of an invariant set Ω taking the form Ω = Ω1 × Ω2 × . . .× ΩN where, for
all i ∈ N[1:N ], Ωi ⊂ Rni . Within this setting, a possible notion of set invariance is given by:
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Definition 2 A collection of sets Ω := {Ωi : i ∈ N[1:N ]} is an invariant collection of sets for the system (7) and
constraint sets (2) if and only if, for all i ∈ N[1:N ],:

Ωi ⊆ Xi, Ui((Ω1,Ω2, . . . ,ΩN )) ⊆ Ui, and, (12a)

Fi((Ω1,Ω2, . . . ,ΩN )) ⊆ Ωi (12b)

This alternative definition is computationally attractive as the overall invariant set Ω = Ω1 × Ω2 × . . .× ΩN can be
constructed from the collection of sets Ω := {Ωi : i ∈ N[1:N ]} and each of sets Ωi can, in principle, be computed
locally. Nevertheless, the requirements in (12) complicate significantly the questions of the existence as well as the
detection of a suitable collection of sets Ω := {Ωi : i ∈ N[1:N ]}. Furthermore, even though this notion seems to be
natural within the decentralized framework, it is in fact naive and overly conservative because the condition in (12b)
is rather strong and, in fact, too much to ask for.

A more flexible and non–naive notion is possible as offered by the following definition concerned with the prop-
erties of a suitable family of sets:

Definition 3 A family of sets X ⊆ 2R
n1×2R

n2×. . .×2R
nN is said to be an invariant family of sets for the system (7)

and constraint sets (2) if and only if, for all X = (X1, X2, . . . , XN ) ∈ X and all i ∈ N[1:N ],:

Xi ⊆ Xi, Ui((X1, X2, . . . , XN )) ⊆ Ui, (13a)

Fi((X1, X2, . . . , XN )) ⊆ X+
i , and, (13b)

X+ = (X+
1 , X

+
2 , . . . , X

+
N ) ∈ X . (13c)

The invariance notions of Definition 3 are compatible with the induced, independent, set–dynamics (10) and are, in
fact, sufficiently general to capture the classical notions specified in Definition 1. Indeed, for any positively invariant
set Ω satisfying Definition 1, it is possible to define the corresponding family of invariant sets X by forming it from
all points x = (x1, x2, . . . , xN ) ∈ Ω (i.e. by setting, for sets X ∈ X , X = (X1, X2, . . . , XN ) := ({x1}, {x2}, . . . , {xN})
with x = (x1, x2, . . . , xN ) ∈ Ω). Definition 3 also reveals an interplay between the quality of the attainable invariant
sets and the information exchange amongst the subsystems in (7). However, the exact set invariance problem reduces
to the characterization and computation of invariant families of sets. Even though it is possible to analyze such an
exact problem, the corresponding notion is computationally intractable and, hence, motivates the introduction and
analysis of the practicable set invariance which allows for the trade–off between naive notions offered in Definition 2
and general notions of Definition 3. This trade–off is attained by considering a family of sets S(S,Θ), given by

S(S,Θ) := {(θ1S1, θ2S2, . . . , θNSN ) : θ ∈ Θ}, (14)

where θ = (θ1, θ2, . . . , θN ) ∈ RN+ , Θ ⊆ RN+ and ∀i ∈ N[1:N ], Si ∈ 2R
ni

, and by introducing the following notion of
practical set invariance:

Definition 4 Given a collection of sets S = {Si : i ∈ N[1:N ]} with (S1, S2, . . . , SN ) ∈ 2R
n1 × 2R

n2 × . . .× 2R
nN and

a set Θ ⊆ RN+ , the family of sets S(S,Θ) specified by (14) is said to be an invariant family of sets for the system (7)
and constraint sets (2) if and only if, for all i ∈ N[1:N ] and all (θ1S1, θ2S2, . . . , θNSN ) ∈ S(S,Θ),:

θiSi ⊆ Xi, Ui((θ1S1, θ2S2, . . . , θNSN )) ⊆ Ui, (15a)

Fi((θ1S1, θ2S2, . . . , θNSN )) ⊆ θ+i Si, and, (15b)

(θ+1 S1, θ
+
2 S2, . . . , θ

+
NSN ) ∈ S(S,Θ). (15c)

The problem of our interest is motivated by Definition 4:

Problem 1 Given a collection of sets S = {Si : i ∈ N[1:N ]}, detect a collection of functions {µi (·) : i ∈ N[1:N ]}
with µi (·) : RN+ → R+, and a set Θ ⊆ RN+ ensuring that the family of sets S(S,Θ) given by (14) is such that for
all i ∈ N[1:N ] and all (θ1S1, θ2S2, . . . , θNSN ) ∈ S(S,Θ) conditions (15) are satisfied with ∀i ∈ N[1:N ], θ

+
i = µi(θ).

