
OTT
O

-V
O

N
-G

U
ER

IC
KE-UNIVERSITÄ

T
M

A
G

D
E

B
U

RG

Otto-von-Guericke-Universität Magdeburg

Diplomarbeit

A first step towards Adaptive Identification
and Control of time-varying plants

von
Jonathan Epperlein

5. Juni 2008

Eingereicht an: Otto-von-Guericke-Universität Magdeburg
Fakultät für Elektrotechnik und Informationstechnik
Institut für Automatisierungstechnik
Universitätsplatz 2
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irgendwie widmen will: Meiner Familie Amélie, Andreas, Lilith, Jascha und Ruben!

Jonathan Epperlein, New Haven
May 28, 2008



Abstract

The need to account for time-variations in plant behaviour has become the main rea-
son to resort to Adaptive Control and Identification schemes. While (Multiple-Model)
Adaptive Control schemes have proven efficient in time-varying environments, their ap-
plicability relies on the heuristic assumption that the variations are still slow enough to
allow convergence of some kind. In this thesis, a method is presented which, for the first
time, explicitly incorporates time-variations on time-intervals that are too small to allow
convergence. In particular, a discrete-time plant which switches arbitrarily between a
finite set of ν linear subsystems can be identified and, with the minor restriction that a
subsystem stays active for at least as many time-steps as the input delay d, controlled.
This is achieved by application of an adaptive algorithm that causes ν models to con-
verge to the subsystems asymptotically.

Zusammenfassung

Die Notwendigkeit, Zeitvariationen im Verhalten der Strecke zu berücksichtigen, ist
zum Hauptgrund für die Verwendung adaptiver Regelung geworden. Obwohl adaptive
Regelungsmethoden (u.U. unter Verwendung mehrerer Streckenmodelle) sich in zeitvari-
anten Umgebungen als sehr wirksam gezeigt haben, beruht ihr Einsatz immer noch auf
der heuristischen Annahme, dass die Variationen so langsam sind, dass die Adaption
zumindest “fast” konvergieren kann. In dieser Arbeit wird eine Methode vorgestellt, die
erstmalig Parametervariationen, die zu schnell sind als dass ein adaptives Schema kon-
vergieren könnte, explizit einbezieht. Konkret wird gezeigt, wie eine zeitdiskrete Strecke,
die belieblig zwischen ν linearen Subsystemen hin- und herschaltet, identifiziert und (mit
der kleinen Einschränkung, dass jedes Subsystem mindestens für eine Zeitspanne, die
der Eingangsverzögerung d entspricht, aktiv bleibt) geregelt werden kann. Dies wird
durch die Anwendung eines adaptiven Algorithmus ermöglicht, der ν Streckenmodelle
asymptotisch zu den Subsystemen konvergieren läßt.
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1 Introduction

Time-variations and Adaptive Control

It is intrinsic to all practical applications of control theory that the parameters of the
systems one is dealing with are not known exactly. If the possible errors in the parameter
values are deemed negligible, no changes in control system design are necessary, but if
the uncertainties are large enough to possibly cause performance degradation, measures
have to be taken.

Two different main approaches can be followed. The subfield of Robust Control can be
roughly described by that: A fixed controller is designed such that it guarantees stability
or even a certain performance for all plants with parameter values in the range of the
uncertainties.
In the field of Adaptive Control, on the other side, the control system is enabled to
monitor its performance and change its parameters in a way that ensures that stabil-
ity and satisfactory performance are achieved. (Excellent and comprehensive historical
overviews as well as discussions of the uses of Adaptive Control can be found in the clas-
sic literature, e.g. in [GS84] for the discrete-time and in [NA89] for the continuous-time
case.)

From its onset in the early 1960s on, it was also realized that Adaptive Control provides
a very good way to deal with slow but persistent time variations like thermal drift in
resistors or the wear and tear of mechanical elements. While these effects can cause
the parameter to vary over a very large range and by that negate the use of Robust
Control, an Adaptive Control scheme can track the parameter values, provided that the
adaptation takes place on a considerably faster time-scale than the drift.

Because inherently a nonlinear control scheme, theoretical results about Adaptive Con-
trol only established asymptotic properties, typically convergence of output and/or pa-
rameter errors to zero. Performance assessment of adaptive controllers in the transient
phase, on the other hand, relied heavily on simulations and experiments. It nevertheless
is still commonly accepted that Adaptive Control is extremely powerful if the initial
parameter estimates are good and the time-variations, if present at all, are slow.

With the development of Multiple-Model schemes ([MGHM92, NBC95, NB97, NX00]) in
the 1990s, the initial value problem was somewhat attenuated by distributing a number
of models over the range of possible parameter vectors. Since convergence was sped
up by those schemes too, they were also regarded as more apt to solve time-varying
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problems than the classical single-model schemes. Incorporation of parameter variation
with time, however, still was merely implicit by assuming the adaptation would be “fast
enough,” and strict theoretical results were only obtained for time-invariant cases.

A closer look at the application of adaptive techniques to problems with time-variations
reveals that actually, after every change in plant dynamics a completely new adaptation
problem is solved. If adaptation has not converged but still is in a transient phase
when the next change occurs, the response of the overall system jumps from transient
to transient and no convergence takes place.

Since environmental influences like extreme gusts in aircraft control, component failure
or loose contacts in electrical networks, rupture of mechanical elements and so on can
cause time-variations that are too fast for any adaptive scheme to converge, the demand
for a framework that explicitly incorporates time-variance is high.

The algorithm presented in [FN06] can be seen as a first step toward the solution of this
problem. The time-variant plant is thereby abstracted as a finite number ν of linear
subsystems between which the plant switches arbitrarily. It is a complete novelty with
regard to the available techniques because it does not recast the problem of parameter
changes as individual problems to be solved sequentially but as ν problems that are
solved simultaneously. The time-variance is incorporated explicitly in the plant model
and the algorithm thus no longer depends on the intervals of constant parameters to be
long enough for convergence.
In particular, the algorithm enables us to set up ν models for the ν subsystems and see
one model converge to each subsystem, where no more information is assumed to be
accessible than in the classical case, i.e. the structure of the plant models and measure-
ments of input and output.

Outline

The development is traced from the classical single-model Adaptive Control and Iden-
tification schemes of the 1960s-1980s over the Multiple-Model schemes of the 1990s to
the simultaneous adaptive identification algorithm.

After some mathematical preliminaries and the representations of discrete-time dynam-
ical systems to be used in the sequel are presented in Chapter 2, the first basic results
of Adaptive Identification and Control are derived in Chapter 3 and illustrated with
some simulations. Chapter 4 deals with the Multiple-Model schemes of the 1990s. The
basic idea is presented, stability is proven and more simulations show the superiority to
single-model algorithms in the presence of time-variations.

Finally, Chapter 5 presents the new method. The control algorithm is fairly easy
and is presented in Section 5.3. However, the control algorithm relies crucially on the
existence of an identification algorithm that causes ν adaptive models to converge to the

Chapter 1. Introduction
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ν subsystems asymptotically. One such algorithm is presented in Section 5.4. Sadly, no
formal proofs of stability could be given for the resulting time-variant, highly-coupled
nonlinear system. Instead, empiric findings are supported with simulations. The chapter
is rounded off with simulations of the combination with the control algorithm.

Chapter 6 concludes the thesis by summarizing the findings and giving a short outlook
to possible further developments.

Chapter 1. Introduction



2 Mathematical Preliminaries

2.1 Definitions

First of all, we need to clarify a few notations and terms. Since most of it is common
control theory and mathematical terminology, this section is kept rather short.

As usual, we denote the set of the real numbers by R, the nonnegative real numbers
by R+, the set of integers and positive integers (or natural numbers) by Z and Z+

respectively, the set of column vectors with n real entries by Rn and the set of matrices
with real entries and with n rows and m columns by Rn×m. Scalars and column vectors
will be denoted by lower case letters like x, row vectors will be written as the transpose
of a column vector: xT , and matrices will be denoted by capital letters. For a quadratic
matrix P ∈ Rn×n, P > 0 (P ≥ 0) means that P is positive (semi-)definite and that the
matrix is Schur means that all eigenvalues lie inside the open unit disc of the complex
plane. For two matrices P,Q ∈ Rn×n, P > Q (P ≥ Q) means that the difference P−Q is
positive (semi-)definite. Finally, I denotes the identity matrix in appropriate dimension.

Control Theory and also the subset of Adaptive Control Theory deal with dynamical
systems. The concept of a dynamical system as a system with memory is very general,
but our attention will be restricted to discrete-time systems with one input and one
output whose dynamics are governed by ordinary difference equations as defined below.

Definition 2.1 (Single-input single-output dynamical systems). A discrete-time dy-
namical system is represented by a set of n difference equations and an output function
g

x(k + 1) = f(x(k), k) x(k0) = x0 (2.1)

y(k) = g(x(k), k) (2.2)

or a n-th order difference equation

y(k + n) = f̃(y(k + n− 1), . . . , y(k), k) y(k0) = y0, . . . , y(k0 + n− 1) = yn−1. (2.3)

x, x0 ∈ Rn are called the state and initial state, respectively, f : Rn × Z+ → Rn and
f̃ : Rn × Z+ → R are referred to as the right hand sides and g : Rn × Z+ → R is the
output function.
If the functions f, g or f̃ do not depend on the time k, we call the system autonomous.
If the functions f, g or f̃ are linear, we call the system linear.
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2.1: Definitions 8

If the dependency of f, g or f̃ on the time k is implicit through a known external signal
u, i.e. if

x(k + 1) = f(x(k), u(k)) x(k0) = x0

y(k) = g(x(k), u(k)k)

or

y(k + n) = f̃(y(k + n− 1), . . . , y(k), u(k +m), . . . , u(k))

y(k0) = y0, . . . , y(k0 + n− 1) = yn−1,

m ≤ n, then the system is non-autonomous but time-invariant and we call u : Z+ → R

the input of the system.
Solutions are denoted as x(k;x0, k0) (y(k; y0, . . . , yn−1, k0)) or, if initial time and state
are evident from the context or do not matter, short as x(k) (y(k)).
A state xe for which xe = f(xe, k) ∀k ∈ Z+ is called equilibrium state of the dynamical
system (2.1).

Remark 2.2. For the sake of simplicity and without loss of generality, we can assume
that if equilibria exist, one of them is the origin. Otherwise we can simply shift the
state-space: If xe 6= 0 is an equilibrium, then define ξ := x − xe. In the new state ξ,
ξ = 0 is an equilibrium.

A system which is linear and time-invariant is called a LTI system and we will present
different ways of representing such a system in Section 2.2.

When we are talking about signals, the spaces `2 and `∞ will appear. They are defined
generally in the context of `p spaces of sequences of real numbers:

Definition 2.3 (`p spaces). For a fixed p ∈ [1,∞), we define the `p norm of a sequence
f : Z+ → R as

‖f‖p :=

(
∞∑

k=1

|f(k)|p
)1/p

<∞ (2.4)

if the limit exists and say that f ∈ `p.
For the case p =∞ we have f ∈ `∞ if

‖f‖∞ := sup
k∈Z+

|f(i)| (2.5)

exists, that is if the sequence f is bounded.

The following theorem summarizes some rather obvious properties of the `p spaces which
will be used in the proofs throughout this thesis without further reference to this theorem:

Theorem 2.4. (i) If f ∈ `p, p ∈ [1,∞), then limk→∞ f(k) = 0,

Chapter 2. Mathematical Preliminaries



2.1: Definitions 9

(ii) `p ⊂ `∞ ∀p ∈ [1,∞),

(iii) `p ⊂ `q if p, q ∈ [1,∞) and p < q, and

(iv) If f ∈ `p, p ∈ [1,∞) and g ∈ `∞, then fg ∈ `p.

Proof. (i) Assume that f(k) 6→ 0. Then, for some ε > 0, there exists an infinite
number of indices ki, i ∈ Z+, such that |f(ki)| > ε. It then follows, that

‖f‖p = lim
N→∞

(
N∑

k=1,k 6=ki

|f(k)|p +

ki≤N∑

i=1

|f(ki)|p
)1/p

≥ lim
N→∞

(N ′ε) = ∞,

where N ′ = max{i | ki ≤ N}. The inequality follows, because the first sum is
nonnegative and N ′ →∞ as N →∞ follows, because there is an infinite number
of ki.

(ii) That `∞ 6= `p is clear from the counterexample f(k) = k−
1
p , which is clearly

bounded by 1 but whose `p-norm is the p-th root of the harmonic series, which, as
is known, diverges. The statement thus is proven by showing that from f 6∈ `∞ ⇒
f 6∈ `p. Since f is not bounded, there exists a sequence Z ′ = {z1, z2, . . .} ⊂ Z+

with zi < zi+1 ∀i and limi→∞ zi = ∞ such that limi→∞ |f(zi)| = ∞. For the
`p-norm of f it follows, that

(
∞∑

k=1

|f(k)|p
)1/p

=


 ∑

k∈Z+\Z′
|f(k)|p +

∑

k∈Z′
|f(k)|p




1/p

≥
(∑

k∈Z′
|f(k)|p

)1/p

≥
(

lim
i→∞
|f(zi)|p

)1/p

=∞.
The first inequality thereby follows, because the first sum is nonnegative, the
second one follows, because only nonnegative terms in the sum are discarded.

