
On Tailored Model Predictive Control for Low Cost Embedded Systems
with Memory and Computational Power Constraints

Markus Kögel and Pablo Zometa and Rolf Findeisen

Abstract— Even though many efficient formulations and
implementations exist by now, predictive control on low cost
embedded systems with constrained memory and computing
power is still challenging. We present an algorithm combining
Nesterov’s gradient method and the method of multipliers
for linear model predictive control, which can exploit the
structure and does not need slack variables. Moreover, we
discuss implementation issues focusing on embedded systems.
We examine the performance using a benchmark example and
illustrate the suitability for embedded system using a simple
mechatronic system with state and input constraints and a low-
cost microcontroller.

I. INTRODUCTION

Model predictive control (MPC) enables control of con-
strained systems with a high performance, see e.g. [6], [10],
[17]. MPC uses as feedback the solution of an optimal
control problem: at each sampling instance, an optimal
control problem is solved and the first part of the resulting
optimal input is applied until the next sampling instance.

Unfortunately, the computational demand of MPC is often
a challenge, especially for embedded hardware with limited
computational power. Therefore the efficient and tailored
solution of the underlying optimization problem is of interest,
because it allows to use cheaper hardware, to treat more
complex problems or to increase the sampling rate.

Here we present and evaluate an efficient method for MPC
of linear systems with polytopic state and input constraints
and a quadratic cost criterion. In detail, we propose a method
using online-optimization, i.e., the optimal control problem,
a quadratic program, is solved online at each step.

In contrast, in explicit MPC one determines offline control
laws for all possible states. At each sampling instance one
needs to find and evaluate the correct control law, see [1].
However the memory demand of explicit MPC grows in
general exponentially in the number of states, inputs and
horizon, thus it is usually restricted to small-scale systems.

By now different online-optimization approaches exist.
Often interior point methods are considered for MPC. For
example the works [11], [12], [18], [22] present tailored
methods, which utilize the inherent structure of MPC prob-
lems. Also predictive control based on active set methods
has been investigated, we refer to the works [5], [14]. In
[19] Nesterov’s gradient method is considered for predictive

M. Kögel, P. Zometa and R. Findeisen are with the Institute for
Automation Engineering, Otto-von-Guericke-University Magdeburg,
Magdeburg, Germany. {markus.koegel, pablo.zometa,
rolf.findeisen}@ovgu.de.

M. K. is supported in part by the International Max Planck Research
School Magdeburg, Germany.

control of systems with input constraints. In [20] it is
combined with partial Lagrange relaxation to handle also
state constraints.

For input constrained MPC using Nesterov’s method we
outlined in [7] a method to determine the gradient exploiting
the problem structure and in [24] an implementation on
an embedded system. In [8], [9] we presented different
combinations of Nesterov’s method with the method of
multipliers to consider in addition state constraints.

Here we present an algorithm also based on Nesterov’s
gradient method and the method of multipliers, which solves
as [9] the condensed quadratic program. However in contrast
to [9], this algorithm uses one multiplier per two-sided
constraint and does not use slack variables, which enables
a faster solution. Although the objective function of the
subproblem is not everywhere twice differentiable, we show
how the arising subproblem can be solved using Nesterov’s
gradient method. Additionally, the algorithm can utilize the
problem structure, which results in a memory demand and
time complexity linear in the horizon length. We illustrate the
efficiency of the proposed method via an implementation on
an embedded system and a benchmark example.

The remainder of the paper is structured as follows. First
we discuss the problem setup in Section II. In Section III
we apply the method of multipliers to the MPC problem.
Afterwards in Section IV, we analyze the subproblem arising
from the multiplier method and its solution using Nesterov’s
method. In Section V we discuss implementation issues. In
Section VI examples illustrate the performance and applica-
bility for embedded control of the proposed algorithm.

The notation is mainly standard. All norms are Euclidean
norms. 〈x, y〉 is the inner product. λMin(M) denotes the
smallest eigenvalue of a symmetric matrix M . For a vector
v, vi is its ith entry. Mi is the ith row of the matrix M .

II. MODEL PREDICTIVE CONTROL SETUP

In this work we consider model predictive control of a lin-
ear, time-invariant, discrete-time plant subject to constraints
on the states and input and a quadratic cost criterion.

In detail, the linear plant is given by

x(tk+1) = Ax(tk) +Bu(tk), (1)

where x(tk) ∈ Rn is the state and u(tk) ∈ Rp the input.
Additionally, we assume that the constraints are split

into two classes. First the input u(tk) needs to satisfy box
constraint

u ≤ u(tk) ≤ u. (2)

Moreover, there are additional constraints on state and input

e ≤Cx(tk) +Du(tk) ≤ e, (3)

where C ∈ Rq×n and D ∈ Rq×p. This classification
simplifies later the formulation of the algorithm.