Furthermore, examine the stability properties of the system:

∀i ∈ N[1:N ], θ
+
i = µi(θ), (16)

relative to the set Θ and relate them to the stability properties of the dynamics specified in (7).
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3 Practical Set Invariance and Stability

Problem 1 is addressed in two steps and its solution is obtained under a natural assumption on the underlying
collection of sets S = {Si : i ∈ N[1:N ]}:

Assumption 2 The collection of sets S = {Si : i ∈ N[1:N ]} is a PC–collection of sets.

Remark 1 Note that a direct use of the algebra of convex sets [12,13] yields the fact that, under Assumption 1, the
conditions that ∀i ∈ N[1:N ], θiSi ⊆ Xi and θiKiSi ⊕

⊕
j∈N(N,i)

K(i,j)θjSj ⊆ Ui are equivalent to the requirements

that ∀i ∈ N[1:N ], θi convh(Si) ⊆ Xi and θiKi convh(Si)⊕
⊕

j∈N(N,i)
K(i,j)θj convh(Sj) ⊆ Ui. Likewise, the conditions

that ∀i ∈ N[1:N ], θiA(i,i)Si ⊕
⊕

j∈N(N,i)
A(i,j)θjSj ⊆ θ+i Si imply the relations ∀i ∈ N[1:N ], θiA(i,i) convh(Si) ⊕⊕

j∈N(N,i)
A(i,j)θj convh(Sj) ⊆ θ+i convh(Si) (these requirements are, in fact, equivalent when involved sets Si are

convex). Consequently, Assumption 2 is invoked without loss of generality in an appropriate sense.

The first step is to specify appropriate collection of functions {µi (·) : i ∈ N[1:N ]}, where ∀i ∈ N[1:N ], µi (·) : RN+ →
R+, ensuring the satisfaction of the condition (15b). The second is the detection of appropriate set Θ ⊆ RN+ leading
together with the collection of functions {µi (·) : i ∈ N[1:N ]} to the solution of the considered problem.

For a given PC–collection of sets S = {Si : i ∈ N[1:N ]}, we can detect the collection of exact functions
{µei (·) : i ∈ N[1:N ]} where ∀i ∈ N[1:N ], µ

e
i (·) : RN+ → R+ is given, for all θ = (θ1, θ2, . . . , θN ) ∈ RN+ , by:

µei (θ) := min
µ≥0
{µ :

⊕
j∈N[1:N]

θjA(i,j)Sj ⊆ µSi}. (17)

The relevant properties of the collection of functions {µei (·) : i ∈ N[1:N ]} are discussed by:

Proposition 1 Suppose Assumption 2 holds. Then, for all ∀i ∈ N[1:N ], the functions µei (·) : RN+ → R+ given
by (17) are sublinear functions.

Motivated by computational aspects and the fact that the collection of exact functions {µei (·) : i ∈ N[1:N ]}
is a collection of sublinear functions we utilize, for analysis and consequent computations, the collection of linear
functions {µi (·) : i ∈ N[1:N ]} given, for all i ∈ N[1:N ] and all θ ∈ RN+ , by:

µi(θ) :=
∑

j∈N[1:N]

µ(i,j)θj with ∀(i, j) ∈ N[1:N ] × N[1:N ],

µ(i,j) := min
µ≥0
{µ : A(i,j)Sj ⊆ µSi}. (18)

Clearly, for all i ∈ N[1:N ] and all θ ∈ RN+ , µei (θ) ≤ µi(θ). We proceed and introduce the dynamics of the θ variable:

θ+ = Mθ, (19)

where M ∈ RN×N+ is the matrix composed from the scalars µ(i,j) ∈ R+, (i, j) ∈ N[1:N ] × N[1:N ]. In order to ensure
the satisfaction of the conditions (15a), we invoke the constraints on the θ variable:

Θ0 := {θ ∈ RN+ : ∀i ∈ N[1:N ], θiSi ⊆ Xi and

θiKiSi ⊕
⊕

j∈N(N,i)

θjK(i,j)Sj ⊆ Ui}. (20)

It is important to note that, under the given assumptions, the resulting set Θ0 is compact and convex:

Lemma 1 Suppose Assumptions 1 and 2 hold. Then the set Θ0 given by (20) is a convex, compact and full–
dimensional subset of RN+ that contains the origin.

We now invoke an assumption on the set Θ permitting us to establish the practical set invariance property of the
family of sets S(S,Θ) given by (14).

Assumption 3 The set Θ is a convex and compact subset of RN+ such that 0 ∈ Θ ⊆ Θ0 and ∀θ ∈ Θ, Mθ ∈ Θ, i.e. the
set Θ ⊆ RN+ , 0 ∈ Θ is a convex, compact and positively invariant set for the dynamics (19) subject to constraints (20).
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Remark 2 If Assumptions 1 and 2 hold then Assumption 3 is invoked without loss of generality. In this case, the
standard set recursion given by:

∀k ∈ N, Θk+1 := M−1Θk

⋂
Θ0, (21)

where M and Θ0 are given by (19) and (20) respectively, results in the monotonically non–increasing sequence of
convex and compact sets {Θk}k∈N that admits the limit with respect to the Hausdorff distance, say Θ∞ (which is
itself a non–empty convex and compact set). In fact, this limit is given by:

Θ∞ =
⋂
k∈N

Θk, (22)

and is the maximal positively invariant set for the system (19) subject to constraints (20).

The following proposition addresses the issue of practical set invariance notions.

Proposition 2 Suppose Assumptions 1, 2 and 3 hold. Then the family of sets S(S,Θ) given by (14) is an invariant
family of sets.

These practical notions, for a given PC–collection of sets S = {Si : i ∈ N[1:N ]} require merely the detection of
the collection of linear functions {µi (·) : i ∈ N[1:N ]} given by (17) and the corresponding positively invariant set
Θ satisfying Assumption 3. As indicated in Remark 2, Assumption 3 is invoked without loss of generality, albeit
it is possible to encounter the cases when the corresponding maximal positively invariant set Θ∞ (and hence any
positively invariant set) reduces to a trivial singleton set {0}. Such a possibility is ruled out under an additional and
reasonable assumption on the dynamics specified in (19):

Assumption 4 The matrix M inducing the dynamics in (19) is strictly stable, i.e. ρ(M) < 1.

Under this assumption we can ensure that the set Θ and the corresponding family of sets S(S,Θ) are non–trivial:

Proposition 3 Suppose Assumptions 1–4 hold. Then: (i) there exists a non–trivial set Θ satisfying Assumption 3,
and, (ii) for any such set Θ, the corresponding family of sets S(S,Θ) given by (14) is a non–trivial invariant family
of sets.

Remark 3 A direct modification of the standard results [8, 9] implies that, under Assumptions 1, 2 and 4, the
maximal positively invariant set Θ∞ in (22) is finitely determined. Namely, there exists a finite integer k∗ such that
Θk∗ = Θk∗+1, where sets Θk, k ∈ N are given as in (21), and, in turn, Θ∞ = Θk∗ . When constraint sets Xi and
Ui are, in addition, polytopic then the set Θ0 in (20) is a non–trivial polytope. In this case, the maximal positively
invariant set Θ∞ is also a non–trivial polytope and it can be computed using the standard techniques [8, 11].

