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Abstract

Humanoid robots and protheses for humans are demanded ighbedight and controllable
precisely. One promising approach is the use of pneumatiageon technologies. In this thesis
a Pneumatic Muscle Actuator (PMA) is investigated and use@d¢tuating a joint. The main

drawback of these actuators is their highly nonlinear bemav

Chapter 1 gives a summary about this thesis. Chapter 2 integsducther into the technology
of the PMA and the approaches of modeling and nonlinear cbritn Chapter 3 an overview

about existent research work about modeling and contravéng One of these models is modi-
fied, extended to the model of a joint and implemented ikrivhAB / Simulink in Chapter 4. The

model is validated. In Chapter 5 a flathness based controlkked?MA and the joint actuated by
a PMA is designed and implemented imM.AB/ Simulink. The performance of the controller
Is tested by adequate simulations. Chapter 6 resumes tHesrefsthis thesis and gives a short

outlook to some further research topics.

Kurzfassung

Humanoide Roboter und Prothesen sollen leicht urddipe kontrollierbar sein. Ein vielver-
sprechender Ansatz ist die Anwendung von pneumatischennd&mgien. Diese Diplomar-
beit untersucht den Einsatz von pneumatischen Muskelndyebttuerung von Gelenken. Ein

wesentlicher Nachteil dieser pneumatischen Muskeln isttdrk nichtlineares Verhalten.

Kapitel 1 fal3t die wesentlichen Inhalte dieser Diplomarkasammen. In Kapitel 2 wird die
Technologie der pneumatischen Muskeln dargestellt. BestehModelle und Regler werden
in Kapitel 3 vorgestellt. Eines dieser Modelle wird in Kagig abgandert, auf das Modell
eines Gelenkes erweitert und inAVLAB/ Simulink implementiert und validiert. In Kapitel 5
wird ein flachheitsbasierter Regldirfden pneumatischen Muskel und das Gelenk entworfen
und ebenfalls in MTLAB/ Simulink implementiert. Durch geeignete Experimentedndias
Verhalten des Reglers simulativ getestet. Kapitel 6 fal3tEdgebnisse dieser Diplomarbeit

zusammen und gibt einen kurzen Ausblick auf weitere Frajaagen.



Ich versichere, dal ich diese Diplomarbeit selbdig verfaldt und keine anderen als die angegebe-

nen Hilfsmittel verwendet habe.

Magdeburg, 31.03.2005
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Chapter 1

Preface

The aim of this thesis is to develop a closed loop control cdidificial joint actuated by Pneu-

matic Muscle Actuators (PMA). This chapter gives an ovemédout the progress of the thesis.

A PMA consists of a closed rubber tube with a valve. When the AMiiflated with com-
pressed air, it widens in radial direction and contractomgltudinal direction. Therewith a
force in longitudinal direction is induced which can be usadactuation. The PMA is only a
pulling actuator, which means that it has to be extended n#agonistic action like a spring,
a driven mass or a second PMA. This property is similar to thesiplogical muscles, because
also they can only contract and have to be extended pasbyelgtagonistic actions. The main

drawback of the PMAs is their strongly nonlinear behavior.

The use of a model for the PMA is helpful, because not all ofptugerties of the PMA have
to be regarded and so the model can be simplified. This is tappbecause a general require-
ment for the treatment of systems is that they have to be aple@ras necessary, but as simple
as possible for a better handling. Also, with a model the bieihaf the PMA can be simulated.
The derived model is physical based. One important advahpbkysical based models it that
parameters can be varied easily. Black box models have teeb&fidd again experimentally if

a parameter is changed. Also, in this thesis no identifinaigperiments are performed.

In this thesis the PMA is extended by the weight of a drivensnasthe basic form the PMA is
modeled to drive a load vertically. For deriving the mode flystem is split into the valve, the

intrinsic PMA and the mass driven by the PMA. The control &ak¢ is the command voltage



to the valve and the desired controlled variable is the PM#tb.

This system is extended to a joint. The joint is actuated ®y/IMA which connects the middle
points of the links. This setup is adequate to the physickgetup where the muscles which
actuate a joint affect at the bones which are connected byothe The contraction occurs
actively by the PMA and the extension occurs passively bybight of the driven link. The
controlled variable is the angle of the joint. It dependsrgetrically on the PMA length. The
intern calculations take place with the PMA length. The abangle trajectory is transformed
into the PMA length and the simulated output length is redfarmed into the angle. The
system shall track a given trajectory and it behaves veryabies so a closed loop control is

necessary.

Due to the strong nonlinearities of the model the contrdiias to be designed by advanced
methods. The main adequate approaches are a linearizétiba system model or the feed-
back combined with a linear controller and the design of dinear controller. The controller
should be designed as complex as necessary, but as simussiisi@, so if the performance of
a linearization method is sufficient it should be prefer@d nhonlinear controller design. The
chosen method is a flatness based controller. A flathess bas#&dller works with exact feed-
back linearization. The linearization uses the differ@ritatness of the model. A differential
flat system is invertible, and the nonlinearities of the systan be canceled exactly. In the
working range the PMA system is differential flat, so thisttohmethod can be applied. The
linear controller which is combined with the linearizatimethod is a pole placement controller.

The results of the simulated experiments show that the altertiperformance is very good.

This thesis is organized as follows:

In Chapter 2 the technology of the PMA is presented and ouatlagainst other actuation tech-
nologies. Also some important requirements and propedtfiegee PMA are discussed. This
chapter also presents some basic principles of matherhata@eling, the black box models
and the physical based models. In the black box approackenddel is identified with ex-
perimental data whereas in the physical based approach ddelrns derived from physical
guantities. Also the complexity of the model and the detaation of the input and the output

variables are discussed. Third the basic approaches aheanlcontrol are outlined. For weak



nonlinearities a robust controller design can be applidek dpproach of feedback linearization
is discussed. Classification criteria are exact and appmteidhlinearization and input-output
and input-state linearization. One main approach for meali controller design is an adaptive

controller which can be designed direct and indirect.

Chapter 3 gives an overview about existent models and ctarsdbr PMAs and their applica-
tions. All of the models are nonlinear, but time-invariahtere are two physical based models
presented. Some other models which are mainly physicablr@ggard important properties in
the way of black box. One pure black box model is given. In someels the complete PMA
system is described, which means that there is a PMA whisleslia mass. In some models
and the applications the PMA actuates a joint. Some of thelestgive models of single parts
or investigate the influence of the regard or neglect of ptogeelike valve characteristics, the
thickness of the PMA wall and the area of the end caps. Thaaksdsone extra model of the
friction force presented. Many of the models are given ingl@te, and only one of them is
validated. Second some implemented controller stratégrasacking control of PMAs are re-
viewed. The performed controller strategies are linetidranethods, adaptive controllers, one
robust controller and some robust adaptive approachese $6the controllers are designed as
switching controllers which differentiate between the Pl#traction and extension. The re-
guirements to a tracking controller are exactness and spfekd tracking and a smooth control
signal. Most of the articles do not validate the controllerfprmance sufficient, but the best

results are achieved with linearization methods.

One important step in this thesis is to find an adequate mddbedPMA in the literature and
implement it in MATLAB/ Simulink. The model has to be physical based, because reriexp
ments for model identification are performed in this thelsighe literature there is no adequate
model given, so the best one is modified by replacing some patth more adequate models.
The resulting model is described in Chapter 4. At first a PMAckldrives vertically a mass is
modeled. Mainly there are models for the valve which gerer#tte mass flow into the PMA
and for the intrinsic PMA with the PMA length as output. Thedabis brought into state
space form with the command voltage to the valve as inputjrther pressure, PMA length
and the first time derivative of the PMA length as states ardPWA length as output. There
are two different models of friction compared, one simplepartional law and one friction

model which switches between slipping and sticking mode third main part of the model is



the extension to a joint driven by a PMA. The model is validdig some M\TLAB/ Simulink

simulations.