(iii) This can be seen as a generalization of item (ii) and is proven as follows: Let
f ∈ `p. Then it follows from (ii), that f ∈ `∞, so let K > 0 be an upper bound on
f . Then we have

(
∞∑

k=1

|f(k)|q
)1/q

=



(
∞∑

k=1

|f(k)|p|f(k)|q−p
)1/p



p/q

≤ Kp q−p
q



(
∞∑

k=1

|f(k)|p
)1/p



p/q

= K ′ (‖f‖p)p/q <∞.

Chapter 2. Mathematical Preliminaries



2.2: System models for linear systems 10

The first inequality thereby follows, because (q − p) > 0.

(iv) Let K > 0 be an upper bound of g. Then

(
∞∑

k=1

|f(k)g(k)|p
)1/p

≤ K

(
∞∑

k=1

|f(k)|p
)1/p

<∞.

The main interest in the design of controllers or identifiers is, of course, the stability of
the resulting overall system. While there are many different notions of stability, the only
ones that will be used here are the following of asymptotic and exponential stability.

Definition 2.5 (Asymptotic and exponential stability). An equilibrium xe of system
(2.1) is called asymptotically stable, if there exists a neighborhood of xe such that every
solution starting in that neighborhood tends to xe if k tends to infinity without leaving
another, possibly bigger, neighborhood of xe.
If that holds for the whole state space Rn, then xe is called globally asymptotically
stable.
If the solutions tend to xe with an at least exponential rate, the equilibrium is called
(globally) exponentially stable.
If a dynamical system possesses an asymptotically (exponentially) stable equilibrium,
we simply call the system asymptotically (exponentially) stable.

This rather informal definition is sufficient for the following treatments, for formal def-
initions see any book on mathematical control theory, e.g. Section 2.4.1 in [NA89]. A
very simple concept of stability is the so-called bounded-input bounded-output (BIBO)
stability which is easily defined with help of the space `∞:

Definition 2.6 (BIBO stability). A system is called bounded-input bounded-output
(BIBO) stable if a bounded input u leads to a bounded output y: u ∈ `∞ ⇒ y ∈ `∞.

2.2 System models for linear systems

In the history of adaptive identification and control it soon turned out that the way the
plant and the models are parametrized is a key ingredient to the successful design of
stable algorithms. In this section, we develop the model we will be using throughout this
thesis, the so-called static parametric model (SPM), from the state-space representation
and the difference equation representation of a liner time-invariant discrete-time plant
model.

Chapter 2. Mathematical Preliminaries
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2.2.1 State-space and difference equation representation

Since the state-space representation contains the most information about the system
and its dynamics it is our starting point for the further derivations. Let the quadruple
[A, b, cT , g] be an observable realization (i.e. (A, cT ) is an observable pair, cf. Theorem
A.2), so the system is given by

x(k + 1) = Ax(k) + bu(k) (2.6a)

y(k) = cTx(k) + gu(k). (2.6b)

The term g is thereby referred to as the direct throughput term, because it describes
the immediate effect of the input on the output. Since in most applications if u is used
to control the system, the output is measured first and the input is computed using the
measurement, the input cannot have an immediate effect and g will usually be equal to
zero.

We can propagate the output as

y(k + 1) = cTx(k + 1) = cT [Ax(k) + bu(k)] + gu(k + 1)

y(k + 2) = cTx(k + 2) = cT
[
A2x(k) + Abu(k) + bu(k + 1)

]
+ gu(k + 2)

...

y(k + n− 1) = cTx(k + n− 1) =

cT
[
An−1x(k) + An−2bu(k) + . . .+ bu(k + n− 2)

]
+ gu(k + n− 1). (2.7)

This can be written in the compact form

yn−1 = Ox(k) + B̄un−1, (2.8)

where

yn−1 =
[
y(k) y(k + 1) . . . y(k + n− 1)

]T

un−1 =
[
u(k) u(k + 1) . . . u(k + n− 1)

]T

O =




cT

cTA
...

cTAn−1




B̄ =




g 0 0 . . . 0
cT b g 0 . . . 0

...
. . .

...

cTAn−2b . . . . . . cT b g



.

Chapter 2. Mathematical Preliminaries



2.2: System models for linear systems 12

O is the observability matrix (cf. Theorem A.2) of system (2.6) and is invertible since
we assumed the system to be observable. From Equation (2.8) we obtain

x(k) = O−1(yn−1 − B̄un−1) (2.9)

and with that

y(k + n) = cT
[
Anx(k) + An−1bu(k) + . . .+ bu(k + n− 1)

]
+ gu(k + n)

= cTAnO−1(yn−1 − B̄un−1) +
[
cTAn−1b . . . cT b g

]
un

=
n−1∑

i=0

λiy(k + i) +
n∑

i=0

(β̄i + γ̄i)u(k + i),

(2.10)

where λi are the entries of the row vector cTAnO−1 (actually they are the negative
coefficients of the characteristic polynomial of A, too. This can be seen expanding An

using the Cayley-Hamilton Theorem, but has no further importance), β̄n = 0 and the
other β̄i are the entries of the row vector −cTAnO−1B̄, γ̄i = cTAn−1−ib for i = 0, . . . , n−1
and γ̄n = g.
Now we define d as the greatest integer such that cT b = cTAb = . . . = cTAd−1b = 0, or,
more formally

d =

{
0 if g 6= 0

max{z ∈ Z+|cTAζ−1b = 0 ∀ζ = 1, . . . , z} if g = 0
(2.11)

Then it follows by close inspection of the structure of the matrix B̄, that if g = 0, then
β̄n−d−1 = β̄n−d = . . . = β̄n = 0 and γ̄n−d = . . . = γ̄n = 0 and we can rewrite Equation
(2.10) as

y(k + n) =
n−1∑

i=0

λiy(k + i) +
n−d∑

i=0

βiu(k + i) (2.12)

or, after a time-shift of n instances, as

y(k) =
n∑

i=1

λn−iy(k − i) +
n∑

i=d

βn−iu(k − i). (ARMA)

(Note that now the coefficient λ0 accompanies y(k − n) and so on, thus the smaller i,
the “older” the signal accompanied by it. If that is deemed unintuitive the coefficients
can be simply renumbered. We will keep the convention that the coefficient with index
0 goes with the oldest value of a signal throughout this text.)

With the derivation of Equation (ARMA) we have obtained another representation of the
system in Equation (2.6), namely the so-called autoregressive moving average (ARMA)
model (the autoregressive part is the first sum, “moving average” refers to the second
sum in (ARMA)). Since the state does not appear in that model anymore, it is a
input-output (I/O) representation of the system.

Chapter 2. Mathematical Preliminaries
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The important new insight is, that the output at time k is influenced only by values of
the input that are at least d instances of time older than k, so the d we defined Equation
(2.11) has a very important interpretation as the time-delay of the system.

A very convenient way to write an ARMA model is obtained by introducing the back-
shift operator q, i.e. qy(k) = y(k−1), qny(k) = y(k−n) and so on. Then we can rewrite
Equation (ARMA) as

A(q)y(k) = qdB(q)u(k), (2.14)

where A(q) = 1−∑n
i=1 λn−iq

i and B(q) =
∑n

i=d βn−iq
i.

2.2.2 The Static Parametric Model (SPM)

Equation (ARMA) can be rewritten as

y(k) = ϑ̄∗
T
ϕ̄(k) (SPM)

where

ϕ̄(k) :=
[
y(k − n) . . . y(k − 1) u(k − n) . . . u(k − d)

]T
(2.16a)

ϑ̄∗ :=
[
λ0 . . . λn−1 β0 . . . βn−d

]T
(2.16b)

The appeal of that representation stems from the fact that the output (or any linear
combination of measurable signals) of the system is connected to a measurable signal
ϕ̄ : Z+ → R2n−d+1 and the vector of parameters ϑ̄∗ ∈ R2n−d+1 by a linear static equation.
The signal ϕ̄ is “assembled” from past values of the known output and input and is
called the regressor vector. ϑ̄∗ is the parameter vector, the asterisk indicates that it
is the vector of the true parameters (as opposed to the estimates - refer to the next
section). An illustration of that is shown in Figure 2.1. In accordance with e.g. [IF06]
we shall call the representation (SPM) static parametric model (SPM).

Remark 2.7 (Known parameters). Another feature of the SPM comes in handy if only
some parameters are unknown and need to be estimated. Assume e.g. that λn−r and
βn−s are known (of course, 1 ≤ r ≤ n and d ≤ s ≤ n). Then define an auxiliary output
z(k), a modified regressor φ and a reduced parameter vector θ∗ with

z(k) := y(k)− λn−ry(k − r)− βn−su(k − s)
φ(k) :=

[
y(k − n) . . . y(k − r − 1) y(k − r + 1) . . . y(k − 1)

u(k − n) . . . u(k − s− 1) u(k − s+ 1) . . . u(k − d)
]T

θ∗ :=
[
λ0 . . . λn−r−1 λn−r+1 . . . λn−1 β0 . . . βn−s−1 βn−s+1 . . . βn−d

]T
.

Then the system can be alternatively represented by

z(k) = θ∗Tφ(k)

and the algorithms can be developed for this model with reduced dimension.

Chapter 2. Mathematical Preliminaries
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Figure 2.1: A signal-flow diagram of the SPM

2.2.3 The d-step ahead predictor model

Now consider an ARMA model

y(k) =
n∑

i=1

λn−iy(k − i) +
n∑

i=d

βn−iu(k − i) (2.17)

with d ≥ 1. Since the time-delay is d, the inputs used in this model are at least d steps
old, but the sequence u(k − d + 1), . . . , u(k) is certainly already known at time k, so
the outputs y(k + 1), . . . , y(k + d) are already determined. That gives rise to another
possibility to represent the system’s behaviour, the d-step ahead predictor form

y(k + d) =
n−1∑

i=0

an−1−iy(k − i) +
d+n−1∑

i=0

bd+n−1−iu(k − i)�i� (DSA)

The main characteristic of this form is that there is a “gap” of d steps between the left
hand side and the right hand side. In other words, the output only depends on values
of the input and output that are at least d steps old.

To facilitate the derivation of that result, we again represent the ARMA model with the
shift operator q as

A(q)y(k) = qdB(q)u(k), (2.19)

where

A(q) = 1 + λn−1q + . . .+ λ1q
n−1 + λ0q

n

B(q) = βn−d + βn−d−1q + . . .+ β0q
n.

�i�The weird expression for the indices again is caused by the convention to let the oldest signal value
go with the coefficient with index 0.

Chapter 2. Mathematical Preliminaries
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To achieve sufficient degrees of freedom, we filter both sides by multiplying with a (for
the moment) arbitrary polynomial F (q) and q−d to obtain

q−dF (q)A(q)y(k) = F (q)B(q)u(k). (2.20)

Since q−dy(k) = y(k + d), all we need to do is to get rid of all other negative powers of
q on the left hand side, in other words, F (q) should be chosen such that F (q)A(q) =
1+ qdG(q), so the 1 preserves q−dy(k) and the second part eliminates any other negative
power of q. Rewriting this equation we get

A(q)F (q)− qdG(q) = 1. (2.21)

Since A(q) is monic, A(q) and qd are coprime and thus it follows from the Bezout
Identity (Theorem A.4) that F (q) and G(q) with

F (q) = f0 + f1q + . . .+ fd−1q
d−1

G(q) = g0 + g1q + . . .+ gn−1g
n−1

exist and we can rewrite Equation (2.20) as y(k+d) = −G(q)y(k)+F (q)B(q) or exactly
as in (DSA)

y(k + d) =
n−1∑

i=0

an−1−iy(k − i) +
d+n−1∑

i=0

bd+n−1−iu(k − i), (2.22)

where an−1−i = −gi and bd+n−1−i are the coefficients of the product F (q)B(q) (bd+n−1−i =∑
j+k=i fjβk, where non-existent coefficients of F and B are simply set to zero). After a

time shift of d instances, the SPM of this representation can be written as

y(k) = ϑ∗Tϕ(k − d) (2.23)

where

ϑ∗ =
[
a0 a1 . . . an−1 b0 . . . bd+n−1

]T
(2.24a)

ϕ(k) =
[
y(k − n+ 1) . . . y(k) u(k − d− n+ 1) . . . u(k)

]T
. (2.24b)

The signal flow of that representation is depicted in Figure 2.2.
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Figure 2.2: The SPM of the d-step ahead predictor model
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3 Adaptive Identification and
Control of LTI systems

3.1 Adaptive Identification

In this chapter, a short introduction to adaptive identification of a linear I/O behavior is
given, using the parametric models that we just introduced, and subsequently extended
to the control of such systems if the parameters are unknown.