We turn now our attention to the convergence issues. Before proceeding, let X(X0) denote, for any X0 =
(X(0;1), X(0;2), . . . , X(0;N)) ∈ 2R

n1 × 2R
n2 × . . .× 2R

nN the sequence {Xk = (X(k;1), X(k;2), . . . , X(k;N))}k∈N generated
by (10), i.e. for all k ∈ N and all i ∈ N[1:N ],

X(k+1;i) = Fi(Xk), (23)

where the maps Fi (·) , i ∈ N[1:N ] are given by (10). Similarly, let Y(Y0) denote, for any initial condition Y0 =
(θ(0;1)S1, θ(0;2)S2, . . . , θ(0;N)SN ) with θ0 = (θ(0;1), θ(0;2), . . . , θ(0;N)) ∈ RN+ , the sequence of parametrized sets {Yk =
(θ(k;1)S1, θ(k;2)S2, . . . , θ(k;N)SN )}k∈N with θk = (θ(k;1), θ(k;2), . . . , θ(k;N)) ∈ RN+ generated by (19), i.e. for all k ∈ N,

θk+1 = Mθk. (24)

We can now state our third main result, leading towards practical set invariance of the whole interconnected
system:

Theorem 1 Suppose Assumptions 1–4 hold. Consider the family of sets S(S,Θ) given by (14) and any sequence
Y(Y0) generated by (24) with Y0 ∈ S(S,Θ). Then, for all k ∈ N, (i) Yk ∈ S(S,Θ), (ii)

∑
i∈N[1:N]

H(Li, Y(k;i), {0}) ≤
akb

∑
i∈N[1:N]

H(Li, Y(0;i), {0}) for some scalars a ∈ [0, 1) and b ∈ (0,∞), and, (iii) ∀i ∈ N[1:N ], H(Li, Y(k;i), {0})→ 0

as k →∞.

A relevant consequence of Theorem 1 is:

Corollary 1 Suppose Assumptions 1–4 hold. Consider the family of sets S(S,Θ) given by (14) and any two sequence
X(X0) and Y(Y0) generated by (23) and (24) with, for all i ∈ N[1:N ], X(0;i) ⊆ Y(0;i) for some Y0 ∈ S(S,Θ). Then,
for all k ∈ N and all i ∈ N[1:N ], (i) X(k;i) ⊆ Y(k;i), (ii) X(k;i) ⊆ Xi and Ui(Xk) ⊆ Ui, where the maps Ui (·) are given
as in (11), and, (iii) h(Li, X(k;i), {0})→ 0 as k →∞.
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Remark 4 Theorem 1 and Corollary 1 allow us now to state covergence and stability properties of the interconnected
subsystems, i.e. for any actual state trajectory generated by (7), i.e. for all k ∈ N and all i ∈ N[1:N ], x(k+1;i) =
A(i,i)x(k;i) +

∑
j∈N(N,i)

A(i,j)x(k;j), where x0 = (x(0;1), x(0;2), . . . , x(0;N)) with, for all i ∈ N[1:N ], x(0;i) ∈ θ(0;i)Si and

θ0 = (θ(0;1), θ(0;2), . . . , θ(0;N)) ∈ Θ, it holds that, for all k ∈ N all i ∈ N[1:N ],:

x(k;i) ∈ θ(k;i)Si ⊆ Xi,

Kix(k;i) +
∑

j∈N(N,i)

K(i,j)x(k;j) ∈ Ui((θ(k;1)S1, . . . , θ(k;N)SN )),

and, Ui((θ(k;1)S1, . . . , θ(k;N)SN )) ⊆ Ui,

where {θk}k∈N is generated by (24). Furthermore, any actual state sequence {xk = (x(k;1), x(k;2), . . . , x(k;N))}k∈N
converges exponentially fast, in a stable manner, to (0, 0 . . . , 0). In fact, in view of Theorem 1, the origin is an
exponentially stable attractor for the dynamics (7) subject to constraints (9) with the basin of attraction induced
by the set Θ (and depending on the set Θ). More importantly, the individual subsystems do not require the exact
knowledge of the initial conditions of the other subsystems but merely that they belong to appropriate sets; in other
words the only requirement for the safe and independent operation of the dynamics (7) is the condition that for all
i ∈ N[1:N ], x(0;i) ∈ θ(0;i)Si for some θ0 = (θ(0;1), θ(0;2), . . . , θ(0;N)) ∈ Θ.