The aim of this thesis is to design a joint which is driven oreaided trajectory. Therefore a
closed loop control is necessary. As controller strategwtadiss based controller is chosen.
After the linearization a linear third order pole placemeontroller is designed. The principle
and the design of the controller are presented in detail imp@@n&. First the controller is de-
signed for the simple proportional friction law and secamelfriction model is exchanged. In a
third step the controller is extended to the control of thetjoThe controller is implemented in
MATLAB/ Simulink and the performance of the closed loop contralesyss proved in different
simulated experiments. The controller requires a threedidifferentiable desired trajectory,
but it can deal with abruptly changed moved masses. Fluohsabf the supply pressure do
not affect the states and the output, only the control sighfa controller is also robust against
fluctuations in the temperature. Also, the performancesliftgrent friction parameters are in-
vestigated. The exactness of the tracking and the smoalufiglse control signal are reduced
slightly. Summarizing, the controller yields a good trakibehavior concerning speed and

exactness with a smooth control signal.

Chapter 6 resumes the results of this thesis and gives a dlttwok to some further research

topics.
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Chapter 2

Introduction

Pneumatic Muscle Actuators (PMA) are a promising technplagsed for prostheses and hu-
manoid robotics. This chapter introduces further into thegyples applied in this thesis. Sec-
tion 2.1 gives an overview about the technology of PMASs asdnain properties. Section 2.2
introduces into the basic principles of mathematical miodel In Section 2.3 the main ap-

proaches of controller design for nonlinear systems arggoited.

2.1 Pneumatic Muscle Actuators (PMA)

During the last decades many research groups are workinguararoid robots and robotic
prostheses. One main subject in the development of rohistite transfer of energy into the
form of mechanical movements. For this transfer actuat@sised. There are several different
technologies existent. According to the concrete apptioadifferent requirements have to be
fulfilled and the best suitable technology has to be chosepoitant parameters of the tech-
nologies are the power/weight and power/volume ratiosngfth, response rate, physical size,

speed of motion, reliability, controllability, complia@@nd cost [2].

Humanoid robots and protheses for humans are demanded ighbedight and controllable
precisely. The lightweight is important to reduce inertred anotion power, and the precise
control is necessary because mainly little movements aferpged. A small physical size is
demanded, because the needed equipment has to be carrigd &lte energy transfer is de-
sired to occur effectively, because the more effective dobriology works, the smaller and
more lightweight the equipment can be dimensioned. Andthportant property is the safety.

If the technology fails, it is demanded that the human is npired. Especially the prostheses

11



are desired to have low cost, so that also private personswatiem.

There are several actuation technologies existent, buy wfdhem are not useful for humanoid
movements. Combustion systems e.g. which use thermal cialesnvert chemical energy
into motion are used for transport, but they are overdinueresd for the described applications.
Hydraulic power is mainly used outside, for indoor appliigas it is too noisy and too unclean
due to oil leaks. Also it is less reliable [2]. Electric motechnology is more suitable, because
it is clean, quiet and precisely controllable. A disadvgstaf this technology is the limited
operation range in outdoor applications, because baitare heavy compared to their power.
Also for humanoid robots which shall perform movements likgping and running the pro-
vided motor torque is too small [29]. One problem of electid hydraulic actuators is that

failures can lead to bad injuries of the human.

Pneumatic actuators have got a high power/weight ratio (1kigW2]) and power/volume ratio
(1000 kW/nt [24]). They work clean and can easily be miniaturized, amy thre very safe.
Also they have got a low cost. One advantage is that they agtsimilar to a human skeletal
muscle. The main disadvantage is the difficulty in accuratgrol due to the the compressibil-
ity of the air which causes high nonlinearities. Also, thastécity of the solid material causes

problems.

Rubber

Inner Fiber Shell
Layer

R
XARXNRNNAN0N
RN
AR
XXX

W
CLALALAR

SN

Figure 2.1: Braided Pneumatic Muscle Actuator (PMA)

There are different possible structures of the Pneumatisd@uActuator (PMA). The most

common structure is a braided shell PMA, also called McKibkkiscle or Rubbertuator. It is
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principally drawn in Figure 2.1. It consists mainly of a r@blinner layer which is braided with
afiber shell. The material of the fibers is non-elastic, eygpm On one end of the PMA there is

a valve which lets pressurized air into resp. out of the PMALtI@ other end the PMA is closed.

PMA  Spring

B3R — A —

LSS

Pulle
Load y

Figure 2.2: Possible antagonistic designs of a PMA: a) PMépted with a spring, b) PMA

coupled with a mass, c) two coupled PMAs

As soon as there is air pressed into the PMA, the inner presses and the PMA extends
in radial direction and contracts in longitudinal directioThis contraction generates a strong
force which is used in the application. One important propef the PMA is the fact that it
is only a pulling actuator. The PMA can contract, but not egtectively. Following, a PMA
must always be coupled with an element which extends it. @ asx mainly three possibilities,
pictured in Figure 2.2. The PMA can be extended by a springuffei 2.2.a), by a mass which is
driven vertically by the PMA (Figure 2.2.b) or by a second PMHAich is designed antagonis-
tically (Figure 2.2.c). This property is very similar to hammuscles which also induce forces

and movements by contractions of an agonist and its antsigoni

Two problems caused by the combination of the rubber inn@rland the braided shell are a
threshold pressure which has to be overcome before the Panels in radial direction and

the dry friction between the inner layer and the shell.

With PMAs a joint can be driven. There are some different jdssdesigns. One design
consists of one PMA driving a joint. This approach is illaséd in Figure 2.3.a). The PMA

is extended by the weight of the moved link. With an antagandesign also two PMAs can
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Figure 2.3: Angle formed by PMAs: a) one PMA, b) two antagonistic PMAs

drive a joint. This joint has got the two properties compti@and angle which can be controlled
independently. This computation of the angle is illustate Figure 2.3.b). The compliance
depends on the weighted sum of the pressures inside the Ph\diitha angle depends on the

weighted difference of the lengths of the PMAs.

2.2 Modeling objects and processes

Most objects or processes respectively their behavioremesomplex, but often it is not neces-
sary to regard all of their properties. In other processisiihportant to predict their behavior
before testing it in reality, for example a nuclear powenp&hould not be dimensioned by 'trial
and error’. With a mathematical model which representsi@ortant properties the object or

the process can be simulated and its behavior can be tested.

The main approaches for modeling are physical based ané btac models. The physical
models are derived theoretically from physical basic pples. In the black box approach the
model is derived by experiments. In these experiments saterrdined input signals are fed
into the object or process, and the output is measured. Himdata the model is identified.
This kind of model is also called input-output model, beeaitisontains no information about
the inner processes. Physical based models have got statblea which describe inner pro-

cesses.

Physical based models are valid for a larger range of diftevbjects or processes of the same

category, because their parameters are related diredthg fohysical quantities. Following, the
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new values can be inserted easily. In a black box model thdifa@tion procedure must be
repeated with the new values. On the other hand, black boxlsade normally less complex
than physical based models. In some cases it is useful tdageaegohysical based model and
generate with this model some input-output data. From thaimdd data a black box model

can be identified and used for simulations.

One important subject of modeling is the definition of theunhand the output of the model.
The output is the desired control variable, and with the inpuiable the object or process is

manipulated. Following, the input variable should be aidjbke easily.

Another important subject is the decision about the conme{ the model. For black box
models this means the choice of the order. In physical basstkels the complexity means
the regard and neglect of properties of the modeled objegtamess. The model should be as
detailed as necessary to represent the object or proceggadebut also as simple as possible

for a better and faster handling. Between both requiremectsmgpromise must be found.