Unlike in non-adaptive systems identification, where collected I/O data is used to es-
timate the unknown parameters of a plant, typically using optimization techniques to
minimize a certain error functional, adaptive identification makes use of a model whose
parameters are dynamically adjusted to make the error between model and plant tend
to zero (sometimes this is called “Model Reference Adaptive Identification”).

3.1.1 Identification of Static Parametric Models

Problem setup. Let an LTI system be given by its SPM

y(k) = ϑ̄∗
T
ϕ̄(k) (3.1)

where ϑ̄∗ and ϕ̄ as in Equation (2.16), or by its d-step ahead predictor

y(k) = ϑ∗Tϕ(k − d), (3.2)

where ϑ∗ and ϕ as in Equation (2.24). Note that the structures of (3.1) and (3.2) are
identical, save for the time-shift in ϕ, so any algorithm that we develop for one can also
be used for the other. Therefore in the following we will not distinguish between ϑ̄∗ (ϕ̄)
and ϑ∗ (ϕ) anymore.

Adaptive identification now refers to setting up a model of the plant whose parameter
vector is adjusted using available measurements, such that the parameter vector ϑ(k)
tends to the true value ϑ∗ asymptotically. Let us use a model structure parallel to the
SPM:

ŷ(k) = ϑT (k − 1)ϕ(k) (3.3)

where ϑT (k) =
[
λ̂0(k) . . . λ̂n−1(k) β̂0(k) β̂d+n−1(k)

]
and λ̂i(k), β̂i(k) denote the es-

timates of λi and βi, respectively, at time k. Since the analysis is most conveniently

17
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done in terms of the deviations from the real values, we introduce the identification er-
ror e(k) := ŷ(k)−y(k) and the parameter error ϑ̃(k) := ϑ(k)−ϑ∗. Combining Equations
(3.1) and (3.3), we get

e(k) = ϑT (k − 1)ϕ(k)− y(k) = ϑ̃T (k − 1)ϕ(k). (3.4)

To update a parameter, two values have to be chosen: In which direction the parameter
should be updated and the size of the step. We will see in the following that it is necessary
to normalize the error equation in order to handle the step size, but for the moment we
just introduce the normalized identification error ε with no further explanation as

ε(k) =
e(k)

c+ ϕTϕ(k)
, (3.5)

where c > 0, so the denominator is designed to bound ‖ϕ‖2 from above and we can

conclude that ‖ε(k)ϕ(k)‖ ≤ ‖ϕ(k)ϕT (k)‖
c+ϕTϕ(k)

‖ϑ̃(k − 1)‖ < ‖ϑ̃(k − 1)‖.
Equation (3.5) together with the adaptive law (yet to be given) which defines the pa-
rameter update ϑ(k+ 1)−ϑ(k) = ϑ̃(k+ 1)− ϑ̃(k) will constitute the overall system and
we will be interested in the stability of the origin (ε = 0, ϑ̃ = 0).

Remark 3.1. As it will turn out in the course of the following proof of stability, the
normalizing signal n2(k) can be designed arbitrarily, as long as it bounds ‖ϕ‖2 from
above and fulfills n2(k) ≥ n0 > 0 ∀k ∈ Z+. If for example it is known beforehand that ϕ
is bounded, a possible choice is n2(k) = supk∈Z+ ‖ϕ(k)‖ > 0. For the sake of generality
we proceed using n2(k) as a general normalizing signal.

Adaptive Law. A wide class of adaptive laws can be developed by choosing a cost
functional and updating the parameter to minimize the cost at every time k. A very
simple one would be to update the value of the parameter vector ϑ(k) to minimize the
instantaneous cost functional

J(ϑ) =
ε2

2n2
=

(ϑTϕ(k)− y(k))2

2n4(k)
(3.6)

by the method of the steepest descent, that is ϑ(k) = ϑ(k − 1) − γ ∂J
∂ϑ

with some gain
γ > 0. Since ∂J

∂ϑ
= ε(k)ϕ(k) we get

ϑ(k) = ϑ(k − 1)− γε(k)ϕ(k). (3.7)

This algorithm has been termed projection algorithm in the literature [GS84, IF06].
Although this name originates from another way of deriving this algorithm, we shall
use it in the remainder of the thesis. As the following lemma will show, the projection
algorithm ensures stability of the overall system.

Chapter 3. Adaptive Identification and Control of LTI systems
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Lemma 3.2 (Stability of the projection algorithm.). Consider the overall adaptive sys-
tem

ε(k) =
ϑT (k − 1)ϕ(k)− y(k)

n2(k)
(3.8a)

ϑ(k) = ϑ(k − 1)− γε(k)ϕ(k) (3.8b)

where n2(k) ≥ ϕT (k)ϕ(k) and n2(k) ≥ n0 > 0 (since we do not want to divide by 0)
∀k ∈ Z+ and γ > 0 and the signals y : Z+ → R and ϕ : Z → R(n+m) are as defined
earlier in the section. Then we can state the following:
If

2− γϕ
T (k)ϕ(k)

n2(k)
≥ s0 > 0 ∀ k, (3.9)

then

(i) ϑ(k) ∈ `∞ and ‖ϑ(k)− ϑ∗‖ ≤ ‖ϑ(k − 1)− ϑ∗‖ ≤ ‖ϑ(0)− ϑ∗‖,
(ii) ε(k), ε(k)n(k), ε(k)ϕ(k) and ‖ϑ(k)− ϑ(k − ν)‖ ∈ `2 for any fixed ν ∈ Z+, and

(iii) ε(k) and ‖ϑ(k)− ϑ(k − ν)‖ → 0 �i� for k →∞ and any fixed ν ∈ Z+.

Proof. First note, that (ii) ⇒ (iii) since from a(k) ∈ `2 ⇒ a(k) → 0, so we proceed to
prove (i) and (ii). From (3.8) we can derive

ϑ̃(k) =

[
I − γϕϕ

T

n2
(k)

]
ϑ̃(k − 1) (3.10)

which is a linear time-varying system. Now we define the function V (k) = γ−1ϑ̃T (k)ϑ̃(k)�ii�

and find

V (k)− V (k − 1)

= γ−1ϑ̃T (k − 1)

[
I − γϕϕ

T

n2
(k)

]2

ϑ̃(k − 1)−γ−1ϑ̃T (k − 1)ϑ̃(k − 1)

= ϑ̃T (k − 1)

[
γ
ϕϕT

n2

ϕϕT

n2
(k)− 2

ϕϕT

n2
(k)

]
ϑ̃(k − 1)

= ε2(k)n2(k)

[
γ
ϕTϕ

n2
(k)− 2

]
. (3.11)

With (3.9) it follows that V (k)− V (k − 1) ≤ −s0ε
2(k)n2(k) ≤ 0 which establishes that

V (k) is a monotonically decreasing sequence, which is bounded from below by 0, so the
limit V∞ = limk→∞ V (k) exists and we have

s0n0

∞∑

k=2

ε2(k) ≤ s0

∞∑

k=2

ε2(k)n2(k) ≤ V (1)− V∞ <∞ (3.12)

�i�This does not however imply that ϑ(k) is converging to any limit. To see that take e.g. a sequence
s(k) = log(k), which fulfills the condition but is unbounded.

�ii�This function could be interpreted as a Lyapunov function for the time-variant linear system (3.10).

Chapter 3. Adaptive Identification and Control of LTI systems
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so εn, ε ∈ `2. With the boundedness of ϕ
n

and εϕ = εnϕ
n

, εϕ ∈ `2 also follows.
Furthermore, since V (k) is bounded from above by V (1) and from the definition of
V (k) it follows that ‖ϑ̃(k)‖ ≤

√
γV (k), we can conclude that ‖ϑ̃‖ is monotonically

decreasing and bounded and that ϑ = ϑ∗ + ϑ̃ is bounded, which is item (i).

The statement ‖ϑ(k)− ϑ(k− ν)‖ ∈ `2 can be derived by noting that from (3.8) we have

‖ϑ(k)− ϑ(k − 1)‖ = γ‖ε(k)ϕ(k)‖, (3.13)

so ε(k)ϕ(k) ∈ `2 ensures that ‖ϑ(k)− ϑ(k − 1)‖ ∈ `2, too. Choosing a fixed ν ∈ Z+ we
can expand

ϑ(k)− ϑ(k − ν) = ϑ(k)− ϑ(k − 1) + ϑ(k − 1)− · · ·+ ϑ(k − ν + 1)− ϑ(k − ν) (3.14)

and using the triangle inequality we obtain

‖ϑ(k)− ϑ(k − ν)‖ ≤ ‖ϑ(k)− ϑ(k − 1)‖+ ‖ϑ(k − 1)− ϑ(k − 2)‖+ . . .

+ ‖ϑ(k − ν + 1)− ϑ(k − ν)‖. (3.15)

Since the right hand side obviously consists of `2 sequences, ‖ϑ(k)−ϑ(k− ν)‖ ∈ `2, too,
what concludes the proof.

Some remarks seem in order at this point:
What we have proven so far is merely that the adaptive law ensures that the normalized
identification error converges to zero and that the next parameter estimate never lies
farther away from the real value ϑ∗ than the current one. As noted in the footnote to
Lemma 3.2, this does not imply that the parameter errors converge to any constant,
especially not to zero, so we have not yet said anything about the actual goal of the
whole procedure, the convergence of ϑ(k) to ϑ∗. Furthermore, since not even the bound-
edness of ϕ was assumed, the convergence of ε does not imply that the unnormalized
identification error e is bounded, since ϕ could grow at a faster rate than e.

Pure identification of unstable systems however does not make much sense, so the bound-
edness of ϕ can be assumed in this case. Problems will occur later when an identification
algorithm is teamed with a control algorithm and stability of the plant cannot be as-
sumed anymore.

But in the remainder of this section we shall confine our attention to stable systems
and convergence of the parameter estimates to their real values. It is clear that this
depends on the chosen input u: If for instance the input u is equal to zero, it is obvious
that the output of the system as well as the output error carry no information about
the parameters βi or bi and thus no adaptive scheme could ensure convergence of ϑ to
ϑ∗. So intuitively one could think that, since the only information about the success
of the identification we have is the identification error, one has to make sure that the
error contains enough information about the uncertain parameters to make parameter
convergence possible in the first place. This notion is formalized in the following lemma.

Chapter 3. Adaptive Identification and Control of LTI systems
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Lemma 3.3 (Parameter convergence). If all conditions of Lemma 3.2 hold, and addi-
tionally there exist t ∈ Z+ and δ > 0 such that

t−1∑

i=0

ϕϕT

n2
(k + i) ≥ δI ∀ k ∈ Z+, (3.16)

then limk→∞ ϑ(k) = ϑ∗.

Proof. The proof basically consists of showing that under condition (3.16), the time-
varying system (3.10) is uniformly completely observable. Since this procedure requires
some theorems and techniques that are of no interest for the remainder of this thesis,
the proof is omitted and can be found in e.g. [IF06, GS84].

Definition 3.4 (PE). Signals ϕ : Z+ → Rn that fulfill condition (3.16) are called
persistently exciting (PE).

Condition (3.16) is a condition on the regressor vector ϕ, the only part that can be
designed directly however is the input u. The results how to choose u such that ϕ is PE
are roughly intuitive but the details are immensely complex, this is why we do not give
a lemma or theorem but again refer the reader to [IF06, GS84] and merely state as a
rule-of-thumb:

If the system to be identified is stable and ν parameters need to be estimated
by an adaptive law, then an input of the form

u(k) =

dν/2e∑

i=1

ci sin(ωik),

where dxe = min{n ∈ N|n ≥ x} and ci, ωi 6= 0 ∀i, ωi 6= ωj if i 6= j, ensures
parameter convergence.

3.1.2 Simulation: Adaptive Identification of a second order
system

We now digress briefly to illustrate the findings so far with a simple example. Let a
second order LTI system be given by

y(k + 2) = λ1y(k + 1) + λ0y(k) + β0u(k) (3.17)

with y(1) = y0 and y(2) = y1 and where the λi and β0 6= 0 are unknown but constant
and such that the system is stable. The SPM of this plant is

y(k) = ϑ̄∗
T
ϕ̄(k) (3.18)
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where

ϑ̄∗ =
[
λ0 λ1 β0

]T

ϕ̄(k) =
[
y(k − 2) y(k − 1) u(k − 2)

]T
.

The time-delay of the plant obviously is d = 2 and so we can also derive the 2-step ahead
predictor model of the plant by expressing y(k + 1) as

y(k + 1) = λ1y(k) + λ0y(k − 1) + β0u(k − 1) (3.19)

and inserting into (3.17) to obtain

y(k + 2) = a1y(k) + a0y(k − 1) + b1u(k) + b0u(k − 1), (3.20)

where a1 = λ2
1 + λ0, a0 = λ1λ0, b1 = β0 and b0 = λ1β0, or

y(k) = ϑ∗Tϕ(k − 2), (3.21)

where

ϑ∗ =
[
a0 a1 b0 b1

]T

ϕ(k) =
[
y(k − 1) y(k) u(k − 1) u(k)

]T
.