Since we use a control and prediction horizon of N , let
us introduce the input sequence u and state trajectory x

x =
(
x(k)T , . . . x(k +N)T

)T
(4a)

u =
(
u(k)T , . . . u(k +N − 1)T

)T
, (4b)

as optimization variables1, where u ∈ RNp and x ∈
R(N+1)n. Clearly, u and x need to be consistent with the
plant dynamics (1) and the current state x(tk). In particular,
we need to have

x(k) = x(tk). (5)

Additionally, x(i) and u(i) need to satisfy the constraints (2),
(3) for i = k, . . . , k + N − 1. The terminal state x(k + N)
need to satisfy a terminal constraint given by

f ≤ Fx(k +N) ≤ f, (6)

where F ∈ Rr×n.
The considered convex quadratic cost criterion J is

J =

N−1∑
i=0

Js(x(i+ k), u(i+ k)) + Jf , (7)

where Js is the stage cost and Jf is the terminal cost

Js(x(j), u(j)) =
1

2

(
x(j)
u(j)

)T
W

(
x(j)
u(j)

)
(8a)

W = WT =

(
Q ST

S R

)
≥ 0 (8b)

Jf =
1

2
x(N + k)TTx(N + k), T ≥ 0. (8c)

For possible choices of terminal constraints and costs we
refer to [13] and the references therein.

In summary, we need to determine u and x, which
minimizes the cost function (7), is consistent with the plant
dynamic (1) and the current state (5) and satisfies the
inequality constraints (2), (3), (6).

In this work we use a condensed formulation, which means
that the equality constraints (1) and (5) are used to eliminate
x. The resulting quadratic program (QP) has only u as
optimization variable and is given by

min
u≤u≤u

(
1

2
uTHu + uT g(x(tk))

)
(9a)

s.t. z(x(tk)) ≤ Eu ≤ z(x(tk)), (9b)

where u ≤ u ≤ u denotes the set given by

u ≤ u(i) ≤ u, i = k, . . . , k +N − 1. (10)

The matrix E and vectors z(x(tk)), z(x(tk)) depend on the
constraints (3), (6) and the dynamic (1) and are given in

1For the optimization variables we use the notation x(k), u(k) to
distinguish them from the actual state x(tk) and input u(tk).

Appendix A. The cost terms g(x(tk)), H result from the
system dynamic (1) and the cost criterion (7), see e.g. [7].

In summary, at each sampling instance tk the optimization
problem (9), which depends on x(tk), is solved to obtain the
feedback u(tk) = û(k) as first part of the optimal input û.

In the next sections we outline and evaluate a method to
solve (9) using a combination of the method of multipliers
and Nesterov’s gradient method.

III. METHOD OF MULTIPLIERS

In this section we apply the method of multipliers, also
called (partial) augmented Lagrangian method, to the MPC
problem (9). In detail, we use the method of multipliers to
treat the inequality constraints (3), (6), see e.g. [2, Ch. 3,
Ch. 5] for more details.

Introducing slack variables s an equivalent formulation of
the optimization problem (9) is given by

min
s,u≤u≤u

(
1

2
uTHu + uT g(x(tk))

)
(11a)

subject to z(x(tk)) ≤ Eu + s ≤ z(x(tk)), s = 0. (11b)

Applying the method of multipliers to the equality s = 0,
see [2], yields the subproblem

min
s,u≤u≤u

(
1

2
uTHu + uT g(x(tk)) + ξT s +

c

2
‖s‖22

)
(12a)

subject to z(x(tk)) ≤ Eu + s ≤ z(x(tk)), (12b)

where ξ is the so-called multiplier and c, c > 0 is the so-
called penalty parameter, which can be freely chosen.

The method of multipliers is iterative and each iteration
consists of two steps. First, we solve (12) using a multiplier
ξi and obtain the minimizers ŝi and ûi. Afterwards, we
determine a new multiplier ξi+1 using the multiplier update

ξi+1 = ξi + cŝi. (13)

The subproblem (12) features the slack variables s. One
can eliminate these slack variables s from the subproblem
(12) by first minimizing with respect to them, see [2]. In our
case this yields the subproblem

min
u≤u≤u

fa(u; ξ, x(tk)), (14)

with the objective function fa parameterized by ξ and x(tk)

fa(u; ξ, x(tk)) =
1

2
uTHu + uT g(x(tk)) + P (u; ξ, x(tk)).

(15)

Here the function P (u; ξ, x(tk)) is given by

P (u; ξ, x(tk)) = min
s

(
ξT s +

c

2
‖s‖22

)
(16)

subject to z(x(tk)) ≤ Eu + s ≤ z(x(tk)).

Since P (u; ξ, x(tk)) is a sum of scalar optimization prob-
lems, we can solve it analytically, compare [2]. In particular,

the optimal ŝ(u; ξ, x(tk)) is given by

ŝj(u; ξj , x(tk))

=


Eju− zj(x(tk)), if S+

j (u; ξj , x(tk)) > 0

Eju− zj(x(tk)), if S−j (u; ξj , x(tk)) < 0

− 1
c ξj , else.

(17)

Here we use as shorthand

S+
j (u; ξj , x(tk)) = ξj + c(Eju− zj(x(tk))) (18a)

S−j (u; ξj , x(tk)) = ξj + c(Eju− zj(x(tk))). (18b)

So, P (u; ξ, x(tk)) (16) is given analytically by

P (u; ξ, x(tk)) =

Nq+r∑
j=1

Pj(u; ξj , x(tk)) (19a)

Pj(u; ξj , x(tk)) =ξj ŝj(u; ξj , x(tk)) +
c

2
ŝj(u; ξj , x(tk))2,

(19b)

where ŝj(u; ξj , x(tk)) is as in (17).
We refer to the next section for a discussion of properties

of the subproblem (14) and its solution based on Nesterov’s
gradient method.