Section 3.1 gives a review about existing models. There@areegpure physical based models,
several mixed models whose main structure is physical blagsesome of their properties are
described by a black box model and one pure black box modst, Ahere are some incomplete

models described.

In this thesis an existing model is chosen from the liteet@mnd implemented in MrLAB/

Simulink. This model is described detailed in Chapter 4.
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2.3 Control of nonlinear systems

In typical control problems a closed loop control systemasadoped. As described in Sec-
tion 2.2, many of the objects or processes, in the followialged plants, are very complex and
often also nonlinear. It is possible to neglect some of theiperties and nonlinearities, but
then the controller has to be designed so that it can dealumitkrtainties. For weak nonlinear-
ities a robust control technology can be applied. For dgakith stronger nonlinearities there
are mainly two approaches, linearization technologieshioned with a linear controller and

adaptive control technologies. In the following, only thimgariant systems are regarded.

2.3.1 Robust controller design

In robust control technologies the controller is constant,designed for a class of plants. A
class means that there is the nominal plant model with idebhWor and a modeled error
which describes determined bounded variations. There a@etric uncertainties e.g. in
parameters of the plant or nonparametric uncertaintieglegto non modeled dynamics. Weak
nonlinearities are considered as uncertainties. This Waypwtrol is useful for arbitrary fast
time variations of the uncertainties which are bounded. rbihest control design is described
in[22].

2.3.2 Linearization methods

One method for a dynamical linearization is the feedbacdddiization, described in [17]. The
main idea is to compute a new input into the plant which canitelnonlinearities. There are
mainly two variants, input-state linearization and inputput linearization. The linearization

can be exact or approximated.

For input-state linearization only the state equation efdhate space form is used. The pair
(A,B) has to be controllable. The system has to be broughti@dollowing form, if necessary

by a transformation:

2(t) = Aw(t) + Bo(x(t))[u(t) — o(x(1))] (2.1)

This is possible if the pair (A,B) is controllable. The copeading control law is

u(t) = o(x(t)) +w ™ (z(t)r(t) (2.2)

16



and the resulting state equation is
x(t) = Ax(t) + Bo(t) (2.3)

with v(¢) being the new input into the system. This system is lineaetinvariant and also

controllable.

In tracking control problems, the output of the system iserinteresting than the state. There-
fore, a second way of feedback linearization is the inpupatlinearization. The output equa-

tion of the state space form

y(t) = h(z(t)) (2.4)
is derived until the input.(¢) appears. The necessary number of derivatioisscalled therel-
ative degreef the system. If- is identical to the orden of the plant model the pair (A,C) of

the state space form is observable and the linearizatioxaisteIn that case the input-output

linearization leads to the input-state linearization [17]

If ~ is smaller tham, the plant is not fully observable, and the internal dynanatso called
zero dynamics, which describe the unobservable part oflire pave to be considered. Here
the linearization is approximated, and the effectivenéfissinput-output linearization depends

on the stability of the internal dynamics.

The feedback linearization does not consider desired piiepef the system like stability. For

this a second controller has to be designed, but therefogarimethods can be used.

One drawback of the method is that it cancels all nonliniesibut this is not always desired.
For example a term’ with odd: provides additional damping for large valuesiofAlso the
canceled nonlinearities of the system appear in the colatnol For large values of this may

be not be feasible in practical use due to limits e.g. of tleador.

2.3.3 Adaptive controller design

In adaptive control technologies the controller is adapligthg the process to variations of the
plant. Following, adaptive controllers are always nordineThis design is useful for slowly

varying parameters which are not necessary bounded. Artieelaontroller guarantees the

17
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Figure 2.4: Control system of a model reference adaptive controller (MRAC), adapted

from [31]

convergence of the tracking error to zero also with a smah §fg0]. There are parameter
adaptive technologies which deal with parameter variateomd structure adaptive technologies

which deal with uncertainties in the structure like orded ammber of states.

The main classification criterion is whether the adaptivetiad occurs directly or indirectly.

Direct adaptive control means that at each sample the damtpmarameters are estimated di-
rectly. This method is called Model Reference Adaptive Cdr{fivtiRAC), and the description
is taken from [31]. The structure of the MRAC is shown in Fig@ré. In this method a refer-
ence model of the plant is required. A known time-dependeference signab(t) is put into
the controller and with this indirectly into the plant, amda the reference model. The output
yn(t) of the reference model is compared to the ougguf of the plant, and an adaption device

tunes the parameter of the controller.

The second approach is an indirect adaptive control. At sachple the model parameters
are estimated, then used for computing the controller motyal/parameters. This method is
called Self-Tuning Control (STC), also described in [31]. AGdesign, shown in Figure 2.5,
contains an identification device for the plant and an adapdievice for the controller. The

identification device detects variations of the plant pagtars by using the plant input(t),

18
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Figure 2.5: Control system of a self-tuning controller (STC), adapted from [31]

the plant outputy(¢) and the error(t) from the reference signab(t). The adaption device
computes the according controller polynomial resp. therotiar parameters and adapts the

controller.

In practical use, there are often fast switching variatioite slowly varying boundaries. Be-

cause of this robust and adaptive control technologiesféga oombined with each other.
In Section 3.2 existent controllers for a Pneumatic MuscttuAtor are presented. One of

the presented methods for controller design is implemeimtetis thesis. It is presented in
Chapter 5.
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Chapter 3

State of the art concerning modeling and

control of a Pneumatic Muscle Actuator

In this thesis a Pneumatic Muscle Actuator (PMA) is discdssis described in Section 2.2
the use of a model is helpful. This chapter gives a review abwal existent work of some
other research groups. In Section 3.1 their models are shscl Section 3.2 reviews their

implementations of advanced model-based controlleregfies.

3.1 Existent models of the PMA

There are many different approaches and variants for dewvejan adequate model. Some of
the properties like the desired control variable are datexthby the application. Finally the
angle formed by PMAs shall be controlled. This angle degegeometrically on the length
change of the PMA's, so the desired control variable is thegtle change of the actuator (see
Section 2.1). The input variable is not determined, theesto it is that it has to be adjustable
easily. Possible inputs are for example the pressure inbel®MA or the gas flow into the

PMA.

This section gives a review about different existing modslsbsection 3.1.1 deals with physical
based models of the intrinsic actuator. A classificatiorfifgravithin these models is wether the
given model is complete and how detailed it is described.s&ciiton 3.1.2 reviews two mixed

models. Their main model structure is physical based, bpbmant parts are described by
black box models. In Subsection 3.1.3 one pure black box megeesented. Subsection 3.1.4

presents some applications of the PMA.
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3.1.1 Physical based models

At first the complete models of the actuator are given. Theyctassified on the chosen input
and output variables. Two of these models use the lengthgehaiithe actuator as output, one
uses the gas flow and one the pressure as input. The last nsedethe pressure and the actua-

tor length change as input and the PMA force as output.

Gas flow as input, actuator length change as output

First the model which uses the gas flow as input and the actlestgth as output is discussed.
It was developed by Hildebrandt et al. [13]. Their experitaésetup consists of one PMA
which drives vertically a trolley which can carry a varialdad mass. It is very similar to Fig-
ure 2.2.b). The weight force extends the PMA, and the indirMé force contracts it again.
So the load acts antagonistically to the PMA. The measurgoubis the z-coordinate of the
trolley with respect to the maximum extension, which is thme absolute value as the length
change of the PMA but with opposite direction. The model isvael for the PMA and the
trolley, where the trolley can move nearly frictionless.eTilsed parameters of the model are

assembled in Table 3.1.