Following the developments of the last section, the SPM (3.18) as well as the 2-step
ahead predictor (3.21) were identified. The values of the various parameters thereby
were:

λ1 =
3

4
λ0 = −1

8
β0 = 1

and thus

a1 =
7

16
a0 = − 3

32

b1 = 1 b0 =
3

4
.

Furthermore, n2(k) = 1 +ϕT (k)ϕ(k) and γ = 1.5 and the initial conditions were y(1) =
y(0) = 0, b̂i(1) = λ̂i(1) = â1(1) = β̂0(1) = 1, i = 0, 1, and â0(1) = 2. To illustrate the
necessity of the PE condition (3.16), two different inputs were used, first u1(k) = 10,
which is not PE, and then u2(k) = 10 + 20 sin(2k) + 30 sin(k) which is. The results are
shown in Figures 3.1, 3.2, 3.3 and 3.4. As expected, the identification error converges
to zero in all cases, whereas the parameters converge to constant but wrong values
where the input signal is a constant (Note that in Figure 3.2, the lines for b̂0 and b̂1
coincide, which is no surprise since the last two entries in ϕ̄ are the same and thus
b̂0(k)− b̂0(k− 1) = b̂1(k)− b̂1(k− 1) for all k.) and to their true values only if the input
is PE.
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Figure 3.1: Identification of the SPM using a constant input signal
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Figure 3.2: Identification of the 2-step ahead predictor using a constant input signal
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Figure 3.3: Identification of the SPM using a persistently exciting input signal
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Figure 3.4: Identification of the 2-step ahead predictor using a persistently exciting input
signal
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Figure 3.5: The direct approach

3.2 Adaptive Control

Now that algorithms to estimate the unknown parameters of a plant have been intro-
duced, the next step is to expand this concept to adaptive control of unknown plants.
Two different philosophies can be followed: In the direct approach which is depicted
in Figure 3.5, the parameters of the controller are dynamically adjusted based on the
available measurements to achieve a control objective. In the indirect approach which
is depicted in Figure 3.6, the parameters of a plant model are dynamically adjusted (i.e.
the plant is identified) and the control parameters are then computed from the estimates
with an algebraic relation. While both approaches have received wide interest and ap-
plication in the literature, in view of the scope of this thesis we will restrict ourselves
to the indirect approach: Identification does not affect the plant in that it does not
close any control loops between plant output and input, so arbitrarily many indepen-
dent identifiers can be connected to the plant and tuned separately whereas in the direct
approach, the tuning of the parameters relies on the control error, that is the difference
of reference signal and plant output what in turn means that only the performance of
the active controller can be evaluated and consequently only one controller can be tuned
at a time. If that was not clear now, it will become clear later when the Multiple-Model
approaches are introduced.

So as a next step, a simple control algorithm will be introduced for the non-adaptive
case and then it will be shown how this control algorithm can be combined with a stable
identification algorithm to obtain an adaptive controller. After the proof of stability, an
example will conclude this section.

3.2.1 One-step-ahead control

Our starting point is an ARMA model

A(q)y(k) = B(q)u(k) (3.22)

of a linear time invariant plant. We have seen in Section 2.2 that we can derive its d-step
ahead predictor form as

y(k + d) = ϑ∗Tϕ(k), (3.23)
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Figure 3.6: The indirect approach

where the parameter vector ϑ∗ and the regressor ϕ are given by Equation (2.24) and
bd+n−1 6= 0, provided that we chose the “right” delay d as in Equation (2.11). The
control objective is to have the output y(k) track the reference signal y∗(k).

At a given time k, the outputs y(k), y(k − 1), . . . as well as the past inputs u(k −
1), u(k− 2), . . . are known and can be used to compute the current input u(k) such that
ϑ∗Tϕ(k) = y∗(k + d) by simply inverting this relationship to obtain

u(k) =
1

bd+n−1

(y∗(k + d)− an−1y(k)− an−2y(k − 1)− · · · − bd+n−2u(k − 1)− · · · )
(3.24)

(note that we assumed bd+n−1 6= 0). A note on the initial conditions: The order of the sys-
tem is n, that is n initial conditions are needed, which in turn means that y(1), . . . , y(n)
are fixed and the actual simulation and prediction does not start until k = n. The first
value that can be predicted by the d-step ahead predictor thus is y(n + d). So it does
not make sense to use the feedback-law (3.24) for the first n− 1 time-steps. The input
sequence u(1), . . . , u(n− 1) can be chosen arbitrarily to compute u(n) at time n�iii�. So
the construction of the feedback-law (3.24) ensures that

y(k) = y∗(k) ∀ k ≥ n+ d. (3.25)

The next question we have to answer is whether the control law results in a bounded
input signal. Inserting (3.25) into (3.22) yields

B(q)u(k) = A(q)y∗(k) ∀k ≥ n+ d, (3.26)

that is u is bounded if and only if this “inverse model” is BIBO stable. A sufficient
condition is that all roots of B(z−1) lie inside the unit circle, for details see Lemma A.3.

�iii� Of course if the initial values y(1), . . . , y(n) are known, the initial input sequence u(1), . . . , u(n) can
be chosen in a more useful way, e.g. to minimize the effort [ u(1) ... u(n) ]T [ u(1) ... u(n) ].
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It should be noted here, that this is not an algorithm for direct practical application since
it suffers from many drawbacks like possibly huge input amplitudes and non-robustness.
Since this thesis is more about showing some new ways than about presenting ready-to-
use algorithms, we will leave it with that and refer the interested reader to e.g. [GS84,
Ch. 5], where several modifications to overcome some of those difficulties can be found.

3.2.2 Adaptive one-step ahead control

Now we proceed to utilize the one-step ahead control algorithm to obtain an adaptive
control algorithm. The idea is fairly simple: If the parameters of the ARMA model (3.22)
or the d-step ahead predictor (3.23) are not known exactly, the control law (3.24) cannot
be implemented as is. Instead, the identification techniques of Section 3.1.1 are used to
obtain an estimate ϑ(k) of the parameter vector ϑ∗ and the estimate is used at every
time k to compute the input according to (3.24). Using for instance algorithm (3.7), the
complete control algorithm is: At every time k ≥ n when y(k) becomes available, do

ε(k) =
ϑT (k − 1)ϕ(k − d)− y(k)

n2(k − d)
(3.27a)

ϑ(k) = ϑ(k − 1)− γε(k)ϕ(k − d) (3.27b)

u(k) =
y∗(k + d)− ân−1(k)y(k)− · · · − b̂d+n−2(k)u(k − 1)− . . .

b̂d+n−1(k)
(3.27c)

ϕ(k) =
[
y(k − n+ 1) . . . y(k) u(k − d− n+ 1) . . . u(k)

]T
, (3.27d)

where ϑ(k) =
[
â0(k) . . . b0(k) . . .

]T
, âi and b̂i denote the parameter estimates as

usual and γ > 0 and n2 are chosen such that the conditions of Lemma 3.2 hold.

Equations (3.27a) and (3.27b) constitute the identification part of the algorithm, (3.27c)
is the control law and (3.27d) is merely the update of the regressor vector.

In view of Equation (3.27c) we also have to ensure, that b̂d+n−1(k) 6= 0 ∀k. If the delay
d is correct, i.e. is known exactly, a very simple way to do so is to add the assumption,
that the sign and a lower bound b > 0 on the absolute value of bd+n−1 is known and to
modify the identification algorithm with

ϑ′(k) = ϑ(k − 1)− γε(k)ϕ(k − d)

ϑ(k) =

{
ϑ′(k) if sign(bd+n−1)b̂d+n−1(k) ≥ b[

â0(k) . . . b̂d+n−2(k) sign(bd+n−1)b
]T

else.

that is simply setting b̂d+n−1(k) to the bound if it is too close to zero.

As a last difficulty, if the system is to follow arbitrary reference signals y∗(k) it is impos-
sible to guarantee for ϕ(k) to be PE, i.e. fulfill (3.16), so the parameter estimate ϑ(k)
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will probably not converge to ϑ∗. Does it make any sense to base control on “wrong” pa-
rameters, will this yield a stable close-loop system? As it will turn out in the remainder
of this section, the answer to both questions is yes.

To get started with the analysis, we introduce the control error ec and the normalized
control error εc with

ec(k) := y(k)− y∗(k)

εc(k) :=
ec(k)

c+ ϕTϕ(k − d)
,

(3.28)

where c > 0.

We first collect the assumptions made in the prequel and state in the following lemma
that the normalized control error goes to zero and that the conditions, under which that
implies that the control error goes to zero as well, are always fulfilled.

Assumptions 3.5.

(i) The delay d is known exactly.

(ii) The sign of bd+n−1 and a lower bound b for |bd+n−1| are known.

(iii) The order n, or at least an upper bound n ≥ n for the order n, is known.�iv�

(iv) The inverse system B(q)z(k) = A(q)υ(k) is BIBO stable (cf. Lemma A.3).

Lemma 3.6 (Indirect adaptive control). Assume a linear plant of the form (3.22) and
that Assumptions 4.1 are fulfilled. Then, the adaptive one-step ahead control law (3.27c)
together with any stable identification scheme guarantees, that u ∈ `∞ and ec ∈ `2 (which
implies ec(k)→ 0 as k →∞).

Proof. The proof is given in 3 steps: First, we show that εc → 0. Then, the condition
under which that also implies ec → 0 is given. The proof is concluded in the third step
by showing that this condition is always fulfilled in the considered case. Boundedness of
u follows as a byproduct from the boundedness of ‖ϕ‖.

1. εc → 0 and εc
√
c+ ϕTϕ→ 0.

Simply observe, that

εc(k) =
ϑ∗T − ϑT (k − d)

c+ ϕTϕ(k − d)
ϕ(k − d)

=
ϕT (k + d)

c+ ϕTϕ(k − d)
[ϑ∗ − ϑ(k − 1) + ϑ(k − 1)− ϑ(k − d)]

= −ε(k) +
ϕT (k − d)

c+ ϕTϕ(k − d)
[ϑ(k − 1)− ϑ(k − d)]

�iv�If the model is overparametrized, the spurious coefficients simply tend to zero. For ease of notation
we proceed by assuming n is known, otherwise simply substitute n with n.
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and from that and the triangle equality

|εc(k)| ≤ |ε(k)|+ ‖ϕT (k − d)‖
c+ ϕTϕ(k − d)

‖ϑ(k − 1)− ϑ(k − d)‖ . (3.29)

Since ‖ϕT (k−d)‖
c+ϕTϕ(k−d) is bounded and from Lemma 3.2 we have that ε(k), ε

√
c+ ϕTϕ,

and ‖ϑ(k − 1)− ϑ(k − d)‖ ∈ `2. εc ∈ `2 and (by multiplying (3.29) with
√
c+ ϕTϕ)

εc
√
c+ ϕTϕ ∈ `2 follow.

2. From 1. and ‖ϕ(k − d)‖ ≤ D1 +D2 maxτ≤k |ec(τ)| ⇒ ec → 0.

First note that if the condition holds and in addition ec ∈ `∞, ‖ϕ‖ ∈ `∞ directly

follows. Then let D3 be the upper bound on ‖ϕ‖ and we have εc(k) ≥ ec(k)

c+D2
3
, or

ec(k) ≤ (c+D2
3)εc(k) and thus ec(k)→ 0.

So all that remains to show is that 1. and the condition on ‖ϕ‖ already imply that
ec(k) is bounded. The proof will be given by contradiction: Assume that ec(k)
grows beyond every bound. Then we can choose an infinite sequence {κ1, κ2, . . .} ⊂
Z+ such that

|ec(κi+1)| > |ec(k)| ∀k < κi+1 (3.30)

(otherwise |ec(κi)| is an upper bound) and thus ec(κi) → ∞. If we now observe

εc
√
c+ ϕTϕ along the sequence κi, we find

|εc(κi)
√
c+ ϕTϕ| ≥ |ec(κi)|√

c+ ϕTϕ(κi − d)

≥ |ec(κi)|√
c+ ‖ϕ(κi − d)‖ because

√
· is concave

≥ |ec(κi)|√
c+D1 +D2|ec(κi)|

from (3.30).

So we have that limκi→∞ |εc(κi)
√
c+ ϕTϕ| ≥ 1

D2
> 0, clearly a contradiction, since

every subsequence of the convergent sequence |εc
√
c+ ϕTϕ| has to converge to the

same limit, namely 0. So the assumption must have been wrong and ec is bounded.

3. ‖ϕ(k − d)‖ ≤ D1 +D2 maxτ≤k |ec(τ)| holds.

From the assumption, that the inverse model is stable, it follows, that constants
D4, D

′
5 > 0 exist, such that |u(k − d)| ≤ D4 + D′5 maxτ≤k |y(k)|�v� Let D5 =

max{1, D′5} and p be the dimension of ϕ. Then:

‖ϕ(k − d)‖ ≤ p [max |ϕi(k − d)|]
≤ pmax

τ≤k
{D4 +D′5|y(τ)|, |y(τ)|}

≤ p
[
D4 +D5 max

τ≤k
|y(τ)|

]

�v� Since we assumed the inverse system qdB′(q)z(k) = A(q)υ(k) to be stable, it is a well known
result from systems theory, that the system is finite gain stable, i.e. ∃A1, A2 : |z(k − d)| ≤ A1 +
A2 maxτ≤k |υ(τ)|.
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and from the definition of ec we have |y| ≤ |ec|+ |y∗| ≤ |ec|+D6 (where D6 is the
upper bound to y∗), so we can conclude:

‖ϕ(k − d)‖ ≤ D1 +D2 max
τ≤k
|ec(τ)|,

where D1 = p(D4 +D5D6) and D2 = pD5, what concludes the proof.