Using the minimizer ûi of (14) we can rewrite the multi-
plier update (13) using (17) and (18) as

ξi+1
j =


S+
j (ûi; ξij , x(tk)), if S+

j (ûi; ξij , x(tk)) > 0

S−j (ûi; ξij , x(tk)), if S−j (ûi; ξij , x(tk)) < 0

0, else.
(20)

In summary, the presented multiplier method solves the
problem (9) by solving the subproblem (14) and updating
the multipliers (20) as outlined in Algorithm 1.

Algorithm 1 Multiplier method
Require: Initial guess ξ0 ≥ 0, state x(tk), number of

iterations imax
1: for i = 1, . . . , imax do
2: Solve subproblem (14) and obtain ûi

3: Compute ξi using multiplier update (20)
4: end for
5: return ξimax , ûimax

Note that the elimination of the slack variables is basically
only an approach to solve the subproblem arising from the
multiplier method. Thus one could use in Algorithm 1 also
(12) and (13), instead of (14) and (20), respectively.

Remark 1: (Convergence and inexact minimization)
Since the function 1

2u
THu+ uT g(x(tk)) is convex, (10) is

closed and convex and the constraints (3), (6) are linear in u
any value of c > 0 guarantees convergence of the multiplier
method [2], [4], [21] (assuming a precise enough solution of
(14)). In general larger values of c improve the convergence,
but lead to a more difficult subproblem as outlined in the
next section.

In this work we focus on the application of this multiplier
method to the MPC problem (9) and implementation issues,
e.g., the solution of the subproblem (14) using Nesterov’s
method. Determining or discussing analytical convergence
bounds of the multiplier method or the influence of inexact
minimization of (14) is beyond the scope of this work.

Remark 2: (Different update schemes)
There exist multiplier update schemes different from (20).
For example it is possible to use Nesterov’s gradient method
for the update or a second order update, compare [2], [3].
Unfortunately, using Nesterov’s gradient method for the
multiplier update requires a precise solution of subproblem
(14), due to its inherent error accumulation, see [3]. Also a
second order update requires a precise solution and has also
a larger computation effort than (20), compare [2]. Thus, we
use the simple update (20), which seems to be more robust to
inexact solution of subproblem (14), compare [2], [4], [21].

IV. SOLUTION AND PROPERTIES OF THE SUBPROBLEM

In this section we outline a solution of subproblem (14)
using Nesterov’s gradient method, also known as Fast
Gradient method, [15], [16]. We first present this method
and then investigate properties of the subproblem.

A. Nesterov’s gradient method
We use Nesterov’s gradient method [15], [16] to solve

(14), which requires that fa is convex and has a Lipschitz
continuous gradient. So there need to be for all u ∈ RNp,
v ∈ RNp constants L and φ ≥ 0 such that

‖∇fa(u; ξ, x(tk))−∇fa(v; ξ, x(tk))‖ ≤ L‖u− v‖,
(21)

〈∇fa(u; ξ, x(tk))−∇fa(v; ξ, x(tk),u− v〉 ≥ φ‖u− v‖2.
(22)

L is a Lipschitz constant of the gradient and φ is called
strong convexity parameter. In Proposition 1 we show that
there are indeed such constants and how to compute them.

Nesterov’s gradient method is presented in Algorithm 2.
The method uses the projected gradient step

GU (u; ξ, x(tk)) = PU
(
u− 1

L
∇fa(u; ξ, x(tk))

)
, (23)

where PU denotes the Euclidean projection onto the set U .
In our case we have U = {u s.t. u ≤ u ≤ u}, compare (10).
The projection onto this box set is the saturation

PU (u) = max(u,min(u,u)), (24)

where max and min are applied entrywise.
The scalar sequence γi (step 4 of Algorithm 2) needs

to satisfy certain conditions and depends on the strong
convexity parameter φ, see [16]. In particular, if φ > 0,
then one can choose γi constant: γi =

√
L−
√
φ√

L+
√
φ

.
Remark 3: (Other input constraint sets U)

One can use other closed and convex set U instead of the
box set u ≤ u ≤ u. In general one need to solve an
optimization problem for the Euclidean projection PU . In
practice this limits U to sets for which the projection is
efficiently possible, see e.g. [16], [19].

Algorithm 2 Nesterov’s gradient method
Require: Initial guess u0, number of iterations iNGMmax , Lip-

schitz constant L and sequence γi

1: Set v0 = u0

2: for i = 1, . . . , iNGMmax do
3: Compute ui = GU (vi−1; ξ, x(tk))
4: Compute vi = ui + γi(ui − ui−1)
5: end for
6: return ui

NGM
max

B. Properties of the subproblem

In this part we investigate the properties of the subproblem
(9) and discuss how to compute the constants L and φ
necessary for Nesterov’s gradient method.

Computing the gradient of fa(u; ◦)2 (15) using (17) yields

∇fa(u; ◦) = Hu + g(x(tk)) +

Nq+r∑
j=1

∇Pj(u; ◦j) (25)

∇Pj(u; ◦j) (26)

=


ETj (cEju− czj(x(tk)) + ξj), if S+

j (u; ◦j) > 0

ETj (cEju− czj(x(tk)) + ξj), if S−j (u; ◦j) < 0

0, else.