4 A Simple Control Synthesis & Brief Computational Remarks

In view of Interpretations 1 and 2 and due to the static and linear structure of the employed control rules, the following
prototype max–min infinite–horizon control problem, Pmax–min, provides an appropriate way to design the linear
control rules specified in (5) and (6) as well as to detect the corresponding collection of sets S = {Si : i ∈ N[1:N ]}:

V ∗(x,w) = min
u
V (x, u, w), with, (25a)

V (x, u, w) = `(x, u, w) + V 0(Ax+Bu+Dw), (25b)

u∗(x,w) = arg min
u
V (x, u, w), (25c)

V 0(x) = max
w

V ∗(x,w), and, (25d)

w0(x) = arg max
w

V ∗(x,w). (25e)

It is well–known [5] that when ` (·, ·, ·) is given by:

`(x, u, w) := x′Qx+ u′Ru− γ2w′w (26)

with Q ∈ Rn×n, Q = Q′ > 0, R ∈ Rm×m, R = R′ > 0 and when (A,B) is stabilizable and (A,Q
1
2 ) is detectable,

then there exists a finite scalar γ∗ such that for all γ ≥ γ∗ the relations (25) result in the solvable generalized H∞
algebraic Riccati equation and admit the solution:

V 0(x) = x′Px (27a)

u∗(x,w) = Kx+ Lw, and, w0(x) = Tx, (27b)

for suitable matrices P = P ′ > 0, K, L, and T of compatible dimensions. It is also well–known that, under the
conditions indicated above,

min
u

max
w

(`(x, u, w) + V 0(Ax+Bu+Dw)) =

max
w

min
u

(`(x, u, w) + V 0(Ax+Bu+Dw)) (28)

and that the linear control rule:
u0(x) = (K + LT )x (29)

guarantees the performance index in (28). Returning to our setting in (1), it is reasonable for the ith controller to
consider the uncertain system:

x+ = Aixi +Biui +Diwi (30)

where the disturbance wi and matrix Di are specified accordingly to the considered case arising under Interpretation 1
or 2 (i.e. Di = I and wi =

∑
j∈N(N,i)

C(i,j)xj in the case when Interpretation 1 is valid and Di = (I I . . . I) and

wi = (C(i,1)x1, . . . , C(i,i−1)xi−1, C(i,i+1)xi+1, . . . C(i,N)xN ) under Interpretation 2). Within this framework, the ith

decision maker can construct the linear control rules specified in (5) or (6) by solving the local version of the max–
min infinite–horizon control problem, Pmax–min specified in (25) and (26) (in which the matrices A, B, D, Q, R and
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the scalar γ are replaced by Ai, Bi, Di, Qi, Ri and γi). Under standard assumptions [5] on the local data (Ai,
Bi, Di, Qi, Ri and γi), the solution to the ith local max–min infinite–horizon control problem, Pmax–min yields the
collection of the value functions and control rules given, for all i ∈ N[1:N ], by:

V 0
i (xi) = x′iPixi (31)

and
u∗i (ci(x)) = Kixi + Li

∑
j∈N(N,i)

C(i,j)xj (32)

when Interpretation 1 is valid and

u∗i (di(x)) = Kixi +
∑

j∈N(N,i)

L(i,j)C(i,j)xj (33)

under Interpretation 1, for suitable matrices Pi = P ′i > 0, Ki, Li, and L(i,j) of compatible dimensions (and where
ci (·) and di (·) are given as in (3) and (4)).

The collection of the value functions {V 0
i (·) : i ∈ N[1:N ]} provides a natural choice for the corresponding

collection of sets S = {Si : i ∈ N[1:N ]}. In particular, the sets Si, i ∈ N[1:N ] can be chosen to be the ellipsoidal sets
given, for all i ∈ N[1:N ], by:

Si := {xi : x′iPixi ≤ 1}. (34)

Furthermore, in this case, the matrix M inducing the dynamics in (19) can be easily constructed by evaluating the
smallest non–negative scalars µ(i,j) satisfying

∀i ∈ N[1:N ], A
′
(i,i)PiA(i,i) ≤ µ2

(i,i)Pi, (35)

where A(i,i) := (Ai +BiKi), and, for all i ∈ N[1:N ],

∀j ∈ N(N,i), A
′
(i,j)PjA(i,j) ≤ µ2

(i,j)Pi (36)

where A(i,j) := (I + BiLi)C(i,j) under Interpretation 1 or A(i,j) := (I + BiL(i,j))C(i,j) under Interpretation 2. In
addition, when the constraint sets Xi and Ui are polytopes:

Xi := {xi : ∀li ∈ N[1:qi], φ
′
(i,li)

xi ≤ 1} and (37a)

Ui := {ui : ∀pi ∈ N[1:ri], ψ
′
(i,pi)

ui ≤ 1}, (37b)

with ∀li ∈ N[1:qi], φ(i,li) ∈ Rni and ∀pi ∈ N[1:ri], ψ(i,pi) ∈ Rmi , then the set Θ0 specified in (20) is a polytope:

Θ0 := {θ : ∀i ∈ N[1:N ], ∀li ∈ N[1:qi], h(i,i,li)θi ≤ 1, and,

∀pi ∈ N[1:ri], h(i,i,pi)θi +
∑

j∈N(N,i)

h(i,j,pi)θj ≤ 1},

with h(i,i,li) := (φ′(i,li)P
−1
i φ(i,li))

1
2 , h(i,i,pi) := (ψ′(i,pi)KiP

−1
i K ′iψ(i,pi))

1
2 and h(i,j,pi) := (ψ′(i,pi)K(i,j)P

−1
j K ′(i,j)ψ(i,pi))

1
2 .

As already mentioned in Remark 3, the standard techniques and tools can be employed for the computation of the
sets Θk, k ∈ N given by (21) as well as the maximal positively invariant set Θ∞ given by (22). We remark that in
this setting, under assumption that ρ(M) < 1, the maximal positively invariant set is finitely determined and is a
non–trivial polytope.

Remark 5 An alternative way for the design of the local linear controllers (i.e. matrices Ki, Li, and L(i,j)) and
the corresponding quadratic functions {Vi (·) : i ∈ N[1:N ]} (i.e. matrices Pi = P ′i > 0) is to utilize the systematic
design methods based on the linear matrix inequality which are thoroughly investigated in [15, 16].

5 Illustrative Example

We consider a six dimensional system consisting of two interconnected systems:

A1 =

 0 0.5 1
−0.5 −1 0

1 −0.5 0.5

 , B1 =

0
1
1

 , C12 =

 0 0 0
0.1 0 0.1
0 0.1 0

 ,

A2 =

 1 0.5 1
−0.5 1 0

0 −0.5 0.5

 , B2 =

1
0
1

 , C21 =

0.1 0 0.1
0 0 0
0 0.1 0

 .
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The constraint sets are X1 = X2 = {x ∈ R3 : |x|∞ ≤ 5} and U1 = U2 = {u ∈ R : |u| ≤ 2}. The max–
min, static, linear control rules are obtained as described in Section 4 with Q1 = Q2 = 1.5I, R1 = R2 = 1 and
γ1 = 3.4912 and γ2 = 4.5654. These control rules are described via the matrices K1 = (−0.4262 0.6104 − 0.3906),
L1 = (−0.0891 − 0.3535 − 0.6029), K2 = (−0.9142 0.2425 − 0.8192) and L2 = (−0.6872 0.4541 − 0.2641). The
collection of sets {S1, S2} is obtained according to (34) from the corresponding solutions to generalized H∞ algebraic
Riccati equations. The corresponding matrix M obtained from (35)–(36) is strictly stable. The set Θ is chosen to
be the maximal positively invariant set Θ∞ as indicated in Remark 2.

(a) System θk+1 = Mθk and set Θ∞

(b) Subsystem 1: State-trajectories with set θ(0;1)S1 (c) Subsystem 2: State-trajectories with set θ(0;2)S2

(d) Subsystem 1: Control-time plot (e) Subsystem 2: Control-time plot

Figure 1: θ-dynamics, with initial condition θ0, and sets of sample input and state trajectories initialized in the sets
θ(0;i)Si, with i ∈ {1, 2}.
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In the top part of Figure 1 we show the set Θ∞ and the sequence {θk}k∈N for θ0 = (3.3416, 3.7521). A set of
state and control time plots for a range of initial conditions x(0,1) ∈ θ(0,1)S1 and x(0,2) ∈ θ(0,2)S2 is also shown in
Figure 1. As expected (in view of Theorem 1, Corollary 1 and Remark 4), the variables of both subsystems satisfy
constraints and converge exponentially fast to the origin.