One main model equation is the balance of forces:

msZ(t) = F(t) — Fy(t) — msg (3.1)
ms -  total mass, assumed to be concentrated in the driven mass
z(t) -  z-coordinate of the driven mass, corresponds negativeettength change of the PMA

F,.(t) - longitudinal PMA force
Fy(t) -  friction force of bearing

g - gravitation constant

The PMA force of the PMAF,, is modeled to depend on the inner pressure of the PMA and
on the volume change due to the length change. Experima#alits with this model result in
large failures, so the model of the PMA force is improved binggshe PMA area instead of
the volume change due to the length change. In this model M B regarded as a piston
with variable piston area which depends on the PMA lengthis T§1modeled as fifth order

polynomial with experimental identified parameters.

21



The second main model equation is a differential equatiothi® pressure:

5(0) = 17 (BTr(0) = p(0)V (1)) (3.2)
p(t) -  pressure inside the PMA
V(t) -  Volume of the PMA
R - specific gas constant of air
T - temperature, assumed to be constant
my(t) - gas mass flow into the PMA

Due to the compressibility of the gas the pressure is nolifieection of the mass flow. Their
relationship is derived by the ideal gas equation. The staege is described polytrophic. The

polytrophic exponeny is identified experimentally.

The volume of the PMA is assumed to depend only on the lengtheoPMA. It is modeled
as a third order polynomial with experimentally identifiear@meters. With the PMA getting

shorter, the volume increases.

The friction force of the bearing is supposed to be a comlanaif coulomb friction and vis-
cous friction, both dependent proportional on the velootythe PMA length change. The

constants of proportionality are not explained.

Additionally the valve function is modeled. There a relaship between the gas flow and the
set point voltage is developed analytical and additionaintified experimentally. The result
of the identification is presented in an imprecise plot. Atgmeters of the analytical equation

except the specific ratio of the valve typare described.

The derived model of the PMA is given in nonlinear state sgaoa with gas flow as input,
length change of the PMA as output and inner pressure, laestgthge and length change ve-

locity as states.

The model is very detailed. It gives a relationship for thv@ggas flow dependent on the
set point voltage). To model the length change of the PMA dédest on the gas flow, there
are relationships for the force depending on pressure aa for the inner volume depending

on the length change, for the pressure depending on the ectund the gas flow and for the
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Table 3.1: Parameters and variables of Hildebrandt et 3. [1
symbol meaning validity obtained values experiment
given? described?
M mass specific measured - -
X polytrophic exponent general| experimentally, yes -
T temperature general literature standard cond. -
Do environment pressuregeneral literature standard cond. -
R gas constant general literature - -
My gas flow specific| experimentally (no) yes
c valve ratio specific ? no no
n specific heat ratio | general literature standard cond. -
b; volume coefficients | specific| experimentally no no
Ci area coefficients | specific| experimentally, no no
fer fu | friction coefficients | specific ? no no

friction force depending on the velocity of the contractresp. extension of the PMA.

On the other hand, there are several properties which aregatded, as static friction between
the PMA rubber tube and the braided shell and dynamical tsffeicthe underlying position
controller for the valve-slide stroke. This means thatehisra cascade control strategy and the
inner loop seems not to be fast enough, because there is dapwéthe two frequency bands.
Also there is no threshold pressure regarded which has towvéxea@me before any action in
radial direction can take place, and the thickness of the R#Ais also neglected (discussed
by Chou et al. [6], see Page 25). For the developed contrbiéeptessure is measured instead
of estimated by the given model, because the model of the Rividefwhich uses the pressure
IS not exact enough, e.g. due to the used model of the voluniehviditoo simple. The fric-
tion force is questionable, because there is no statiadnatf the trolley regarded. Also for
the modeled properties and relationships there are squam@neters not given respectively not

described detailed enough. The model itself is not valitlate

Summarizing, several parts of this model can be used inhbisig, but the model of the PMA
volume and the model of the friction force will be replaceddtlyer models. Those parts of the

model which are used in this thesis are presented deeper pté€iza
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Pressure and actuator length as input, actuator force as optut

The second discussed model uses the pressure and the aldngtb as input and the actuator
force as output. It was published by Chou et al. [6]. This Etoontains many different parts
and experiments. At first a physical based static model ferftince depending on the inner
pressure and the surface area of the PMA is derived. The udédi$a braided shell PMA,

that means it consists of a rubber tube sheathed with a loraidell. The angle of the braid
fibers with respect to the longitudinal axis is called inteawe angle. Figure 3.1 illustrates
the surface of the PMA. The interweave angle changes dummgdntraction of the PMA. De-

pending on this interweave angle the surface area and teewvniume of the PMA are modeled.

vertical

direction
—_—

longitudinal _
direction interweave
angle
PMA
—

Figure 3.1: lllustration of the interweave angle

This interweave angle cannot be measured online. It has soliiituted with other described
parameters. Because of the input-output constellation ittes gnodel cannot be used in this

thesis.

Next, performed quasi-static and dynamic experiments aseribed in detail. The measured

pressure and force are graphically shown as response tackspents with illustration of the
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hysteresis. With these experiments the hysteresis istipe¢sd deeper. It is caused by dry fric-
tion between the rubber tube and the braided shell. Thetrefstlle study is that the hysteresis
Is nearly independent from the velocity. That means thetexidriction consists mainly of

Coulomb-friction which is independent from velocity, an@ tiscous friction is so small that

it can be neglected.

The article gives also a correction term for the influencéefthickness of the PMA wall. The
simulation results of the static model with and without tberection are given. In the estimated
diameter there is a difference of around 20 % and in the ettonalume a difference of around

30 %.

The described model is simplified by considering the forciastion of the pressure and the
volume change due to the length change, that means the PMgasded as a gas spring mod-
eled with experimentally identified coefficients. In thisdeba pressure threshold to overcome
the radial elasticity of the PMA bladder is regarded. Alsamalmear term for the non-perfect
cylinder form of the PMA at extreme length is mentioned, Iig ts out of the usual operating

range, so this term is neglected.

At last a general friction value due to the history dependesfche friction is introduced and

added. It can be used if a simple friction model is sufficient.

Also the simplified model is not useful for this thesis, besmiut depends on experimentally
identified spring and damping parameters. Although thelartoes not give a useful model,

there are several hints and discussions about properties wan be regarded.

Partial models and hints to keep in mind

Next there are several partial models of the PMA force. Theydivided into models of the
PMA force depending on the interweave angle respectiveltherPMA length which are pre-

sented first and a model of the PMA force depending on the acindn.
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First the model of Caldwell et al. [2] is discussed. In thecetihere is no description of the
experimental setup which was used to develop the model. $&e parameters are assembled
in Table 3.2. According to this article the PMA has got onenpaif minimal energy. At this
point its internal pressure is minimal and its volume is madi Due to elastic effects of the
material this point differs slightly from the relaxed stafehe volume can be calculated from
the surface, and the surface area is modeled to depend omghe Gt the braid fibers with
respect to the longitudinal axis which is called interweargle (see Figure 3.1). Any change
from the point of minimal energy will cause a higher pressamd induce a force to return to

the minimum energy state.

The volume of the PMA is modeled to depend nonlinear on the Péhgth:

V(t) = il (h2 - z2<t))z(t) (3.3)
4h?
V(t) - PMAvolume
f - diametric distance parameter
h - helical fiber length
z(t) -  PMAlength
The PMA force is modeled as
F = Poew(S, + 2E,) (3.4)
F - PMA force
Pew - new internal pressure after extension or contraction
S, - surface area of the PMA, depending on the interweave angle
E, - endplate area of the PMA

It is maximal at maximal extension, minimal in relaxed statel raises again until maximal
contraction, but with opposite direction. The pressurengleawith interweave angle is the re-
ciprocal of the volume change. That means that the stategehiarassumed to be isothermal.