From the course of the proof it turns out that the notion of “stable” identification
algorithm can be refined to “an algorithm which ensures that ε, ‖ϑ(k)−ϑ(k−N)‖ ∈ `2”,
so it especially is not necessary, that the parameter vector converges to the real value
ϑ∗.

3.2.3 Simulation: Adaptive Control of a 3rd order system

Like Section 3.1, we conclude this Section with a simple example demonstrating the
application of the results given. The starting point again is an ARMA model with input
delay d = 2:

y(k + 3) =
2∑

i=0

λiy(k + i) +
1∑

i=0

βiu(k + i) = ϑ̄∗
T
ϕ̄(k + 2), (3.31)

where ϑ̄∗ =
[
λ0 λ1 λ2 β0 β1

]T
and ϕ̄(k) =

[
y(k − 2) · · · u(k − 2) · · ·

]T
. For

known parameters λi, βi, the 2-step ahead predictor form could be computed and used
for control like proposed in Section 3.2.1. We however assume that the parameters are
unknown, so we can only derive the structure of the 2-step predictor to be

y(k) =
2∑

i=0

(aiy(k − i− 2) + biu(k − i− 2)) =: ϑ∗Tϕ(k − 2) k ≥ 4,

where ϑ∗ =
[
a0 · · · b0 · · ·

]T
and ϕ(k) =

[
y(k − 2) · · · u(k − 2) · · ·u(k)

]T
as

usual, and use this structure to set up the indirect adaptive control algorithm like in
Equation (3.27).

The parameter values were chosen to be the following:

λ2 =
3

4
λ1 = −2

λ0 =
5

2

β1 = 1 β0 =
1

2
,
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so the system is unstable with a pole at p = 3
2
, but the inverse system is stable. The

reference signal y∗ is a pulse train

y∗(k) =

{
5 if n · 100 ≤ k < n · 100 + 50
2 if n · 100 + 50 ≤ k < n · 100

,

γ = 1 and the initial values are y(1) = y(2) = y(3) = 1 and

ϑ(3) = ϑ∗ •
[
1.1 1.05 0.9 0.95 0.9 1.1

]T
,

where • denotes the element-wise or Hadamard product, that is the numbers in the
second vector denote the multiplicative error of the initial estimates. The simulation
results are shown in Figure 3.7. It can be seen that after an initial “training” phase
with large transients, the controller performance is quite convincing although most pa-
rameters, as expected, do not converge to their true values. Also the aforementioned
disadvantage of large control amplitudes is clearly visible.

This example concludes the section on classical “single model” adaptive control and
identification as well as the introductory chapter. In the next chapter, a short overview
of the Multiple-Model approach is presented, before we move on to the announced “new
method”.
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Figure 3.7: Indirect adaptive control of an unstable linear plant
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4 Adaptive Identification and
Control using multiple models

This chapter is meant to provide a short overview of the developments in Adaptive
Control with multiple models which up to now is the main method used to handle rapid
and large time variations of the parameters of the controlled plant. First, the necessity
for these approaches is shown with two simple examples. Second, the developments in
that area are summarized and the dominant approach involving switching and tuning
is outlined. Finally, simulations are presented which show that the approach indeed
improves the performance of the system in the cases used for the introductory examples.

4.1 Introductory examples

The adaptive schemes treated so far as well as other schemes that fall in the same era
of adaptive control were found to perform well - possibly with some modifications to
improve robustness, speed or accuracy - if two conditions on the controlled system are
satisfied:

. The initial parameter error ‖ϑ̃(0)‖ is small enough in some sense, and

. the parameters are constant over time or change on a considerably slower time-scale
than the adaptation.

Otherwise the performance of the overall system can be degraded by huge transients
or, in the case of time variations, even instability. To illustrate this, the simulations
from Section 3.2 are repeated with modification of the aforementioned environmental
parameters.

Large initial parameter error: Large transients. This simulation uses the exact
same setup as in Section 3.2.3, this time with the reference signal y∗(k) = 10 sin(k/10).
The simulation is run two times: The first time, the initial parameter vector is

ϑ(3) = ϑ∗ •
[
1.1 1.05 0.9 0.95 0.9 1.1

]T

like in 3.2.3, the second time the initial errors are considerably larger, namely

ϑ(3) = ϑ∗ •
[
1.3 1.3 0.8 0.7 0.8 1.3

]T
.
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Figure 4.1: A small initial parameter er-
ror causes only reasonable
transients in the start-up
phase
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Figure 4.2: A large initial parameter er-
ror causes severe degradation
of the initial performance

The results are shown in Figures 4.1 and 4.2. It is obvious that the transients caused
by the large initial error are hardly tolerable in any practical application, even more so
since in the transient phase the controller also calls for large control amplitudes.

Time-variations: Large transients and instability. Again, the same system and
algorithms as in Section 3.2.3 and the reference signal y∗(k) = 10 sin(k/10) are used,
but this time, the parameter vector of the system changes every 100 instants of time, so
ϑ̄∗(k) = ϑ̄∗dk/100e mod 4+1. The parameter values used thereby are

ϑ̄∗1 =
[
5/2 −2 3/4 1 1/2

]

ϑ̄∗2 =
[
−1 1 1/2 2 1

]

ϑ̄∗3 =
[
1/2 2 −2 1/2 1/3

]

ϑ̄∗4 =
[
−1 −1 1 2 −1

]
.

(4.1)

Time variations like this could very well be the effect of failure in system components
or discrete changes in the environment, e.g. transition between different working modes
of a chemical reactor.
Note, that this example is more or less a mere extension of the one before: The problems
are caused by the large transients which in turn occur because whenever the parameter
vector changes that is equivalent to initiating adaptation with a possibly very large
initial parameter error.
The simulation results if the parameter estimate is initialized with

ϑ(3) = ϑ∗ •
[
1.1 1.05 0.9 0.95 0.9 1.1

]T
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Figure 4.3: Fast time-variations can lead to large transients and instability. The spikes
are cut off to show that the adaptive controller is able to stabilize the plant
after a certain amount of time during the first few intervals.
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are shown in Figure 4.3. As expected, the performance is severely degraded, including
instability from the 4th switching instance (k = 400) on.

Efforts to overcome this limitations during the late 1980s and 1990s focussed on im-
proving the speed of the adaptive schemes to attenuate transient effects and prevent
instability. The concept of Multiple Models, Switching and Tuning thereby can be seen
as the now dominant approach and so this chapter is devoted to introducing and sketch-
ing the scheme after giving a short historical overview of the developments. As usual,
simulations illustrating the effectivity of the proposed algorithms will conclude the chap-
ter.

4.2 Multiple-Model approaches in control

4.2.1 Historical overview

The use of multiple models in identification and control can be traced back to the 1960s
and 1970s, when in the works of e.g. Magill [Mag65], Saridis and Dao [SD72], Lainiotis
[Lai76] and Athans et. al. [ACKP+77] theory and application of the so-called MMAC
(Multiple Model Adaptive Control) approach were reported. These early approaches
typically consist of a bank of Kalman Filters designed for different possible values of
the system parameter vector. Each Kalman Filter is accompanied by a deterministic
controller which is designed based on the same parameter vector. The filters’ a pos-
teriori probabilities then are used as a measure of confidence in the individual filter’s
parameter vector and the overall control signal of the MMA-Controller is computed as
a weighted sum of the control signals generated by the individual controllers, weighted
by the confidence in the respective Kalman Filter.
However, these approaches did not involve adaptation of the individual models (the term
“adaptive” rather referred to the change in the weighting factors than to true adaptation
of parameters) and thus more or less relied on the number of possible parameter values
being finite. Furthermore, as pointed out e.g. in [ACKP+77], no stability results were
obtained. Finally, in contrast to the approach to be outlined later in this chapter, no
switching but weighting was performed.

In a context of adaptive identification and control, the pioneering contribution towards
switching between multiple models probably has to be awarded to Martensson [Mar86].
In what followed, so-called direct switching schemes were the first to evolve. In those
approaches, see e.g. [FB86], the sequence of controllers to switch to is predefined and
the time instants at which the switching occurs depend on the output of the system.
In contrast to that, in the indirect switching schemes, the performance of the multiple
models is used to decide when and to which model to switch.�i� The idea was first

�i� The terminology of direct and indirect switching is a bit unfortunate because prone to lead to
confusion with direct and indirect adaptive control. Whereas the switching scheme decides when to
use which controller, regardless of the structure of the individual controllers, the indirect or direct
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presented by Middleton et. al. [MGHM92] and subsequently formalized and extended
by Narendra and Balakrishnan in [NBC95, NB97]. In schemes of this kind, multiple
estimators for the plant parameters are set up and, similar to the earlier approaches
involving Kalman Filters, one indirect adaptive controller is computed from each of the
estimators’ parameter vectors. The estimators are run in parallel, the “best” (according
to some performance criterion which is typically based on the identification errors) is
chosen at every instant of time and the according indirect adaptive controller is used to
control the plant.

Here it also becomes apparent, why the adaptive control approach adopted has to be
the indirect one: The switching has to be based on some kind of performance criterion,
but if the direct approach was to be used, only the performance of the active controller
could be evaluated and this just after application of the control input generated by this
controller. That is, in the case of the direct approach, there is no way of making the
decision, which controller is the best one to control the plant at the given instant of time
a priori. In contrast to that, adaptive estimation of plant parameters like described e.g.
in Section 3.1 does not interfere with the operation of the plant, is a passive procedure
and thus arbitrarily many estimators can be run at the same time and their performance
can be assessed by their individual identification errors. The identification error of the
associated estimator in turn can be used as a measure of confidence in the individual
controllers and switching schemes can be based on that. It should be stressed here that
this decision is purely heuristic because there is no theoretical result showing that a
parameter error with a smaller norm ensures a smaller identification error and neither
of those guarantee faster convergence of identification or control errors.

4.2.2 Multiple Models, Switching and Tuning

Representatively for the “classical” multiple model approach, we shall now describe the
multiple model scheme proposed in [NX00]�ii� in some detail and also give a proof of
stability. As pointed out earlier, adaptive control using a single model is sufficient as
long as the initial parameter error ‖ϑ̃(0)‖ can be kept small and the parameters vary only
slowly with time (or not at all). If at least one of the two assumptions is not fulfilled,
which is the case e.g. in the presence of large external disturbances, if the knowledge
of the parameter values is very limited or in the case of failures in system components,
then the case can be made for multiple model approaches.

The particular one that is going to be described here is made of three main ingredients: A
bank of identification models, a bank of controllers based on those identification models
and a switching rule which evaluates the performance of the individual identifiers and

with regard to adaptive control refers to which parameters are dynamically adjusted: The ones of
the controller as in direct adaptive control or the ones of an estimator from whose parameter vector
the control parameters are then computed via an algebraic relationship.

�ii� The paper is a summary of the much more detailed analysis in the PhD-Thesis [Xia00], from which
most of the proofs in this chapter are taken.
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switches to the controller associated with the identifier with the best performance. A
general architecture is shown in Figure 4.4.

Three principal structures regarding the individual models can be found in the literature:

1. All models are fixed

2. All models are adaptive

3. Some models are fixed and some are adaptive

The case of all fixed models is quite similar to the early approaches like [Lai76] etc.,
discussed in the last section. The advantage of fixed models over adaptive models ob-
viously is the computational inexpensiveness. On the other hand, we can say that for
the performance to be satisfactory (or even stable), at least one model must be close in
some sense to the real plant. Since the plant is assumed to be unknown, this in turn
means that the space of possible parameter values must be covered densely enough with
fixed models which can require - depending on how big that space of possible parameter
values is - a very large number of fixed models.

If all models are adaptive, stability is not an issue, since one adaptive model already
assures that. The computational complexity however increases substantially in relation
to all fixed models. Another disadvantage shows, if the approach is used to deal with
time-varying parameters: Assume, that the parameters stay constant for a while. If the
input is persistently exciting this will cause all the models to converge to the same point
in parameter space and invalidate the approach. If the input is not PE all models still are
going to converge to some subspace of the parameter space, so any strategic distribution
of models over parameter space is bound to be destroyed after some running time.

That makes the third structure the method of choice since it combines the advantages of
the two others: Computational inexpensiveness and fast response from the fixed models,
stability and good asymptotic performance from the adaptive models. Following this
considerations, it was suggested in [NB97] to set up M models, M − 2 of which are
fixed and distributed over parameter space. The remaining two models are adaptive,
one is free-running and the other is resettable, that means whenever one of the fixed
models is chosen because it has the best performance index, this adaptive model initiates
adaptation with the parameter vector of the fixed model as its initial value.