We observe that the gradient exists everywhere. Note that
we can compute ∇P (u; ◦) using

∇P (u; ◦) = ET
(
max(S+(u; ◦),

)
+ min

(
S−(u; ◦), 0)

)
,

(27)

compare (18) and (25).
In contrast the Hessian H(fa(u; ◦)) exists, if and only if,

S+
j (u; ◦j) 6= 0 S−j (u; ◦j) 6= 0

for all j = 1, . . . , Nq + r with Ej 6= 0 due to the
switching in (26). Hence, fa is in general not everywhere
twice differentiable. If the Hessian exists, it is given by

H(fa(u; ◦)) = H +

Nq+r∑
j=1

H(Pj(u; ◦j)))

H(Pj(u; ◦j) =


cETj Ej , if S+

j (u; ◦j)) > 0

or S−j (u; ◦j)) < 0

0, else.

Although fa is not everywhere twice differentiable, we can
determine constants L and φ for Nesterov’s method using
the following proposition.

Proposition 1: (Lipschitz and strong convexity constant)
A strong convexity constant of fa is φ = λMin(H) and
L = ‖H + cETE‖ is a Lipschitz constant of ∇fa.
The proof is given in Appendix C.

Note that determining L and φ is straightforward and can
be done offline.

The worst case convergence of Nesterov’s gradient method
depends on the condition number κ = Lφ−1 ≥ 1, compare

2We use the shorthand ◦ = (ξ, x(tk)) and ◦j = (ξj , x(tk))

[16]. The next proposition describes the asymptotic influence
of the penalty parameter c on the condition number κ .

Proposition 2: (Influence of c on κ)
a) L is bounded above and below by an increasing function,
which is affine in c.
b) If c→ 0, then κ→ ‖H‖

φ .
c) If c→∞, then κ→∞.
The proof is provided in Appendix D.

So for very large penalty parameters c subproblem (14)
might be more difficult to solve whereas for small c the
condition number κ is only slightly larger than the con-
dition number of H . Thus for the choice of c a trade-off
is necessary: choosing a large c requires to spend more
computational effort on the solution of the subproblem, but
can improve the convergence rate of the multiplier method.

V. IMPLEMENTATION

In this section we discuss implementation issues such as
structure exploitation, warm-starting and the computational
demand. We also compare the proposed algorithm with our
previous work [9] and outline the improvements.

A. Computational demand and use of problem structure

There are two methods to compute the gradient ∇fa. First
one can directly evaluate (27) and Hu+g(x(tk)) or one can
use the problem structure, similarly as in [7], [9].

Direct evaluation of (27) and Hu+ g(x(tk)) requires per
iteration three matrix-vector multiplications, with E, ET and
H , respectively3. So the overall time complexity is quadratic
in N due to the size of E and H . In addition, we need
to compute g(x(tk)) and z(x(tk)), z(x(tk)) (35) once per
sampling instance, which results in the time complexity
reported in Table I.

Using the problem structure to compute the gradient ∇fa,
yields the computational demand presented in Table I, which
is only linear in N , compare [7], [9].

Finally, let us outline the memory demand of the proposed
MPC algorithm, where we distinguish between dynamic data
(variables) and static data (constants). Table I illustrates the
memory demand. Note that for simplicity we neglect the data
that does not depend on N .

In summary, using the structure provides an advantage for
problems where the horizon is large compared to the number
of states, since for this approach the memory demand and
the time complexity per iteration are only linear in N .

B. Choice of initial guesses / Warm-starting

We need initial guesses for Algorithms 1 and 2.
If we restart the overall algorithm, then we can use

either an initial guess based on the previous solution (warm-
starting) or zero as initial guess (cold-starting). Warm-
starting delivers usually better results, in particular for ac-
curate models and if the disturbances are small.

Additionally, if we need to solve a subproblem for dif-
ferent multipliers ξ, but with the same x(tk), i.e., within
Algorithm 1, then we can also use warm-starting.

3We need to compute only Eu once for S+ and S−.

Direct method Structure exploiting method
Overall time complexity O(Np+Nq + r + n)(n+ p)) +O(Ψ(Np)2 + ΨNp(Nq + r)) O(Ψ(Np+Nq + r + n)(n+ p))
Demand of Static Data (Np)2 +Np(Nq + r) 2Np(n+ p)
Demand of Dynamic Data 3(Nq + r) + 4Np 2(Nq + r) + 4Np

TABLE I
OVERALL TIME COMPLEXITY AND MEMORY DEMAND FOR DIRECT AND STRUCTURE EXPLOITING METHOD (Ψ = iALM

Max i
NGM
Max).

C. Further implementation issues

We want to mention that the algorithm does not require
divisions, if one computes 1

L offline, and no square-roots.
This is advantageous for embedded hardware, which does
divisions and square-roots a lot slower than additions and
multiplications. Moreover, one can avoid the multiplication
with 1

L in (23) by scaling the data offline appropriately.
Note that the proposed algorithm is rather simple to imple-

ment: it requires only simple linear algebra such as matrix-
vector multiplications, vector additions and comparisons.

D. One sided constraints

We can consider also one sided constraints

Cosx(k) +Dosu(k) ≤ eos (29)

by considering them as two sided constraints using (3)(
e
µ

)
≤
(

Cx(k) +Du(k)
Cosx(k) +Dosu(k)

)
≤
(
e
eos

)
, (30)

where µ is small enough. By adapting (19) and (20) we can
actually implement µ = −∞ for the one sided constraints:
S−j > 0 will always be satisfied for this µ, so we need
evaluate only S+

j for these constraints.