The gas mass inside the PMA is an important quantity, butibtdescribed in the article.

This article investigates the force, the surface area amgdlume dependent on the interweave
angle. The derived models are physical based. The modalogiplete, and there is no context

given in which the PMA is driven. The interweave angle is nasfble input into the actuator,
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Table 3.2: Parameters and variables of Caldwell et al. [2]
symbol meaning validity | obtained | values| experiment

given?| described?

h, f | geometric braid parametefspecific| calculated, yes yes

Egysy efficiency factor general| literature | yes -

but it can be substituted by the geometric braid paramétensd f combined with the actual
length of the PMA. The model of the volume thus dependent enehgth of the PMA is used
in this thesis to replace the correspondent model of Hilalediret al. [13]. The resulting model

equations are introduced in Chapter 4.

For the design of the controller a black box model is used $sdxsection 3.1.3) with duty cycle

which represents the gas input as model input and lengtred® A as output.

In a later article Caldwell et al. [3] discuss Polymeric PseAdtuators and Pneumatic Muscle
Actuators (PMA). For the PMA they give again a model of the Pkéfce depending on the
interweave angle, but the pressure is held constant durengansitions. Depending on the in-
terweave angle the surface area of the PMA is estimated, gmehdling of the surface area the
force is modeled. This article discusses whether the ensl abfne PMA should be included
into the calculation or not. The resulting plot shows tharéhis only a difference in nearly
maximal extended state, so this property can be neglectpdhatical use. Also in this article
there is no context given, and the model is not feasible iotmal use, because the interweave
angle cannot be measured online. For substituting thiseahglre are not enough parameters
given. In this later article the geometric braid parameteesreduced to one parameter which is
not described well enough for use. Also there is no relatigngiven between the PMA force

and the length change.

Hannaford et al. [12] use a system of two PMAs in parallel withydraulic damper, and both in

series with a bi-linear, two spring implementation of arifiaral tendon. They give a parabolic
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length-force equation and a hyperbolic length-velocdycé equation, both without describing
the obtainment of the parameters, and they perform workéxperiments with concentric acti-
vation profiles. They develop a new sensor which acts likébatio PMA spindle and compare
it to a natural PMA spindle. Because of the input-output celfegion with PMA length as input

and the force as output the given model is not useful for tiesis.

Van Ham et al. [11] discuss several properties like the usddes for the PMAs in detail.
Their experimental setup consists of two pneumatic PMAsa@joint. In the text description
the pressure is used as input into the PMAs, and as outputntfie and the compliance of
the joint are chosen. According to this, the input of the EM@MAs is the pressure and the
output the length change. The angle of the joint depends orighted difference of both
inner PMA pressures, and the compliance is determined byghtesl sum of pressures. These
different dependencies allow an independent adjustmethieofngle and the compliance. The

mathematical model describes the force dependent on the ¢ivitkaction:

Fo=p-1*f (e, %) (3.5)
F, - generated force
P - supplied gauge pressure
[ - maximum PMA length
R - unloaded radius
€ - contraction
fi - dimensionless function, given for differeﬁtas graph— too imprecise for use

One problem described earlier in this section is the thiespieessure due to the elasticity of
the rubber tube and the braid of the PMA which has to be oventalefore any action in radial
direction can occur. Also there is some hysteresis causdddiyn between the rubber tube
and the braid. Van Ham et al. avoid both problems by usingagteinstead of a braided pneu-
matic PMA, pictured in Figure 3.2. The pleated PMA consistinty of a membrane which
is arranged into radially laid out folds that can fold andaldfwithout a pressure threshold or

friction.
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relaxed contracted
Figure 3.2: Pleated Pneumatic Muscle Actuator (PMA)

The main focus of the article is a detailed investigatiorhef¥alves which control the pressure
inside the PMA. The discussion mainly regards the openingcéwsing time of the valves and
also postulates the use of light-weighted valves. Therénavalifferent kinds of valves: valves
which work continuously and valves which work with an on-odintrol. Continuous working
valves are too heavy and too slow, but one valve with on-offt@d cannot work precisely
enough. As a solution, the article presents an array of festising and light on-off-valves.
One of these valves weights 25 g and switches in around 1 nmesinfler volume of the PMA
is set constant. The increasing of the pressure occurs agidast as the decreasing, so the
double number of outlet valves with respect to the inlet @alshould be used. In experiments
the best number of valves is identified to two inlet and foutedwalves. The inlet mass flow
will although be larger than outlet mass flow due to differsupported pressure differences of

the valves.

Summarizing, this article gives no useful model, but soneasdabout the valves. Also the arti-
cle describes some advantages of pleated pneumatic PMigsdhsf braided PMAS. Because

of the missing model this idea cannot be used in this thesis.

Chou et al. [6] investigate a pneumatic circuit in order toesafe properties of pneumatics and

actuator mechanics. They model the pneumatic circuit wgments of an electrical circuit.
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The parameters of the model are regarded as lumped. The mpsitant state variables in a
pneumatic circuit are pressure and mass flow. So the mass/fiswepresented by the current.
The pressure is measured at the beginniAg &nd at the end of the PMAR,) and their differ-
ence P, — ) isregarded as voltage. The gas viscosity caused by tubimh¢gh@ connections is
modeled as resistanég and the gas accumulator is regarded as linear capdcitohe volume

of the tube is neglected, only the volume of the accumulaoegarded. The state change is

assumed to be isothermal.

The article gives three different successive models Wittas input andP, as output. In the
first model, the whole system is modeled as a linear low pass. fiin the second model, the
model of the resistance is improved, and the third modelainsiadditionally a term for the gas
inertia. The parameters of the models are given and thesimmient is described. The results
are very satisfying. In this thesis there is no model of theupnatic circuit needed, because the

pressure is supplied and therefore the behavior of the gakeceegarded as ideal.

Model of the Friction Force

In the models described above the friction force of the l@adat regarded satisfying. Chou
et al. [6] propose to add a typical constant value, Hildetta al. [13] regard only dynamic

friction and the partly models do not regard a load.

Dry friction force behaves very nonlinear. It consists ofesal components. If the velocity of
the regarded object is different from zero, the object igpsiig. During slipping the friction
component which depends on the velocity has got more infeiémen the static component.
For this dynamic dependency a simple model can be choseme ifdlocity is zero, the object
sticks on the ground or wall, and a friction component whlmdependent from velocity is
more important. This sticking friction behaves very noeén because a threshold has to be
overcome before the object can move. Models with contindiectson force are very complex
and numerically difficult to handle, so Karnopp [16] presesmother way of modeling the dry
friction. He deals with dry slip-stick friction. His approais to divide the movement of the

regarded object into two states, slipping and sticking. néap defines a region around zero
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velocity. Inside this region the velocity is assumed to b@zand the object sticks. There the
friction is modeled to depend on the other forces. Outsigerégion, the object slips, and there
Is an arbitrary friction force law used which depends on tlecity. The principle is illustrated

in Figure 3.3.

—"zdz'

Figure 3.3: Characteristics of the Karnopp friction forcedwmlp adapted from [16]

3.1.2 Mixed models

In this group of models two different models are discussele first one was developed by
Repperger et al. [23, 24]. Their experimental setup is natrdesd exactly, but also consists of
one PMA and a driven mass. The PMA is modeled as a mechangtahsyvith passive parallel

elements, one viscous element and one spring element, argssupe source as contractile

element. Its parameters are assembled in Table 3.3. Themualal equation is the balance of

forces:
Mi+ B(¢)t + K(z)r = u (3.6)
M - mass
x - length change of the actuator
K - spring variable
B - damping variable
u - input, contains pressure and area, unit of force

The spring and the damping variables are both linear seoatel- polynomials depending on

the length change resp. velocity of the length change of ih&.F heir coefficients are different
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Table 3.3: Parameters and variables of Repperger et al. 423, 2

symbol meaning validity obtained values| experiment

given?| described?