Formal description. Let the plant model to be identified be given by the usual d-step
ahead predictor form

y(k) = ϑ∗Tϕ(k − d), (4.2)

where ϕ and ϑ∗ are defined as usual, e.g. in Equation (2.16). The assumptions that
apply are exactly the same as in Lemma 3.6, they are repeated here for convenience:

Assumptions 4.1.

(i) The delay d is known exactly.
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1ŷ

2
ŷ
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(ii) The sign of bd+n−1 and a lower bound b for |bd+n−1| are known.

(iii) The order n, or at least an upper bound n ≥ n for the order n, is known.

(iv) The inverse system B(q)z(k) = A(q)υ(k) is BIBO stable.

The M identification models are then set up as

ŷi(k) = ϑTi ϕ(k − d) i = 1, . . . ,M − 2 (4.3a)

for the fixed models,

ŷa(k) = ϑTa (k − 1)ϕ(k − d) (4.3b)

for the free running adaptive model, and

ŷr(k) = ϑTr (k − 1)ϕ(k − d) (4.3c)

for the resettable adaptive model. For each model, one associated one-step-ahead con-
troller is set up which computes its output ui(k) such that

y∗(k + d) = ϑTi ϕ(k) i = 1, . . . ,M − 2

y∗(k + d) = ϑTi (k)ϕ(k) i = a, r.
(4.4)

It now remains to be decided, which of the M possible inputs should be used to control
the plant at each instant of time k. As described earlier we hereby want to use the output
of the controller in whose parameter vector we have the most confidence. Therefore each
of the identifiers gets assigned a performance criterion which incorporates the normalized
identification errors from the initial time k0 until the current time k, and an optional
forgetting factor ρ ∈ (0, 1] that helps putting more weight on recent data

Ji(k) =
k∑

τ=k0

ρk−τ

(
ŷi(τ)− y(τ)√
c+ ϕTϕ(τ − d)

)2

=
k∑

τ=k0

ρk−τ
e2i (τ)

c+ ϕTϕ(τ − d)
, (4.5)

where c > 0 is some constant and i = 1, . . . ,M − 2, a, r, and we choose

u(k) = um(k)(k) (4.6)

m(k) = arg min
i=1,...,M−2,a,r

Ji(k).

As the adaptive law which governs the parameter updates ϑa(k)−ϑa(k−1) and ϑr(k)−
ϑr(k − 1), any stable adaptive algorithm can be chosen.
A slight modification is necessary for the resettable model: Whenever one of the fixed
models becomes active (i.e. is chosen for the first time in a finite interval) the parameter
vector ϑr(k) is reset to the value of the parameter vector of the fixed model, so if for
instance the projection algorithm is used:

ϑr(k) =

{
ϑr(k − 1)− γεr(k)ϕ(k − d) if m(k) ∈ {m(k − 1), a, r}
ϑm(k) if m(k) 6∈ {m(k − 1), a, r} (4.7)
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Proof of stability. The proof of stability mainly consists of showing, that the switch-
ing stops after a finite time T at one of the adaptive models, that by themselves already
assure stability. Going along the lines of [Xia00], we first prove stability for ρ = 1 and
afterwards show, how stability for ρ ∈ (0, 1) follows from that with an auxiliary lemma.

Lemma 4.2 (Stability of multiple model adaptive control, ρ = 1). If the same assump-
tions on the plant as in Lemma 3.6 can be made and a stable identification scheme is
used along with the control law (4.4), the performance criterion (4.5), ρ = 1 and the
switching scheme (4.6), then ϑa(k), ϑr(k), u(k) ∈ `∞ and ec(k) = y(k)− y∗(k)→ 0.

Proof. That ϑa(k), ϑr(k) ∈ `∞ follows directly from Lemma 3.2, since no changes to the
identification schemes are made. So we only have to show that u(k) ∈ `∞ and ec(k)→ 0.
Since the performance indices Ji(k) are monotonic, we have that limk→∞ Ji(k) either is
a finite constant Ki or ∞. For all fixed models, the latter is (almost always) the case.
To see that, observe that from ‖ϕ(k − d)‖ ≤ D1 + D2 maxτ≤k |ei(τ)| (from the proof

of Lemma 3.6) it follows, that
e2i (k)

1+ϕTϕ(k−d) ≥
e2i (k)

D2
1+D2

2 maxτ≤k e
2
i (τ)

which only tends to zero

if ei → 0. From ei = ϑ̃Ti ϕ(k − d) it then follows that this can be the case if either
ϕ(k− d)→ 0, which is a trivial case, or ϑ̃i ≡ 0, which would mean that one of the fixed
models is an exact plant model, or in the singular case that ϑ̃i⊥ϕ(k − d) from some
time ki on. So except for pathological cases, Ji →∞ for all fixed models, from which it
follows that after a finite time T , Ja(k) < Ji(k) for all i = 1, . . . ,M − 2 and that means
that after a finite time, no fixed models will be selected anymore and since the adaptive
model alone already ensure stability, we have ec → 0.
Note that the resettable model will never be reset after T , since no fixed models are
being selected, and by that does not change the stability properties.

To show how that extends to ρ ∈ (0, 1), the following auxiliary lemma is needed:

Lemma 4.3 ([Xia00]). Let a, b : Z+ → R+ with

∞∑

τ=1

a(τ) <∞

and
∞∑

τ=1

b(τ) =∞.

If there exists a lower bound δ > 0 such that maxj∈Z+{n | b(j) < δ, b(j+1) < δ, . . . , b(j+
n) < δ} = L <∞ (i.e. if the number of consecutive elements of b that are smaller than
δ is at most L+ 1), then there exists a finite T , such that for all k ≥ T :

k∑

τ=1

ρk−τb(τ) >
k∑

τ=1

ρk−τa(τ).
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Proof. From the assumptions on b it follows, that for k > L there exists a j such that

k∑

τ=1

ρk−τb(τ) ≥
∑

τ∈{1,...,k}\{j,...,j+L}

ρk−τδ +
∑

τ∈{j,...,j+L}

ρk−τb(τ) ≥ ρL+1δ.

On the other hand, since a ∈ `1, a→ 0, so for any ε1 > 0 there exists Nε1 > 0 such that
a(k) < ε1 ∀ k ≥ Nε1 , or

k∑

τ=1

ρk−τa(τ) ≤
Nε1∑

τ=1

ρk−τa(τ) +
k∑

τ=Nε1

ρk−τε1 ≤
Nε1∑

τ=1

ρk−τa(τ) +
ε1

1− ρ.

Since a ∈ `∞, the first sum tends to zero as k → ∞, so ∀ε2 > 0 ∃Nε2 > 0: k ≥ Nε2

⇒ ∑Nε1
τ=1 ρ

k−τa(τ) < ε2. Now choose ε1 and ε2 such that ε1
1−ρ + ε2 < ρL+1δ. The result

follows with T = max{Nε2 , Nε1}.
Corollary 4.4. Lemma 4.2 also holds for ρ ∈ (0, 1).

Proof. Application of Lemma 4.3 with b(k) =
e2i (k)

1+ϕTϕ(k−d) and a(k) = e2a(k)
1+ϕTϕ(k−d) to the

proof of Lemma 4.2 extends it to the case ρ ∈ (0, 1).

The stability results reveal, that the multiple model approach inherits its stability from
the single model adaptive control whereas the expected performance improvement re-
mains based on merely heuristic considerations. The improvement of the performance
and thus the applicability of multiple model approaches has been shown by extensive
simulation studies in the literature that has been mentioned in this chapter. We will
conclude our discussion by showing that the approach does also improve performance in
the introductory examples.

4.2.3 Simulation: Multiple-Model Adaptive Control of a
system with discontinuous time-variance

We now go back to the introductory examples and show, how the approach of this
section is apt to improve performance in this cases considerably. For this simulations,
the same conditions as in Section 4.1 are used. The controller consists of four fixed
models with parameter estimates ϑi = ϑ∗i •

[
1.1 1.05 0.9 0.95 0.9 1.1

]T
, where ϑ∗i

corresponds to the d-step ahead predictor form of the SPM y(k) = ϕ̄T (k)ϑ̄∗i , that is
relatively close to the four possible parameter vectors of the plant. The adaptive models
are initialized with the “bad” initial estimates from Section 4.1, that is ϑr(3) = ϑa(3) =

ϑ∗1 •
[
1.3 1.3 0.8 0.7 0.8 1.3

]T
and the forgetting factor is chosen to be ρ = 0.35, a

good value to deal with the time-variations.

Figure 4.5 shows only the first 100 instants of time. Compared with Figure 4.2 it is
obvious that the transients decreased in magnitude and decay a lot faster. The reason is
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Figure 4.5: The multiple model approach improves the performance in the transient
phase considerably.

that the switching scheme identifies the closest model quickly and adaptation is initiated
from there.

In Figure 4.6, 600 instants of time are shown. In comparison with Figure 4.3 it can be
seen that although spikes can be observed, they are several orders of magnitude smaller
than in the single model case, where the response even became unstable after a while.
The right plot shows that the performance criterion always finds the best estimate of
the parameter vector among the fixed models after a very short period of time (and
with a little confusion every now and then). Adaptation is initiated from there and the
resettable adaptive model converges faster than the free-running one, which leads to the
resettable model being active for most of the time.
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Figure 4.6: The performance in the presence of rapid parameter changes improved con-
siderably, instability cannot be observed anymore.
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5 A new method of Identification
and Control of time-varying linear
plants

The limitations of the methods we have presented so far are readily summarized: Time-
variations and transients. In other words, any variation of the parameters leads to a
transient in the response. If the variations are happening too fast, so that the identi-
fication algorithm jumps from transient to transient without time to settle in between,
instability results. In this chapter we will present a new method to handle time vari-
ations of (almost) arbitrary speed in a plant that switches between a finite number of
subsystems. The method, which has been proposed in [FN06], involves a Multiple-Model
controller with adaptive models of the subsystems that can asymptotically provide track-
ing d time-steps after every switch, provided that switching does not occur on intervals
with a minimum length of at least d.

Under the assumption that it is possible to identify all the subsystems exactly, it is
easily shown how a very simple controller yields the desired response. So the next step
is to provide an algorithm which ensures exactly that: Convergence of multiple models
to multiple subsystems, regardless of the speed of switching.

5.1 The problem formulation

The plant. To make the problem of a time-variant plant tractable, we have to assign
a certain structure to the time-variations. This structure shall be the easiest one can
think of: The plant is assumed to switch between a finite number of subsystems:

y(k) = ϕT (k − d)ϑ∗(k − d), (5.1)

where ϑ∗ : Z+ → Θ∗ ⊂ Rp and Θ∗ = {ϑ∗1, . . . , ϑ∗ν}. We shall refer to the time-invariant
systems described by y(k) = ϕT (k−d)ϑ∗i , i ∈ N , as the subsystems of the plant, p ∈ Z+

is the dimension of the parameter vector and the index set N = {1, . . . , ν} is introduced
for ease of notation.
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Furthermore, the following technical assumptions have to be made:

Assumptions 5.1.

(i) The switching never stops, that is for every k ≥ 1 there exist ki ≥ k, i ∈ N , such
that ϑ∗(ki) = ϑ∗i .

(ii) The input delay d is the same for all subsystems.

(iii) The plant behaviour stays constant for at least d+ 1 instants of time, that is if the
switching instants are denoted by si, then si+1 − si ≥ d+ 1 ∀i ∈ Z+.

(iv) Assumptions 4.1 are fulfilled for every subsystem to make 1-step-ahead control
possible.

The control task. The standard goal of asymptotic tracking has to be somewhat
redefined for plants of the form just described. A certain inherent control error cannot
be avoided, even with an exact model for every subsystem, because every change in the
plant behaviour will stir up the control error, so in general convergence to zero cannot be
achieved and we will have to settle for convergence to zero on an unbounded subsequence
of Z+. We leave the detailed analysis which will reveal the exact cause for trouble and
the nature of the control error convergence to Section 5.3, where the control algorithm
is described and analysed.

5.2 A short overview of the notation

Before we proceed to describe the control and identification algorithms it seems advisable
to recapitulate the notation introduced so far, since it could be a source for confusion
otherwise.

. The parameter vector of the plant ϑ∗ is now replaced by a piecewise constant
function ϑ∗(k). The range of this function is the finite set Θ∗, which consists of
the constant parameter vectors ϑ∗i of the ν subsystems of the plant.

. Instead of fixed models we now have only adaptive models, each with its own
parameter estimate ϑi(k). One model is chosen at each instant of time to be
the one with the best performance. Its index is denoted by m(k). The vector
ϑ(k) = ϑm(k)(k) is the parameter estimate used for control and thus in some sense
the “actual” parameter estimate.

. The signal y∗(k) is the reference signal.