6 Concluding Remarks

In this paper we discussed exact and practical set invariance notions for decentralized discrete time systems which
are physically interconnected. The exact set invariance notions were formalized by employing invariant families of
sets. The practical set invariance notion was achieved by considering a parameterized invariant family of sets. It
was pointed out that, under mild assumptions, the introduced practical notions are computationally tractable and
provide guarantees for safe, stable and independent operation of the subsystems forming the overall decentralized
system.
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Appendix

Proof of Proposition 1:

By construction, µei (·) : RN+ → R+ and ∀i ∈ N[1:N ], µ
e
i (0) = 0. For any λ ∈ R+ and any θ ∈ RN+ we have⊕

j∈N[1:N]
λθjA(i,j)Sj = λ(

⊕
j∈N[1:N]

θjA(i,j)Sj) and, hence, µei (λθ) ≤ λµei (θ). But, µei (λθ) < λµei (θ) is, in view

of (17), not possible without a contradiction on the optimality of µei (θ) and, hence, µei (λθ) = λµei (θ). Likewise, for
any θ1 ∈ RN+ and θ2 ∈ RN+ it holds that

⊕
j∈N[1:N]

(θ1j +θ2j )A(i,j)Sj = (
⊕

j∈N[1:N]
θ1jA(i,j)Sj)⊕(

⊕
j∈N[1:N]

θ2jA(i,j)Sj) ⊆
µei (θ

1)Si ⊕ µei (θ2)Si = (µei (θ
1) + µei (θ

2))Si and, hence, µei (θ
1 + θ2) ≤ µei (θ

1) + µei (θ
2). The functions µei (·) : RN+ →

R+, i ∈ N[1:N ] are sublinear.

Proof of Lemma 1:

Pick any θ1 ∈ Θ0 and θ2 ∈ Θ0 and any λ = (λ1, λ2) ∈ Λ, Λ := {(λ1, λ2) ∈ R2
+ : λ1 +λ2 = 1}. By convexity of RN+ it

holds that θλ := λ1θ1+λ2θ2 ∈ RN+ . Due to Assumptions 1 and 2, we have that, ∀i ∈ N[1:N ], θ
λSi = (λ1θ1i +λ2θ2i )Si =

λ1θ1i Si ⊕ λ2θ2i Si ⊆ λ1Xi ⊕ λ2Xi = (λ1 + λ2)Xi = Xi. Likewise, ∀i ∈ N[1:N ], θ
λ
i KiSi ⊕

⊕
j∈N(N,i)

θλjK(i,j)Sj =

λ1(θ1iKiSi ⊕
⊕

j∈N(N,i)
θ1jK(i,j)Sj) ⊕ λ2(θ2iKiSi ⊕

⊕
j∈N(N,i)

θ2jK(i,j)Sj) ⊆ λ1Ui ⊕ λ2Ui = (λ1 + λ2)Ui = Ui. Hence,

the set Θ0 is a convex subset of RN+ . The set Θ0 is clearly a closed subset of RN+ . Furthermore, due to Assumptions 1
and 2, the conditions that ∀i ∈ N[1:N ], θiSi ⊆ Xi guarantee that Θ0 is also bounded and, hence, Θ0 is a compact
subset of RN+ . The fact that 0 ∈ Θ0 is clear. Let, for all i ∈ N[1:N ], ηi := maxη≥0{η : ηSi ⊆ Xi and ηKiSi ⊆ Ui}.
Clearly, due to Assumptions 1 and 2, it holds that, for all i ∈ N[1:N ], 0 < ηi < ∞. Let for all i ∈ N[1:N ],
θ̄i := (0, . . . , 0, ηi, 0, . . . , 0) and Θ̄ := {0} ∪ {θ̄i : i ∈ N[1:N ]}. By construction, we have that, for all i ∈ N[1:N ],
θ̄i ∈ Θ0 and that convh(Θ̄) is a full–dimensional subset of RN+ containing the origin. Consequently, since Θ0 is
convex, it follows that convh(Θ̄) ⊆ Θ0 and Θ0 is a full–dimensional subset of RN+ . The claimed properties of the set
Θ0 are verified.