M mass specific unit mass - -
K(z) spring variable | specific| experimentally] yes (yes)
B(#) | damping variable specific| experimentally| yes (yes)

for PMA contraction and extension, because it is easierlease the pressure inside the PMA
against the environment pressure than to build it up agasetvn rising pressure. These coef-
ficients are identified experimentally. The step responstteed®MA to pressure with different,

constant loads are recorded. From the steady state datprihg soefficients are identified,

additionally the steady state force is determined. Thisrm@hation of the steady state force is
not described clearly. The total force is measured, andrémesient force is determined as the
difference of total and steady state force. With knowingttiaasient force the coefficients of

the damping variables are obtained by regression overitgloc

The inputu is not described detailed enough. It is split into the affinatml o with unit of
pressure and, which is an effective area variable. Together they havetlgotunit of force
(u = u7). In the descriptions the articles mix force and pressuoecé-as input into the PMA
is not feasible, but it is not described how the surface ar@biained which is necessary if the
pressure is used as input. For calculating the force/wemjib of the PMA the relationship:
net force = pressure A surface area of PMA balloon is given and valuesdosurface area are
used, but there is no further explanation about it. In thielarthe inputu is generated directly

by the controller.

The given model is very simple. Itis given as nonlinear dédfeial equation with relative degree
of r = 2 with pressure / force as input and length change of the PMaugput. The different

coefficients for PMA contraction and expansion represeniesbysteresis of the PMA. The
velocity-dependent friction is included in the dampingi&hle, and the velocity-independent

friction is included in the spring variable.

There are several properties which are not regarded. Thare ierm concerning the weight

force, non-modeled nonlinearities or other disturbanééso, there is no threshold pressure or
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the wall thickness of the PMAs regarded. The input itselfasdescribed clearly. An other dis-
advantage is that all nonlinearities are identified expenitally instead of modeled physically.

The model is not validated. In this form it is not feasible fpoactical use.

A second model which uses pressure as input and length clengatput is presented by
Reynolds et al. [26]. The experimental setup consists of tMA® connected by a pulley

transmission. The pulley carries a load stack. The setupsgyded antagonistically, but only
one of the PMAs is used at a time and the other one is fixed, seetiop acts like one PMA

and a vertically driven mass. For calculations with coreretlues the 2:1 transmission of the
pulley has to be regarded. Also in this model the PMA is madiee mechanical system with
passive parallel elements, a viscous element, a springealeamd a contractile element. Its

parameters are assembled in Table 3.4. The main model equsthe balance of forces:

Mi + B(p)i + K(p)x = Fee(p) — Mg (3.7)
M -  total mass, assumed to be concentrated in the verticallgrdmass
x - length change of the actuator
K - spring variable
D - inner pressure of the PMA
B - damping variable
. - effective contraction force
g - gravitation constant

One main difference to the model of Repperger et al. [23, 2didsthe damping and the spring
variable are assumed to depend on the inner PMA pressueadhst the PMA length change
resp. its velocity. Also the effective contraction forég is modeled to depend on the inner
pressure. All three variables are modeled as linear firstrgpdlynomials. Their parameters
are identified in similar experiments. For identifying th@rieg and the damping variables a
so-called 'bell-ringer study’ is performed. That meang thare are different levels of pressure
which are constant during the single experiments, and #gperesponses to load are recorded as
length change against time. The spring variable is obtarreeregression of the spring constant

against pressure from the steady state data, and the dangiagle is obtained via regression
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Table 3.4: Parameters and variables of Reynolds et al. [26]

symbol meaning validity obtained values| experiment

given?| described?

F.. contractile force| specific| experimentally] yes (yes)
M mass specific measured yes -

K spring variable | specific| experimentally] yes (yes)
B damping variable specific| experimentally| yes (yes)

of the damping constant against pressure from the dynaxhétal The contractile force is con-

stant, because it is assumed to depend only on pressure islield constant.

To obtain the model for the contractile force, a contracsturdy is performed. Here the loads
are different, but constant during the single tests, andté@responses to pressure are recorded.
The spring and the damping variables are used from the ingir study. Via regression the
coefficients of the force model are obtained. The estimabedractile force is compared to a

theoretical estimate from an equation given in [6]. Thislenpentation is not described further.

A relaxation study is performed to obtain the damping vdeialuring PMA extension. One
constant load is used, and the step response to pressummided. The damping variable is
obtained per regression in the diagram of length changensigiime. The spring variable is

also estimated, but identical to the spring variable fortiamtion.

The obtained spring and damping variables at constantymesse assumed to be the same

functions than in the dynamical case.

The described model is very simple. Itis given as a seconer alifferential equation with pres-
sure as input and length change of the actuator as output. tiétdifferent damping variables
there is also a hysteresis regarded. The differentiatioetidr the PMA is longer or shorter

than in relaxed state is regarded in the spring and dampiragers.

There are some properties which are not regarded, e.g. shtiidepressure and the influence
of the thickness of the PMA wall. Also, there is no term for randeled nonlinearities and

disturbances. All nonlinearities in the model are iderdifexperimentally instead of modeled
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physically.

This model is the only described model which is validated,tba results are not very exact.
The error comes up to 30 %. For the validation a triangulasguree wave input is used. The

model seems to be feasible in the given form, but it is too Brtgbe useful.

3.1.3 Black box models

In this subsection a black box model is presented. It wasldped by Caldwell et al. [2]. The
experimental setup is the design of an arm. The shoulderrenditist have both got three de-
grees of freedom, which is realized by the use of respeygtiete different joints. The elbow
has got one degree of freedom. The system has got an air floa pressure regulation. The
piping length from the valves to the PMASs is as short as péssitreduce transport losses, and
the joints move nearly free of static friction. The inputarthe model is the duty cycle which
is the time the PMA is connected to the pressurized air sugbéted to the valve pulse period
(25 ms). The output of the model is the length of the PMA.

With experimental tests some input-output data record®bt@ned. The order of the model

and with this the needed number of parameters is analyzeadeoffly the help of MTLAB.

According to this result the model equation is

(1+a1qg " +asq> +azqg®) y(k) = (bog > + big™* + bog°) u(k) + d +n(k)  (3.8)

Yy - position sensor reading

u - duty cycle

d - constant which represents the effects of non-zero meathg imput-output data
n(k) -  noise

The parameters itself are identified online with recurseast square. For all parameters the

average estimated values are given.
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3.1.4 Applications

Last, some applications of the PMA are presented. Van detd jA2] investigates the gait of
a biped robot. For an energy efficient gait, he models two PllAg a joint as pendulum, and
uses the natural frequency of the robot instead of conveailtEervo mechanisms which obey a

calculated trajectory. The activation of the PMAs occuragit. The results seem to be satisfy-

ing.

Takuma et al. [29] also investigate the gait of a biped rodativwalks with PMAs. The robot
consists of three joints actuated by respectively two amiesgic PMAsS. The article gives no
mathematical model of a PMA. The focal point is an invest@agbout the influence of dy-
namic and control parameters during locomotion. The maimadyc parameter the position of

the center of the gravity, and the main control parametdrasamaiting period to swing the leg.