E. Comparison with previous work [9]

Note that in [9] we used a different approach with slack
variables and two multiplier per two-sided constraints.

In the case that all constraints are two-sided the condition
number κ̃ of the subproblem in [9] satisfies

κ̃ ≥ ‖H + 2cETE‖
min(c, λMin(H))

≥ κ =
‖H + cETE‖
λMin(H)

,

compare Proposition 1 and [9]. Hence (14) has a lower
condition number than the subproblem in [9], which enables
in general a faster solution.

In addition, the proposed algorithm has a slightly smaller
memory demand and computational effort: the computational
demand per iteration of [9] is O(Nq + r) larger and the
amount of dynamic data is 8(Nq + r) larger.

VI. EXAMPLES

We illustrate the proposed algorithm using a benchmark
example and an implementation on an embedded system.

A. Embedded system implementation

We present now an implementation of the proposed al-
gorithm using a low-cost microcontroller unit (MCU). We
briefly explain the tuning of the algorithm and discuss the
results.

1) System description: We consider a two-link robotic
arm build with the Lego NXT platform (Fig. 1). Our goal is
to use MPC to drive the system to the origin with limited
speed starting from an arbitrary position in the horizontal
plane (gravitation does not influence the system). Link i=
1, 2 is described by states θi and ωi. θi is the angular position
measured by an incremental encoder. ωi is the angular speed,
which is estimated by discrete differentiation of θi plus a
low-pass filter. Link i is actuated by a motor via pulse-
width-modulated (PWM) voltage ui in percentage. Link 1
is constrained in the input and states as −100 ≤ u1 ≤ 100,
and −1 ≤ ω1 ≤ 1. Link 2 is constrained as −25 ≤ u2 ≤ 25,
and −1 ≤ ω2 ≤ 1. See Appendix B for the continuous-time
system matrices. We discretized our system using a zero-
order hold discretization.

The NXT electronics include an ARM7TDMI processor
core running at 48 MHz, and 64 kB of memory. It lacks a
floating-point unit (FPU), which makes floating-point arith-
metic around 4 times slower than fixed-point arithmetic. For
an in-depth description of the test platform see [24].

2) Algorithm tuning: The design of an MPC controller
allows some freedom in the choice of application dependent
parameters, like the sampling time and horizon length. To
simplify the discussion, we take them as fixed to the fol-
lowing values: sampling time of 4 ms, horizon length of
5 steps. In an initial test, we determined the computational
capabilities of our hardware for the given setup. We could
only perform in real-time 1 iteration of Algorithm 2 (the
main computational burden) using single-precision floating-
point arithmetic. The use of Q13.18 fixed-point arithmetic4

instead yields up to 6 iterations but with an inferior numeric
precision. This low number of iterations requires a high pe-
nalization of the constraint violation, i.e. a large c, and a low
condition number κ to obtain an acceptable approximation
of the QP solution.

Note that we have κ ≤ ‖H‖φ−1 + c‖ETE‖φ−1 from
Proposition 1. To get a good trade-off between c and κ, we
tune the weighting matrices Q, R, S, and T to obtain a
good control performance of the MPC controller and at the
same time a low cond(H) = ‖H‖φ−1, similar as in [23].
Afterwards, we increase c as long as κ is acceptable. For this
example using the weighting matrices reported in Appendix
B and c = 2000 we have κ = 10.

3) Results and Discussion: Fig. 2 shows the step re-
sponse of our system for an initial conditions x(t0)T =
[2.6 0.0 3.5 0.0], where we only plot the behavior of link

4Q13.18 denotes 32-bit binary fixed-point numeric representation, with
13 integer bits plus 1 sign bit and 18 fractional bits.

x=0

u2

u1

θ2θ1
Link 1

Link 2

Fig. 1. The 2-link robotic arm used as test platform.

Fig. 2. Step response for link 2. The constraints are shown in grey.
Continuous lines for simulated plant. Dashed lines for real plant.

2, as link 1 showed a similar trend. We perform 3 iterations
for (20) and 2 for subproblem (14), with warm-starting and
Q13.18 for both plots (simulated and real). The computation
time on the MCU is 3.5 ms and the compiled code size
is around 15 kB. Using the nominal plant, the MPC on
the MCU is able to satisfy the input and state constraint
(continuous line in Fig. 2). The difference to exact solution
(not shown in the figure) is negligible for practical purposes.
In other words without model plant mismatch and state
estimation errors the presented algorithm is applicable on
the MCU.

We repeat under the same conditions using the actual
2-link arm (dashed line in Fig. 2). We see that the input
constraints are always satisfied. The constraint on ω2 is
violated by around 40% at the beginning of the motion.
This is due to model plant mismatch and state estimation
errors. After 300 ms the MPC controller is able to satisfy
the constraint on ω2 with violations of less than 15% 5.

Note that this problem can be split into two separated MPC
controllers (the two links are not coupled), which would
allow to solve the problem about twice as fast. Our intention
with this example is, however, to show that similar problems
can be solved with low-cost embedded microcontrollers, with
limited computational power, low numeric precision, and
little memory, using the ideas presented in this paper.

B. Benchmark example

To evaluate the performance for larger systems and com-
pare it with other solution methods we present another
example. We consider six masses connected by springs to
each other and to walls, as illustrated in Figure 3. Actuators
can apply a force to each mass. We assume that the actuators
have a maximum force and a limited slew rate.