. Each model has the output ŷ(k) = ϑTi (k − 1)ϕ(k − d) and an identification error
ei(k) = ŷ(k) − y(k). Opposed to that there is only one control error ec(k) =
y(k)− y∗(k).
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5.3 The control algorithm

Assume for the moment, that all subsystems have been identified exactly, that is for
any ϑ∗i ∈ Θ∗ there is a model j such that ϑj = ϑ∗i . Since we now explicitly assume
a time-variant system, it does not make much sense to use a stability criterion with
memory like (4.5) anymore. Instead, only the instantaneous identification error is taken
into account, that is

Ji(k) = e2i (k) = (ŷ(k)− y(k))2�i�. (5.2)

Like in the classical multiple model approach of Section 4.2, for each model a corre-
sponding 1-step-ahead controller is set up. The outputs of the controllers are denoted
by ui and at each instant of time the input u is chosen as

u(k) = um(k)(k)

m(k) = arg min
i∈N

Ji(k),
(5.3)

in other words, the estimate of the parameter vector is ϑ(k) = ϑm(k). Since we assumed
exact estimates, we have that Ji(k) = ϕT (k−d) (ϑ∗i − ϑ∗(k − d)) = 0 for one i ∈ N , and
thus m(k) = i, which leads to

ϑ(k) = ϑ∗m(k) = ϑ∗(k − d) ∀k ∈ Z+, (5.4)

so a change in the parameter vector can only be detected d instants of time later, which
is quite intuitive.

Now let s be a time instant at which the plant switches from subsystem j to subsystem i,
i 6= j, so regarding Assumptions 5.1 that means that ϑ∗(k) = ϑ∗j at least for k ∈ [s−d−
1, s) and ϑ∗(k) = ϑ∗i for k ∈ [s, s+ d]. Expanding the control error ec(k) = y(k)− y∗(k)
to

ec(k) = ϕT (k − d)
[
ϑ∗(k − d)− ϑ∗m(k−d)

]

= ϕT (k − d)
[
ϑ∗(k − d)− ϑ∗m(k) + ϑ∗m(k) − ϑ∗m(k−d)

]

= ϕT (k − d)
[
ϑ∗(k − d)− ϑ∗m(k)

]
︸ ︷︷ ︸

≡0, cf. (5.4)

+ϕT (k − d)
[
ϑ∗m(k) − ϑ∗m(k−d)

]

= ϕT (k − d)
[
ϑ∗m(k) − ϑ∗m(k−d)

]
.

(5.5)

So from Equation (5.4) it follows, that

ec(k) 6= 0 for k ∈ Ic(s) := {s+ d, s+ d+ 1, . . . , s+ 2d− 1}, (5.6)

because for k ∈ Ic(s), m(k) = i and m(k − d) = j. Ic(s) is referred to as the inherent
control error interval, because for all switching instants s, the control error during that

�i�With the convention 00 = 1, this could be seen as the performance criterion from (4.5) with ρ = 0
and without the normalization.
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interval could only be avoided by switching from model j to model i at time k = s, that
is d instances before the change can be detected at the output. See also Figure 5.1 for
an illustration.

If we now substitute the assumption that we have exact estimates for all subsystems
with the weaker assumption that there exists a stable identification scheme which simul-
taneously identifies all subsystems, we can state the following theorem.

Theorem 5.2 ([FN06]). Suppose we have a plant as described in Section 5.1, subject to
Assumptions 5.1, and an adaptive algorithm which ensures that for any i ∈ N there is
a j ∈ N such that ‖ϑj(k)− ϑ∗i ‖ → 0 as k →∞. Then the controller

u(k) = um(k)(k)

m(k) = arg min
i∈N

Ji(k)

ui(k) such that y∗(k + d) = ϕT (k)ϑi(k − 1)

(5.7)

stabilizes the plant in the sense that ‖ϕ(k)‖ ∈ `∞ and ec(k) → 0 on a subsequence
Kl ⊂ Z+.

Proof. For simplicity and without loss of generality let the identification models be
rearranged such that ‖ϑi(k) − ϑ∗i ‖ → 0. Then it follows that after some time k̄ ∈ Z+

the identification error |ei| ≤ ‖ϑi(k − 1) − ϑ∗(k − d)‖ ‖ϕ(k − d)‖ is smaller than the
identification errors |ej(k)|, i 6= j, of all the other models whenever ϑ∗(k − d) = ϑ∗i , or
in other words, that Ji(k) < Jj(k) ∀j 6= i ∀k ∈ {k |ϑ∗(k − d) = ϑ∗i }.
That means we can define an unbounded subsequence Kn = Z+ \ Q1 ⊂ Z+, where
Q1 = {s+d | s ∈ S} (S denotes the set of switching instants), such that m(k−1) = m(k)
and em(k) = (ϑ(k− 1)−ϑ∗(k− d))Tϕ(k− d)→ 0 on this subsequence, because m(k) = i
if ϑ∗(k − d) = ϑ∗i and k ∈ Kn.

We can define another unbounded subsequence Km = Z+ \ Q2 ⊂ Z+, where Q2 =
{s + d + 1, . . . , s + 2d − 1 | s ∈ S}, such that ‖ϑ(k − 1) − ϑ(k − d)‖ → 0 on this
subsequence, because m(k − d) = m(k − 1) and thus ϑ(k − 1) and ϑ(k − d) belong to
the same model for k ∈ Km.

So the set Q1 includes all the “detection” instants, and Q1∪Q2 = Ic, the inherent control
error interval. The construction of Q1 and Q2 is illustrated in Figure 5.1.

Like in the proof of Lemma 3.6 we can derive the relationship

|ec(k)|√
c+ ϕTϕ(k − d)

≤ |em(k−1)(k)|√
c+ ϕTϕ(k − d)

+
‖ϕ(k − d)‖ ‖ϑ(k − 1)− ϑ(k − d)‖√

c+ ϕTϕ(k − d)
, (5.8)

where em(k−1)(k) = ŷm(k−1)(k) − y(k) is the a priori identification error, that is the
identification error at time k before the new active controller is chosen according to
(5.7). If we restrict our attention to the subsequence Kl = Km ∩Kn = Z+ \ Ic it follows
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Figure 5.1: An illustration of the sets Q1 and Q2 in the proof of Theorem 5.2.

that |ec(k)|√
c+ϕTϕ(k−d)

→ 0 on Kl. Since we assumed that si− sj ≥ d+ 1 it follows that each

interval of length greater than d + 1 (after k̄ has passed) contains at least one element
of Kl, and thus Kl is unbounded.

In a manner similar to the proof of Lemma 3.6 it can be shown now that from that
result, namely that the normalized control error |ec(k)|√

c+ϕTϕ(k−d)
tends to zero on Kl, it

follows that also the control error ec tends to zero on Kl:
Since we assumed a stable inverse for all possible subsystems, it follows that the input
and thus the regression vector of the system cannot grow faster than the control error.
Following the exact same steps this can be used to show that, if the time axis for all
sequences is taken to be Kl instead of Z+

– if ec ∈ `∞, then ‖ϕ‖ ∈ `∞

– if ‖ϕ‖ ∈ `∞, then ec → 0

– if ec 6∈ `∞, then |ec(k)|√
c+ϕTϕ(k−d)

6→ 0, a contradiction,

and so it follows, that ec → 0 on Kl and ‖ϕ‖ ∈ `∞.

5.4 The identification algorithm

The more interesting question is of course, what an identification algorithm that ensures
that ν adaptive models are converging simultaneously to ν different subsystems could
look like. First of all, it is important to understand the difference of this approach to
the one outlined in Chapter 4.

The now classical Multiple-Model approach was designed to deal with time-invariant
plants, consequently theoretic results are strictly valid only in this case. Application to
time-varying cases as demonstrated in the last chapter is based on the heuristic assump-
tion that convergence takes place and after a change in parameters a new adaptation
problem has to be solved, possibly with bad initial estimates because they now depend
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on the active parameter vector before the switch and cannot be chosen close to some
expected values of the new parameter vector.�ii�

Since every rapid change in parameters is seen as a new problem, information about the
“old” parameter vector is discarded. For this reason it does not seem wise to incorporate
more than one adaptive model (or two - with an additional resettable one) because at
every time k, all efforts are directed towards “hunting down” the active subsystem, the
models thereby act completely decoupled from each other. Thus if the parameter vector
remains unchanged for long enough, all adaptive models will converge to the same point
in parameter space.

In view of the assumptions in Theorem 5.2, the new identification algorithm must include
ν adaptive models, but the effect of all of them converging to a single point must be
prevented somehow. It is clear that this calls for interaction of some kind between the
models. In [FN06] it has been proposed for this interaction to be a competition amongst
the individual models for the maximum adaptive gain.

The detailed algorithm consists of ν adaptive models, each maintaining its own param-
eter estimate ϑi(k), i ∈ N and updating it by the adaptive law

ϑi(k) = ϑi(k − 1)− ηi(k)γεi(k)ϕ(k − d). (5.9)

The only difference to the projection algorithm (3.7) thereby is the new time-variant fac-
tor ηi(k) which will introduce the competition between the models. It is straightforward
to favour the model that is closest in some sense. Here the same heuristic assumption
as in the classical multiple model approach is used: It is assumed that the closest model
also has the smallest identification error ei(k) = ŷi(k)− y(k)�iii� and ηi is computed as

ηi(k) =
e−2
i (k)

e−2
1 (k) + e−2

i (k) + · · ·+ e−2
ν (k)

. (5.10)

Since
∑

i∈N ηi(k) = 1, the gain γ is distributed amongst the models, but the best one
gets to move the most, so its advantage over the other models increases. This will lead
to an even bigger favouring in the next step and so forth as long as this model stays
the best. If one identification error, say ej(k), tends to zero, we have that ηj → 1 and
ηi → 0, i 6= j.

5.4.1 Empiric findings from simulation studies

Since the algorithm has refused to lend itself to a complete theoretical analysis so far,
this section is dedicated to some simulations that will support the assumptions that the

�ii�So far this applies to the single model approach, too, the multiple model approach merely speeds up
convergence by alleviating the bad-initial-values problem.

�iii�Like in Section 4.2 it should be stressed that this is purely heuristic and that ‖ϑ̃i(k)‖ < ‖ϑ̃j(k)‖ 6⇒
ei(k) < ej(k) but that the only information about the success of the identification we have is the
identification error.
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algorithm works and its convergence analysis has to be done along different lines than
in the case of classical Adaptive Identification (cf. Lemma 3.2).

The algorithm works

Although no proof of stability could be given so far, numerous simulations give strong
evidence that the algorithm works. This is demonstrated with three examples, that are
representatives for different circumstances

p = 2, ν = 5, models start close to subsystems. For this simulation it was
assumed that the values of the subsystems are known to some degree, so each of the
5 models can be started close to one of the subsystems. The plant switches between
the subsystems in a random sequence and at random instants of time, the input was
chosen as u(k) = 10 sin(k/10) which is PE. From the results shown in Figure 5.2 it can
be seen that each model is converging to “its” subsystem rather directly. Thus it is no
surprise, that the index of the active plant and the index of the maximal ηi(k) (that is
the index of the model that would be used for control) synchronize quickly, what can be
seen in Figure 5.3. Note that here as well as in all the other plots involving the switching
signal, the time-axis of the active subsystems is shifted by d instants of time to make
the synchronization visible.

p = 2, ν = 5, models start in a cluster. Now no use is made of prior information
about the location of the subsystems. Instead, the models start in a cluster, relatively
close to each other and far away from the subsystems. This leads to a lot less smooth
and slower convergence, the properties of which shall be discussed later. The point that
is supposed to be made here is that the algorithm still leads to convergence, which can
be seen in Figure 5.4, and synchronization of the switching instants, cf. Figure 5.5.

p = 6, ν = 4, models start close to subsystems. This example shows, that the
algorithm also works for higher order cases. Here the 2-step ahead predictor form of a
plant was identified using the PE input signal 10 sin(k/10) + 15 sin(k/5) + 20 cos(k/2) +
5 cos(k) + 30 cos(2k). The time series of the parameter estimates along with their real
values are shown in Figure 5.6 and the synchronization of max{ηi} with the switching
instants of the plant is shown in Figure 5.7.

p = 6, ν = 4, models start in a cluster. Again, no use of prior information about
the subsystem location was made and the models start all close together. Like in the
first-order case convergence takes a bit longer and is not as smooth as in the case where
each model starts close to one subsystem, but eventually takes place, as can be seen in
Figure 5.8.
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Figure 5.2: Each model starts close to one subsystem and converges to it.

Which model converges to which subsystem is not determined by their
locations in parameter space

Foregoing examples and numerous other simulations with different parameter values have
shown that in the case where approximate values for the parameters of the subsystems
are known and one model is assigned to each subsystem by placing the initial value close
to it the intuitive thing happens, namely each model converges to the subsystem closest
to it. The intuition that an association of the models with the subsystems is always
predetermined by the setup turns out to be misleading though. In fact, examples can
be found where the location of models and subsystems is identical and the difference
only lies in the model sequence and the switching instances, but the models nevertheless
converge to a different subsystem with each run of the simulation as shown in Figure
5.9, which merely consists of 4 reruns of the second example from the preceding section.