Park et al. [20] also use two PMAs and a joint, but they inggd@ non-cyclic movements of a
robot arm. For a better and softer control of the end poingxldle link is added. This link is
difficult to control because of the high frequency vibragoihe whole system is divided into
a slow subsystem which represents the rigid body motionsadiadt subsystem which repre-
sents the dynamics of the flexible links and the servo valfé® input into the PMAs is the
pressure. The setup and the according physically basedl rmdescribed in detail, also the

experiments and their results, and the performance seebesvery good.
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3.2 Performed control strategies

Normally a Pneumatic Muscle Actuator (PMA) shall be drivdong a reference trajectory.
Therefore a closed loop control is necessary. The beha¥iBneumatic Muscle Actuators is
very complex and nonlinear, so the controller cannot begtesi only by linear standard meth-
ods. Also there are not all properties regarded in the mpHetsause then the model would be
too complex to deal with. There are mainly the approaches¢atize the models dynamically
and apply a linear standard control method respectivelypastacontrol method afterwards, and

to design a nonlinear controller.

In Section 2.3 some existent applications of these appesaale introduced. Here some of
the designs and implementations are presented. Subs8cidndeals with some linearization

methods. Subsection 3.2.2 introduces an application dfastaontroller, and Subsection 3.2.3
presents some existing performances of adaptive consolBome approaches of robust adap-

tive control are described in Subsection 3.2.4.

3.2.1 Linearization technologies

A nonlinear plant can be dealt with e.g. by linearizationtefvards, a linear controller can
be designed. In this subsection some possible basic desighexistent implementations are

discussed.

Sliding mode

One of the possible designs of feedback linearization islidexg mode, which was applied by
Carbonell et al. [4] and Repperger et al. [23]. The general isldascribed in [1]. The control
law drives the states of the system to a surface, and aftehireathe surface the states slide

along. On this surface the feedback is linear.

Carbonell et al. perform a sliding mode controller. The degtiequations are given in the arti-

cle, but the implementation is described very short. Theegptial stability is proved.

The tracking of the controller works perfectly, but the cohsignal chatters, which is a general

drawback of sliding mode controllers. Accordingﬁ&etrbm et al. [1] this chattering could be
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reduced/ avoided by smoothing the relay characteristics.

Repperger et al. [23] also use the sliding mode, coupled witarable Structure Controller
(VSC). They construct a time-varying sliding surfagg). The control law includes the sur-
face variables(¢) and forces the state space trajectories onto the surfacangyuting the model
inputwu (). On the surface which is reachedsét) = 0 the error dynamics are simple exponen-

tial, no more nonlinear.

There are additionally switching conditions, because tmdroller switches between PMA con-
traction and extension. This switching law is modified towgaghat the composite controller
provides asymptotic tracking stability. The derived equre are given, but the performance of

the controller is not described.

Flatness based controller

Hildebrandt et al. [13] apply a flatness based controllercwis model based and works feed-

forward.

This approach bases on differential flatness of the moddfer@ntial flathess means that the
model has got a (vectorial) output which is a function of thecforial) input and the (vectorial)
state. Also, it has to be possible to express all inputs aatdsby the output(s) and its deriva-
tives. So the model equation must be invertible. This priypean be used for the controller.
There the nonlinearities of the model are canceled by thverse system’. After linearizing a

simple linear control technology, here a third pole placeheentroller can be applied.

In the article the mathematical derivations are given cetepl The experimental results are

described and plotted and look very good.
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Switching controller

Depending on the character of the non-linearity, it is alsssible to design different controllers

for different dynamics of the controlled plant, here PMA traction and extension.

Ham et al. [11] apply two different controllers which are nf@tl to work as switching con-
trollers. One of them is a modified Pulse Width Modulation (PY)\&dntroller. A positive error
(pressure too low) requests an action of the two inlet vaares a negative error requests an
action of the four outlet valves. Normally in a PWM controltksign there is only one out-
put. Following, the magnitude of the error is used to geretia¢ PWM signal and the sign
determines the used valve. In the article there are moresalged. An improvement of the
control was reached by controlling the different valvesasafely. The duty cycle which is the
percentage time the valve is connected to the pressureysispgaiculated as if there were only
one valve, and if the computed cycle is higher than 100 %, makeess are used and the duty

cycle is distributed equally to the valves.

The second controller is a bang-bang controller. Normaltggards only the sign of the error.
Here the output signal is split into control for inlet andletivalves and a dead zone to avoid
oscillations in the requested pressure. Also here the salkecontrolled separately, but respec-

tively two outlet valves are merged.

Both controllers are performed for constant volume of the PMAe bang-bang controller

needs fewer processor time, so in the following the banglcantroller is used.

The complete joint controller consist of two bang-bang gues controllers with two different
action zones and a dead zone, one for each PMA, and a higletiplesition controller.

The higher level position controller is an adaptive PID4colter. In the experiments it was
tested to switch off temporarily parts of the PID contrglleut especially after including the

varying volume of the PMA it was decided to use the full PID woler.

Finally one high level adaptive PID controller combinedwitvo bang-bang-controllers for the

pressure inside the PMAs are used.
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There is no result concerning the performance of the higél leontroller given. For the per-

formance of the low level pressure control there are twosgioten, but not described sufficient.

3.2.2 Robust control technologies

With uncertainties in the model the controller can be desigas a robust controller. A robust
controller is a constant controller which regards boundatations. The principle of this ap-
proach is described in Subsection 2.3.2. There are marsrelift designs which are possible,
one very important design is the*Hcontrol, e.g. applied by Osuka et al. [19].>Hontrol
bases on a cost function which considers the desired preperthis cost function contains
weighting matrices representing the importance of thegntogs. The controller minimizes this

cost function.

Osuka et al. control the angle computed by two PMAs with sealges. Whether the con-
trolled variable is the pressure or the mass flow is not cladralso not interesting here. They
give a nominal plant model which is a black box model iderdifimm the experimentally ob-
tained Bode diagram. Also a multiplicative uncertainty faict is estimated from the Bode

diagram.

The article is very short. All functions and parameters averg also a plot of a result, but not

described well.

3.2.3 Adaptive control technologies

A second way of controlling nonlinear systems is to use amptdatechnology. There, the
controller itself is nonlinear. There are the two differapproaches direct and indirect adaptive
control which are described in Subsection 2.3.3. In thectlia€laption, the parameters of the
controller are adapted directly, in the indirect adaptioaparameters of the model are adapted
and according to this the controller parameters are charnigiest some applications of direct

adaptive control are presented, second some applicationdiect adaptive control.
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Direct adaptive control

One important direct adaptive control method is the gairedahng, described in [28]. For ap-
plying this method it has to be known how the dynamics of a@sechange with the operating
conditions [1]. So the operating conditions are monitoredrd) the process and the parameters

of the controller are adapted according.

Repperger et al. [24] use the gain scheduling method, butdiveyonly two look-up tables
about the changes of the process dynamics which are desasbielack box, but no explana-

tion or equation.

Carbonell et al. [4] also apply a gain scheduling controllérey describe their implementation
better. The performance of the controller is shown. Therotlet works very slowly, and the

exponential stability is proved only for slowly-varyingieeence signals.

Indirect adaptive control

One important method of indirect adaptive control is the Béeping control, described in [1,

30]. This is an effective method for the control of nonlinegstems, but can also be applied for
linear systems. The control objective is to design a stadldfack controller which guarantees
that all closed loop signals are bounded and that the sysigpuitracks a given output asymp-
totically. For this, an error equation is derived. Then atcaiaw and a parameter adjustment

law are constructed such that the state of the error equgties to zero.

The backstepping approach is applied by Carbonell et alT[4gy give the used equations and

prove the ultimate boundedness of all signals.

In the article the performance of three different contmsllis compared. The used controllers
are a sliding mode, a gain scheduling and a backsteppingatient The backstepping con-
troller yields the best result with a good tracking also fstfchanging reference signals and

the computed control signal is relatively smooth.
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A second method is an adaptive pole placement controllex.pbihes of a system are crucial for
the stability, and a pole placement controller cancelsalvistpoles of a plant and gives it new

desired poles.