In detail, we use the following continuous time model

ρ̈i(t) = −2ρi(t) + ρi+1(t) + ρi−1(t) + Fi(t), (31)

where ρ1, . . . , ρ6 are the position of the masses, the actuator
forces are F1, . . . ,F6 and ρ0 = ρ7 = 0 (solid walls). Note

5A video demonstration of this system is online available at the webpage
http://ifatwww.et.uni-magdeburg.de/syst/about us/people/zometa/.

that this system is stable, but not asymptotically stable, since
there is no damping.

For the overall model we consider the actuator force F as
state and the rate ∆F as input. This results in

x(tk+1) =

(
Acm Bcm

06×6 I6×6

)
x(tk) +

(
06×6

I6×6

)
u(tk),

where the state x (n = 18) and the input u (p = 6) are

x =
(
ρT ρ̇T FT

)T
u = ∆F . (32)

Acm, Bcm are obtained by discretizing (31) with a zero order
hold and a sampling time of 0.5.

The limitations of the actuators are

−0.5 ≤ ∆Fi(tk) ≤ 0.5 − 1 ≤ Fi(tk) ≤ 1. (33)

So we have q = r = 6. We choose the weighting matrices
as Q = I , R = I and T = I and use a horizon of N = 30.

We investigate the algorithm for c = 100 and using
iALMMax = 4 and iFGMMax = 40 iterations for the subproblem and
warm-starting. This results in a computation time of about
7.4 ms using a single core of a 2.4 GHz Intel Q6600 CPU.

To obtain an accuracy estimate we use Monte Carlo
simulations and compare the obtained solution with the exact
solution. We assume that the chain is at t0 at rest at ini-
tial positions randomly chosen from a uniform distribution:
ρi(t0) ∈ [−5, 5]. Moreover, we apply on each mass in each
sampling step a random force uniformly distributed between
−2 and 2. We compare the difference in the accumulated
cost and the input difference

χ =

∑
k |Js(x(tk), u(tk))− Js(x̃(tk), ũ(tk))|∑

k J
s(x(tk), u(tk))

(34a)

ψ =

∑
k ‖u(tk)− ũ(tk)‖∑

k ‖u(tk)‖ , (34b)

where u, x correspond to exact solution of (9) using Matlab’s
active set solver quadprog and ũ, x̃ denote the solution using
the proposed algorithm. Note that we use the same realization
of the random forces and initial positions for comparison.

Figure 4 illustrates a sample path behavior. Note that
the difference between exact and inexact solution is barely
visible and that both type of constraints (33) are at some
time instances active.

Using 20 such simulations each 6000 steps long and
evaluating (34) over the last 5000 steps we obtain the
averaged values χavg = 0.06% and ψavg = 0.15%.

Table II compares the performance of the proposed algo-
rithm with our algorithm presented in [9], qpOASES [5] and
the algorithm [22].

For qpOASES we limit the number of working set changes
to 30 to guarantee a maximum computation time. For the
algorithm [22] we set the maximum number of Newton
iterations to 10 and choose after some tuning as barrier
parameter 10−2. Since this algorithm solves problems with
box-constraints we limit ρi and ρ̇i, i = 1, . . . , 6 to ±1015.
Note that these dummy constraints are never active during the
simulations. We observe that our proposed algorithm obtains
faster and more accurate results.

Fig. 3. Benchmark example: Chain of masses connected by springs.

0 50 100

−10

0

10

position ρ1

20 40 60 80 100
−1

0

1

input F1

20 40 60 80 100
−0.5

0

0.5

input slew rate ∆F1

40 45 50 55 60

−0.5

0

0.5
input F1 (zoomed)

Fig. 4. Sample paths. Black: exact solution. Blue: inexact solution. Red:
actuator limitations (constraints).

Algorithm χavg ψavg Tmax Tavg
Proposed algorithm 0.06% 0.15% 7.4ms 7.4ms
Algorithm [9] 0.07% 0.18% 15ms 15ms
qpOASES [5] 0.68% 0.49% 24ms 7.9ms
Algorithm [22] 0.07% 0.31% 18ms 11ms

TABLE II
PERFORMANCE FOR BENCHMARK EXAMPLE. Tmax / Tavg MAXIMUM /

AVERAGE COMPUTATION TIME, χavg COST DIFFERENCE /
SUBOPTIMALITY INDEX, ψavg INPUT DIFFERENCE.

Finally, let us compare the proposed algorithm with [9]. To
obtain similar accuracy we used the same penalty parameter
c and number of multiplier iterations and 80 iterations to
solve the subproblem. The required computation time of [9]
is about twice as large, which is mainly due to the increased
number of iterations. For this case the proposed algorithm
requires only about 3% less time per iteration of Nesterov’s
method than [9], as discussed in Section V-E.

Overall, the proposed algorithm delivers for this example
good performance.

VII. SUMMARY AND FUTURE WORK

In this work we presented an iterative algorithm for
predictive control of linear systems with constraints, which
combines Nesterov’s gradient method and the method of
multipliers. In particular, we outlined how the nonsmooth
subproblem can be solved with Nesterov’s gradient method
and how to compute the necessary constants. We discussed
implementation issues of the algorithm and illustrated its
performance by a benchmark example. Additionally, a real
implementation demonstrated its suitability for low cost
embedded systems.