Two phases: Self-organization and convergence

In the examples presented so far the system shows a smooth convergence behaviour
whenever the models start close to the plants, but a rather wild one whenever the models’
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Figure 5.3: Switching of plant and models synchronizes quickly when models start close
to subsystems.

initial location is totally unrelated to the subsystems’. One could use this qualitatively
different behaviour to distinguish two phases:
In the first one, the models (or rather some of the models) do not seem to really move
in the direction of a subsystem but rather wobble around in parameter space until they
get separated from each other and by that the decision is made, to which subsystem
each model converges. In [FN06], the term self-organization was used for this wobbling
about until a structure emerges from which convergence can take place.
In the second one, the models converge more or less straight towards “their” subsystems
without coming close to each other. One could say that in the case where approximate
subsystem locations are known, the system starts in the second phase because it already
is organized.

This would be easily illustrated using an animation for p = 2, Figure 5.10 shows some
snapshots of a typical phase portrait:

– Figure 5.10(a) shows the initial configuration: The models start close to each other
in the lower right corner.

– In Figure 5.10(b), model � seems to already have converged to a subsystem. While
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Figure 5.4: Even though the models start with no association to any subsystem conver-
gence takes place.
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Figure 5.5: Switching of plant and models synchronizes. Note that the subsystems have
been rearranged on the ordinate since model i does not necessarily converge
to subsystem i.
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Figure 5.6: Convergence for the case p = 6.

model ♦ is very close to the same subsystem, the models +, +× and × did not move
much yet.

– In Figure 5.10(c), � has moved away from its subsystem a bit and now ♦ is closer.
While × seems to have latched on to the subsystem in the left corner, as well as
+× to the one in the center, + is stuck nowhere close to any subsystem.

– In Figure 5.10(d), � is closest to the subsystem in the top right corner again, while
♦ moved away from it and + still is stuck in the middle.

– Finally, in Figure 5.10(e), a certain structure emerged and each model seems to
have set out for an unique subsystem now.

– Figure 5.10(f) shows the convergence.

The main point here is that � and ♦ initially compete for the subsystem in the top
right corner, while + does not move a lot at all. It takes some time until � “wins” this
subsystem and ♦ moves to the one on the right. That is the system organizes itself until
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Figure 5.7: Switching of plant and models synchronizes for p = 6.

the final convergence can take place. Figure 5.11 consequently shows the phase portrait
from time k = 1450 on. The models converge to their subsystems without getting close
to each other anymore.

5.4.2 Difficulties in the convergence analysis

The simulation results of the preceding subsection were good evidence that in order to
present a stability analysis of the presented algorithm, a lot of difficulties have to be
overcome. We shall now quickly summarize some of those difficulties to conclude the
treatment of the identification algorithm.

We are facing a nonlinear, time-variant ν(p+1)-st order system (where p is the dimension
of the parameter vector), constituted by Equations (5.1), (5.9) and (5.10) or in terms of
the identification error ei by

ei(k) = ϕT (k − d)[ϑi(k − 1)− ϑ∗(k − d)]

ϑi(k) = ϑi(k − 1)− ηi(k)γεi(k)ϕ(k − d)

ηi(k) =
e−2
i (k)

e−2
1 (k) + e−2

i (k) + · · ·+ e−2
ν (k)

.

(5.11)

The main differences to the classical algorithms presented earlier in the thesis are on the
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Figure 5.8: Convergence for the case p = 6 and models starting in a cluster.

one hand the explicit time-variance of ϑ∗, which was not considered in the theoretical
analysis of the classical Multiple-Model schemes, and on the other hand that all equations
are now coupled in an extremely nonlinear fashion by the factors ηi.

While the classical proofs of stability relied on the monotonic decrease of the Lyapunov
function ϑ̃T ϑ̃ (cf. the proof of Lemma 3.2, but also proofs for e.g. least-squares methods in
[GS84, IF06]), application of such a function is prevented by the explicit time-variance
of ϑ∗: It is not even possible to define the deviation variable ϑ̃i, since its definition
changes with every switch in the parameter value. The examples have also shown that
it is not determined solely by the initial conditions, which model will converge to each
subsystem. But even if we somehow could decide beforehand that model i converges to
subsystem j and defined ϑ̃i = ϑi− ϑ∗j , the function V (k) =

∑
i∈N ϑ̃

T
i ϑ̃i will not decrease

monotonically. As an example, the function V is plotted in Figure 5.12 for the examples
from Figure 5.9. None of them decreases monotonically until the very end, when one
could say that self-organization took place and convergence starts. While this of course
does not negate the use of Lyapunov methods for the proof stability, it shows that
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Figure 5.9: Models converge to different plants, even if the difference merely lies in the
switching instances and sequence.

there lie enormous difficulties in trying to do so.

The analysis of individual models on the other side is prevented by the couplings. Al-
though the dynamics of an individual model did not change much (note that from the
point of view of a single model, ηi is merely a positive gain), the overall behaviour
changed considerably, and this is due to the coupling. The analysis thus must consider
the overall system, so probably little use can be made of earlier results on the individual
models.

Concluding it can be stated that the stability of the overall system is extremely difficult
and will probably not be possible in the classical framework of deviation variables and
Lyapunov theory. In [FN06] it therefore is called for a entirely new mathematical
framework for the analysis of the problem (or rather it was shown how the encountered
problems could give rise to such a new framework). The idea is to find related dynamical
systems with simpler dynamics such that the solution of the original system is enclosed
by convex combinations of the vector fields of the simpler systems. For details see [FN06],
but no further results have been reported on that issue yet.
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Figure 5.10: Snapshots of a phase portrait where the models started in a cluster.
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Figure 5.11: Phase portrait from k = 1450 on. The big + marks the values at k = 1450.

5.5 Simulations

Like the other chapters, we will conclude this chapter with simulation examples of the
presented method. The first example will assume fast but periodic switching, in the
second one the plant will switch arbitrarily between subsystems.

In both cases we have unstable subsystems with d = 2 and

Θ∗ =








−7/4
−1/4
3/8
1
1

1/4



,




2
−1/2
−1/2

2
−1
−1



,




9/4
−1
−1
1/2
7/12
1/6



,




0
2
−1
2
−3
1








=: {ϑ∗1, ϑ∗2, ϑ∗3, ϑ∗4}. (5.12)

The models start in the vicinity of the subsystems with ‖ϑi(1)− ϑ∗i ‖ = 1, the adaptive
gain is γ = 1 and the reference signal is y∗(k) = 10 sin(k/10). The only difference
between the two experiments is the switching. In the first, the sequence of the subsystems
is fixed and the switching periodic, in the second the sequence is random, as well as the
switching.

Periodic switching in a fixed sequence. This represents the simplest case. The
period is kp = 40 and the sequence 1 → 2 → 3 → 4 → 1 . . ., i.e. θ∗(k) = θ∗i∗(k),
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monotonically.

i∗(k) = 1 + dk/kpe mod 4. Figure 5.13 shows the results. In the two lower plots the
intervals Ic are shaded grey and it can be seen that the output does not follow the
reference in exactly this intervals.

Random switching in a random sequence. Now the switching intervals are ran-
dom between d+1 = 3 and 120 and the next subsystem is chosen randomly. The results
are shown in Figure 5.14 and look qualitatively the same as the results in the periodic
case.

In both cases, the models converge to the subsystems as well as the maximum value of
ηi and the switching signal synchronize. Since the plots look qualitatively like Figures
5.6 and 5.7 they are omitted here.

Also in both cases, horrible transients appear in the initial phase, which disqualifies the
use of the pure algorithm for direct practical application. It should be stressed though,
that the transients are attenuated a lot if the models start closer to the subsystems and
that the algorithm nevertheless yields a stable response and after the initial phase excel-
lent performance, both of which could not have been achieved with any other available
algorithm that does not make use of more initial information!
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Figure 5.13: y∗ and y in three different resolutions for the periodic example.
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Figure 5.14: y∗ and y in three different resolutions for the randomly switching example.
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6 Concluding remarks

Recapitulation

The thesis provided a self-contained step-by-step treatment of the development that led
from the classical single-model adaptive techniques to the novel algorithm first proposed
in [FN06] and presented here in Chapter 5.

The main contribution of the thesis was to offer the first comprehensive description of
the algorithm besides the conference paper [FN06], along with a discussion based on
extensive simulation results. Additionally, a very broad background was presented by
putting the algorithm in context with the already available adaptive algorithms. The
motivation for this was to make the thesis a well-rounded piece of work that could be
read and understood without resorting to additional literature and also to enable readers
to see and judge for themselves, what the novelty and possible impact of the findings
are.

The classical results of the first era of adaptive control, which made use of single models
and did not take time-variance in account, were presented in Chapter 3. In particular,
the projection algorithm was developed, including the proof of stability in Lemma 3.2,
and subsequently teamed up with a simple control algorithm to yield a first Adaptive
Control algorithm.

In Chapter 4 we have seen, where limitations of Adaptive Control lie and how consid-
erable improvement could be achieved with the use of multiple models. The dominant
approach of Multiple-Model Control with switching and tuning was detailed in Section
4.2.2. Remarkable thereby was that the proof of stability basically consisted of reducing
the problem to the case of a single adaptive model.

Chapter 5 finally presented the “new way”. It was pointed out that the novelty of the
presented algorithm thereby lies in the fact that for the first time, adaptation with mul-
tiple models leads to simultaneous convergence to different points in parameter space
and takes place independent of the length of the intervals of constant parameters. Un-
fortunately, stability of the nonlinear overall system, consisting of the new identification
algorithm, a time-variant plant and the simple control algorithm of Section 3.2, could
not be proven yet.
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Outlook

Before a new theory can be confidently applied to practical problems, the stability
properties have to be understood. Therefore it is natural that work on a proof of
stability is ongoing. Parallel to that, the dual theory for continuous-time is developed.
Actually, first simulations show that modification of the standard adaptive laws with

the same factors ηi(t) =
e−2
i (t)∑
e−2
j (t)

leads to the same qualitative behaviour of the models

converging to the subsystems, but work has only been rudimentary so far.

Results of this kind however meet a high demand. Especially for applications in aircraft
control like treated as early as in [ACKP+77] interest is still directed towards methods
that can guarantee good performance in rapidly time-varying environments while relying
on minimal information to save cost in e.g. sensors.

But besides usage for control and identification, the algorithm can be expected to have
much broader applicability: Whenever multiple agents are required to perform self-
organizing tasks with limited availability of external information such as distributed
search or organization in swarms, the algorithm could turn out useful.

Chapter 6. Concluding remarks



Appendix

The Appendix simply contains some assorted results and definitions which did not really
fit anywhere in the prequel but were felt to should be accessible to the reader without
referring to secondary literature, so it contains not even a rudimentary treatment of any
concepts or theories.

Stability, Observability

Definition A.1. A system is called observable, if the knowledge of the inputs and
outputs over some finite interval is sufficient to reconstruct the initial state.

Theorem A.2 (Observable pair, observability matrix). A LTI system in state-space
form as in (2.6) is observable if and only if (A, cT ) is an observable pair, which is the
case if and only if the observability matrix

O =




cT

cTA
...

cTAn−1




has rank n.

It is worth mentioning that the proof is more or less given in the derivation of Equation
(2.9).

Throughout the thesis we preferred to use the backward shift operator q because it
is more convenient in terms of implementation. For stability considerations however, it
turns out to be preferable to use the forward shift operator z, such that zy(k) = y(k+1).
The following lemma thus makes use of z instead of q, it is easy to translate both forms
into each other by simply multiplying both sides with the appropriate negative power
of z (q) and substitute z−1 by q and vice versa.

Lemma A.3 (BIBO-Stability). If we have an LTI-system

A(z)y(k) = B(z)u(k), (A-1)

where A(z) and B(z) are polynomials in z it is stable if
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1. All poles, that is all zeros of A(z) lie inside or on the closed unit disc �i� (|z| ≤ 1
∀z ∈ C : A(z) = 0),

2. All poles with |z| = 1 are also zeros of B(z), i.e. they are uncontrollable,

3. All poles with |z| = 1 correspond to Jordan blocks of dimension 1 in a state-space
representation.

Sketch of a proof. That Item 1 with a strict inequality (i.e. all roots lie inside the unit
circle) is a sufficient condition is common knowledge and can be found in any book on
discrete-time systems, e.g. [ÅW97]. If the poles are not controllable, these modes are
not excited by the input but only by their initial conditions. As long as the correspond-
ing Jordan block has dimension 1, this can only cause an undamped oscillation or a
constant added to the output of the controllable part.

Bezout identity

The following result has a more general counterpart in terms of Euclidean rings but
the common formulation in terms of polynomials is sufficient to derive the d-step ahead
predictor form in Section 2.2.

Theorem A.4 (Bezout Identity). Let M(s), N(s) be two polynomials of order m and
n, respectively. Then, there exist polynomials Q(s) with degQ ≤ n − 1 and R(s) with
degR ≤ m− 1 such that

M(s)Q(s) +N(s)R(s) = 1 (A-2)

if and only if M(s) and N(s) are coprime.

�i�Strictly speaking, since z was introduced as an operator, this is formally incorrect and we should
have introduced it as the z-Transform variable. However, it makes no difference here and we accept
this slight inconsistency.
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