Proof of Proposition 2:

Let X ∈ S(S,Θ), then X = (θ1S1, θ2S2, . . . , θNSN ) for some θ ∈ Θ. Since Θ ⊆ Θ0 it follows that, for all i ∈ N[1:N ],
θiSi ⊆ Xi and θiKiSi⊕

⊕
j∈N(N,i)

θjK(i,j)Sj ⊆ Ui. By Assumption 3 and definition of the functions µi (·) : i ∈ N[1:N ]

in (17), we have ∀i ∈ N[1:N ], θiA(i,i)Si ⊕
⊕

j∈N(N,i)
θjA(i,j)Sj ⊆ θ+i Si with θ+i =

∑
j∈N[1:N]

µ(i,j)θj given as in (18).

But, since θ ∈ Θ, Assumption 3 guarantees that θ+ := Mθ ∈ Θ and, consequently, (θ+1 S1, θ
+
2 S2, . . . , θ

+
NSN ) ∈ S(S,Θ).

Hence, the family of sets S(S,Θ) is an invariant family of sets.

Proof of Proposition 3:

(i) Assumption 4 implies the existence of a PC–set in RN , say L, and a scalar λ ∈ [0, 1) such that ML ⊆ λL. Since,
MRN+ ⊆ RN+ it follows that L̄ := L ∩ RN+ is a convex, compact and full–dimensional subset of RN+ that contains the
origin and is such that ML̄ ⊆ L̄. Lemma 1 yields the fact that the set Θ0 defined in (20) is a convex, compact and
full–dimensional subset of RN+ that contains the origin. Hence, there exists a positive scalar d such that the set dL̄ is
contained in Θ0 (recall the definition of the set convh(Θ̄) in the proof of Lemma 1 and the fact that convh(Θ̄) ⊆ Θ0).
The set dL̄ is a non–trivial set and hence Θ = dL̄ verifies the claim. Note also that, since ML̄ ⊆ L̄ and, in turn,
MdL̄ ⊆ dL̄, it holds that, for all k ∈ N, dL̄ ⊆ Θ∞ ⊆ Θk where sets Θk and Θ∞ are given by (21) and (22) and,
hence, the set Θ∞ is also a non–trivial set verifying the claim. (ii) This fact follows immediately from (i).

Proof of Theorem 1:

(i) By construction, since S(S,Θ) is an invariant family of sets, we have that Yk ∈ S(S,Θ) implies Yk+1 ∈ S(S,Θ).
Since Y0 ∈ S(S,Θ) the principle of mathematical induction yields the first fact. (ii) Due to Assumption 2 there
exists a pair of scalars η1 ∈ (0,∞) and η2 ∈ (0,∞) such that, for all i ∈ N[1:N ], η1Li ⊆ Si ⊆ η2Li. In turn, for any
θ = (θ1, θ2, . . . , θN ) ∈ RN+ , η1θiLi ⊆ θiSi ⊆ η2θiLi and η1

∑
i∈N[1:N]

θi ≤
∑
i∈N[1:N]

H(Li, θiSi, {0}) ≤ η2
∑
i∈N[1:N]

θi.

Assumption 4 implies the existence of two scalars ã ∈ [0, 1) and b̃ ∈ (0,∞) such that, for all k ∈ N, |θk|L ≤ ãk b̃|θ0|L.
Since η1

∑
i∈N[1:N]

θi ≤
∑
i∈N[1:N]

H(Li, θiSi, {0}) ≤ η2
∑
i∈N[1:N]

θi there exists a pair of scalars η3 ∈ (0,∞) and

η4 ∈ (0,∞) such that η3|θ|L ≤
∑
i∈N[1:N]

H(Li, θiSi, {0}) ≤ η4|θ|L. In turn, since for all k ∈ N, |θk|L ≤ ãk b̃|θ0|L with

ã ∈ [0, 1) and b̃ ∈ (0,∞), it follows that there exists a pair of scalars a ∈ [0, 1) and b ∈ (0,∞) such that, for all k ∈ N,∑
i∈N[1:N]

H(Li, Y(k;i), {0}) ≤ akb
∑
i∈N[1:N]

H(Li, Y(0;i), {0}). (iii) By (ii) we have
∑
i∈N[1:N]

H(Li, Y(k;i), {0})→ 0 as

k →∞ and, hence, ∀i ∈ N[1:N ], H(Li, Y(k;i), {0})→ 0 as k →∞.
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