Future work will focus on further evaluation of the pro-
posed algorithms, an analytical investigation of the overall
convergence and further comparisons with other algorithms.

APPENDIX

A. Matrix E and Vectors z(x(tk)), z(x(tk))

The matrix E ∈ RNq+r×Np and vectors z(x(tk)),
z(x(tk)) can represent state constraints, input constraints or
mixed constraints. E and z(x(tk)) are given by

z(x(tk)) =


e−CA0x(tk)

...
e−CAN−1x(tk)

f−FANx(tk)

 (35)

E =


D 0 ... 0
CB D ... 0

...
...

. . .
...

CAN−2B CAN−3B ... D
FAN−1B FAN−2B ... FB

 (36)

and z(x(tk)) is similar to z(x(tk)).

B. System matrices for 2-link robotic arm

The continuous-time matrices are

Ac =

(
0 1 0 0
0 −17.2 0 0
0 0 0 1
0 0 0 −16.1

)
, Bc =

(
0 0

2.62 0
0 0
0 2.48

)
.

The state and input vectors are

xT =
(
θ1 ω1 θ2 ω2

)
, uT =

(
u1 u2

)
.

The weighting matrices Q, R, S and T in (7) are chosen as

Q = diag (1.14×104 2.24×101 1.40×104 2.94×101) ,

R = diag (2.20×10−1 2.37×10−1) , S = 0, T = Q.

C. Proof of Proposition 1

We need to show that L and φ satisfy (21) and (22),
respectively for all u ∈ RNp and v ∈ RNp.

Let u and v with u 6= v be arbitrary and let the segment
connecting u with v be given by

Γ(ζ) = u + ζ(u− v), ζ ∈ [0, 1] (37)

and let σ = u− v.
Let us show that although the function fa (15) is not

everywhere twice differentiable, fa has on Γ only at a finite
number of points no second directional derivative in the
direction σ

‖σ‖ . From (17), (19) we observe that each part Pj
of the function P consists of three pieces and a switching
between the pieces appears at Γ(ζ), if the sign of S+

j or of
S−j changes, i.e., at ζ we need to have

S+
j (Γ(ζ)) = 0 S+

j (Γ(ζ + ε))S+
j (Γ(ζ − ε)) < 0, (38)

or

S−j (Γ(ζ)) = 0 S−j (Γ(ζ + ε))S−j (Γ(ζ − ε)) < 0, (39)

for all ε > 0 6. Note that S+
j (Γ(ζ)) and S−j (Γ(ζ)) are linear

in ζ since S+
j (u) and S−j (u) are linear in u and Γ is linear

in ζ. Thus for each j there can be maximally one ζ such
that (38) holds and one ζ such that (39) holds.

6We display in this proof only the dependence of S+, S−j , P , Pj and
fa on u and skip the dependence on the (constant) ξ and x(tk).

Overall, there can be maximally Θ ≤ 2(Nq+r) points on
Γ where (38) or (39) hold for some j. Let us denote these
points by Γ(ω1), Γ(ω2), . . . , Γ(ωΘ) with ω1 < ω2 . . . < ωΘ.
Note that we have 0 ≤ ω1 and ωΘ ≤ 1, compare (37).

If we define additionally ω0 = 0, ωΘ+1 = 1, then we have
due to (37)

∑Θ
i=0(ωi+1 − ωi) = 1 and

∇fa(u)−∇fa(v) =

Θ∑
i=0

∇fa(Γ(ωi+1))−∇fa(Γ(ωi)).

(40)

From (25) follows that the directional derivative of fa in the
direction σ

‖σ‖ is linear, if ζ ∈ (ωi, ωi+1) for some 0 ≤ i ≤ Θ.
Thus we have

∇fa(Γ(ωi+1))−∇fa(Γ(ωi)) =Miσ(wi+1 − wi) (41a)

Mi = H +

Nq+r∑
j=1

δjcE
T
j Ej .

(41b)

where δj = 0 if S−j (Γ(ζ)) ≥ 0 and S+
j (Γ(ζ)) ≤ 0 for

ζ ∈ (ωi, ωi+1) and δj = 1 otherwise.
Since the matrices H and cETj Ej , j = 1, . . . , Nq+ r are

symmetric and positive semi-definite, we can bound ‖Mi‖
independent of i by

‖Mi‖ ≤ ‖H + c

Nq+r∑
j=1

ETj Ej‖ = ‖H + cETE‖ = L. (42)

In combination with (40), (41) we obtain

‖∇fa(u)−∇fa(v)‖ ≤ L‖u− v‖. (43)

Hence, (21) holds for u and v with L = ‖H + cETE‖. To
verify (22) note that from (40), (41)

〈∇fa(u)−∇fa(v), σ〉 =

Θ∑
i=0

(ωi+1 − ωi)〈Miσ, σ〉. (44)

Since for each i Mi is a sum of symmetric, positive semi-
definite matrices we have

〈Miσ, σ〉 ≥ λMin(Mi)‖σ‖2 ≥ λMin(H)‖σ‖2. (45)

Combining this with (44) yields

〈∇fa(u)−∇fa(v),u− v〉 ≥ λMin(H)‖u− v‖2. (46)

So (22) holds for u and v with φ = λMin(H).
Since u, v were arbitrary, (22), (21) hold for every u, v.

D. Proof of Proposition 2

Note that we have

L = ‖H + cETE‖, (47)

and H , ETE are symmetric, positive semi-definite. Thus

‖H‖+ c‖ETE‖ ≥ L ≥ max(‖H‖, c‖ETE‖), (48)

which verifies a). Since φ = λMin(H) is independent of c
part b) follows from (47) and the continuity properties of
eigenvalues. Finally, φ = λMin(H) and a) yield c).

REFERENCES

[1] BEMPORAD, A., MORARI, M., DUA, V., AND PISTIKOPOULOS,
E. The explicit linear quadratic regulator for constrained systems.
Automatica 38, 1 (2002), 3–20.

[2] BERTSEKAS, D. P. Constrained Optimization and Lagrange multiplier
methods. Athena Scientific, 1996.

[3] DEVOLDER, O., GLINEUR, F., AND NESTEROV, Y. First-order Meth-
ods of Smooth Convex Optimization with Inexact Oracle. Available
online at http://www.optimization-online.org.

[4] FERNANDEZ, D. SOLODOV, M. Local convergence of exact and inex-
act augmented Lagrangian methods under the second-order sufficient
optimality condition. SIAM Journal on Optimization, To Appear 2012.

[5] FERREAU, H. J., BOCK, H. G., AND DIEHL, M. An online active set
strategy to overcome the limitations of explicit MPC. International
Journal of Robust and Nonlinear Control 18 (2008), 816–830.

[6] GARCIA, C., PRETT, D., AND MORARI, M. Model predictive control:
Theory and practice - A survey. Automatica 25, 3 (1989), 335–348.

[7] KÖGEL, M., AND FINDEISEN, R. A Fast Gradient method for
embedded linear predictive control. In Proc. of the IFAC World
Congress 2011 (2011), pp. 1362–1367.

[8] KÖGEL, M., AND FINDEISEN, R. Fast predictive control of linear
systems combining Nesterov’s gradient method and the method of
multipliers. In Proc. IEEE Conference on Decision and Control and
ECC (2011), pp. 501–506.

[9] KÖGEL, M., AND FINDEISEN, R. Fast predictive control of linear,
time-invariant systems using an algorithm based on the Fast gradient
method and augmented Lagrange multipliers. In Proc. IEEE Multi-
conference on Systems and Control (2011), pp. 780–785.

[10] MACIEJOWSKI, J. M. Predictive Control with Constraints. Prentice
Hall, Upper Saddle River, New Jersey, 2002.

[11] MANCUSO, G., AND KERRIGAN, E. Solving Constrained LQR
Problems by Eliminating the Inputs from the QP. In Proc. IEEE
Conference on Decision and Control and ECC (2011), pp. 507–512.

[12] MATTINGLEY, J., WANG, Y., AND BOYD, S. Receding horizon
control: Automatic generation of high-speed solvers. IEEE Control
Systems Magazine 31, 3 (2011), 52–65.

[13] MAYNE, D. Q., RAWLINGS, J. B., RAO, C. V., AND SCOKAERT,
P. Constrained model predictive control: Stability and optimality.
Automatica 36 (2000), 789–814.

[14] MILMAN, R., AND DAVISON, E. J. A fast MPC algorithm using
nonfeasible active set methods. Journal of Optimization Theory and
Applications 139 (2008), 591–616.

[15] NESTEROV, Y. A method for solving a convex programming problem
with convergence rate 1/k2. Soviet Mathematics Doklady 27, 2
(1983), 372–376.

[16] NESTEROV, Y. Introductory Lectures on Convex Optimization: A Basic
Course. Kluwer Acad. Publ., 2004.

[17] QIN, S., AND BADGWELL, T. A survey of industrial model predictive
control technology. Control engineering practice 11, 7 (2003), 733–
764.

[18] RAO, C., WRIGHT, S., AND RAWLINGS, J. Application of Interior-
Methods to Model Predictive Control. Journal of Optimization Theory
and Applications 99 (1998), 723–757.

[19] RICHTER, S., JONES, C. N., AND MORARI, M. Computational
Complexity Certification for Real-Time MPC with Input Constraints
Based on the Fast Gradient Method. IEEE Transactions on Automatic
Control, To Appear 2012.

[20] RICHTER, S., MORARI, M., AND JONES, C. N. Towards Com-
putational Complexity Certification for Constrained MPC Based on
Lagrange Relaxation and the Fast Gradient Method. In Proc. IEEE
Conference on Decision and Control and ECC (2011), pp. 5223–5229.

[21] ROCKAFELLAR, R. T. The Multiplier Method of Hestenes and Powell
Applied to Convex Programming. Journal of Optimization Theory and
Applications 12, 6 (1973), 555–562.

[22] WANG, Y., AND BOYD, S. Fast Model Predictive Control Using On-
line Optimization. IEEE Transactions on Control Systems Technology
18, 2 (2010), 267–278.

[23] WASCHL, H., ALBERER, D., AND DEL RE, L. Numerically Efficient
Self Tuning Strategies for MPC of Integral Gas Engines. In Proceed-
ings of the 18th IFAC World Congress (2011), pp. 2482–2487.

[24] ZOMETA, P., KÖGEL, M., FAULWASSER, T., AND FINDEISEN.,
R. Implementation Aspects of Model Predictive Control for Em-
bedded Systems. ACC2012, To Appear. Preprint available under
http://ifatwww.et.uni-magdeburg.de/syst/about us/people/zometa/.