This method is applied by Caldwell et al. [2]. In the articleotaontrollers with different or-
ders are compared. The controller with the higher ordersgavsignificant improvement of the
performance. In the text it is said that accuracies°cdire possible, but the plotted graphs look

Wworse.

Medrano-Cerda et al. [18] perform angle and compliance obofrtwo antagonistically cou-
pled PMA, also by using an adaptive pole placement controllée plotted steady state re-
sponse to a sinusoidal input does not look very good, theraibent seems to react relatively

slowly.

3.2.4 Robust adaptive control

Often adaptive and robust control are combined to a robusgitae controller [28].

Park et al. [20] split their system in a slow and a fast sulesystsee Section 3.1). For the
slow subsystem a robust adaptive controller was developeding a pole placement approach
which bases op-synthesis. The fast subsystem is controlled by slidingenmzhtrol scheme

with sliding surface designed usingttontrol.

Also Freeman et al. [10] design a robust adaptive controllérs article does not deal with
PMAs. For the adaptive controller a tuning function and maddesign are used, and both are

made robust.

Jiang et al. [15] use a modified adaptive backstepping ddeiga class of nonlinear systems.
Also this article does not deal with PMAs. The controller ésijned for three types of uncer-
tainties: unknown parameters, uncertain nonlinearitrestaamodeled dynamics. In the article

a robustification methodology is described.
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In this chapter several existing models of a PMA and sevendbpmed controller strategies are
discussed. In most of the models important parts are idettékperimental, so it is not possi-
ble to apply them in this thesis. Many models are not desdrdoenplete, and only one model
Is validated by comparing the simulated output to the regdutu The model of Hildebrandt et
al. [13] is the most detailed physical based model. Theegfwoith replacing the models of the
volume by the model of Caldwell et al. [2] and with replacing thodel of the friction force by

the model of Karnopp [16] the model can be adapted for usinigigthesis.

There are also many different controller strategies impleted. Not all of the controllers are
validated. Because of the different described test methbdseovalidated controllers a di-
rect comparison is difficult. Also in most articles the cahtsignal which is also important
for the quality of a controller is not given. The best tragkinesults are achieved by the feed-
back linearization controllers. The control signal of thidisg mode controller implemented
by Carbonell et al. [4] chatters very bad. The control sigrfahe flatness based controller
implemented by Hildebrandt et al. [13] is not described otted. Nevertheless, because of the

good tracking results a flathess based controller is imphéaaen this thesis.
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Chapter 4

Model of the Pneumatic Muscle Actuator

(PMA)

In this chapter the performed model of the PMA is presente&ection 4.1 the physical model
is described. The according state space form is introduct&eaction 4.2. The extension of the
model of a PMA to a joint driven by a PMA occurs in Section 4.3st, the implementation of

the model in MaTLAB/ Simulink is described and validated in Section 4.4.

4.1 Physical model

4.1.1 General Structure of the Model

In Section 2.2 the two possible main structures of a moded@seribed. In this thesis there is no
real PMA used, so only a physical based model can be perfqrineeduse no real input-output
data can be obtained. From the models described in Sectiaih& models of Hildebrandt et
al. [13] and Caldwell et al. [2] are merged. The general stmagcobf the model is illustrated in
Figure 4.1.

The complete model consists of an intrinsic PMA, a Valve espure supply and a carried load.

The input into the system is the command voltage), and the output is the PMA lengtfi?).

The pressure supply with the presspréas separated from the PMA by a valve. The command
voltage determines proportionally the orifice atg¢8 of this valve. The mass flow of gais, (¢)
from the pressure supply into the PMA is controlled by theve@alDue to this mass flow the

inner pressure(t) and the inner volumé’(¢) of the PMA are changing. Therefore a PMA
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U(t)

Pressure l m(t)| PMA F(t) Load z(t)
Supply N—> —> —>
Ps Valve V(t), p(t) my
a(t)

Figure 4.1: Main structure of the model

force F,,,(t) is generated which can be used to carry a load with the solg&gma The length

z(t) of the PMA can be expressed by the position of the carried load

4.1.2 Assumptions and properties

In the model of the single PMA the experimental setup cosgifa PMA which drives verti-

cally a load. This setup is pictured in Figure 2.2.b. The wggifor driving the PMA is air.

The pressure source is supplied and therewith the suppbspre is assumed to be constant.
Also the temperature, the specific heat ratio ofjand the polytrophic exponegtare assumed
to be constant. The valve is assumed to behave ideal. All massumed to be concentrated

in the center of gravity of the driven load. The PMA is regards piston.

The elasticity effects of the material, the dry frictionWween the rubber and the shell and ef-
fects of the wall thickness cannot be regarded in this mdotause therefore measurements
with a concrete PMA had to be performed.

The threshold pressure which has to be overcome before &ioy @aan take place is regarded
as threshold force which depends on the pressure in the Karinction model, described in

Subsection 4.1.6.

The complete model is highly nonlinear, but time-invariant
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4.1.3 Expected behavior

The basic principle of a PMA is that with rising pressure tiwAinduces a force. So the force
is expected to be at its maximum at maximum inner pressurth Mfising pressure the area of
the PMA raises and following the PMA shortens. This meansttiepressure inside the PMA

Is expected to behave inverse to the PMA length.

A heavier driven mass is expected to require a higher presbacause there a greater force is

needed to drive the mass.

4.1.4 Valve

At first the valve function is modeled. The valve is a 5/3-wagetion valve which means that
it can work in both directions. The mass floiy, depends on the orifice area which depends
on the command voltage, on the pressure inside the PMA, oaupply pressure and on the
properties of air. The relationship between the mass flowtladommand voltage on the valve

is developed analytical.

a(t) =c-U(t) 4.1)
a(t) [m?] - orifice area of the valve
c [m{} - constant of proportionality on the valve
Ul(t) [V] - command voltage

my(t) = c-U(t)-ps- (1) (4.2)
2 (p<t>> (p<t>> g
t) = — == 4.3

mg(t) [k_sg] - supplied mass flow into the PMA
Ds [%} - supply pressure, assumed to be constant
T, K] - supply temperature, assumed to be identical to therenment temperature
n [-] - specific heat ratio of air, assumed to be constant
p(t) [%} - pressure at the valve output, identical to the pressurdaribe PMA

46



For a negative mass flow the command voltage has to be negative

415 PMA
Pressure

Next, the intrinsic PMA is modeled. The main properties & WA are the inner pressure and

the volume. The pressure derived from the ideal gas equation

my(t) =2 (t])%?(t) (4.4)
my(t)  [kg] - gas mass inside the PMA
p(t) [%} - pressure inside the PMA
V(t) [m?] - inner volume of the PMA
R [kgLK] - specific gas constant for air
T K] - gastemperature, assumed to be constant and iderithaét

environment temperature

The state change is assumed to occur polytrophic, which snteat the system can partly

exchange heat energy with the environment. The polytrogésclaw is described by

pVX = constant (4.5)

X [-] - polytrophic exponent, constant

From Equation 4.4 and Equation 4.5 the following differahéiquation can be derived, which

is taken from Hildebrandt et al. [13].

50) = 17 (BTa(0) = p(0V (1)) (4.6)
with
V() = d;@ _ d‘gi ) s 4.7)
Volume

For the volume of the PMA the model of Caldwell et al. [2] is us€dere the volume is modeled
to depend nonlinear on the length of the PMA. The model egnasiderived in Appendix A.1.

This model is based on the assumption that there is one pbirterthe PMA is nearly relaxed.
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At this point the pressure inside the PMA is minimal and thieirge maximal. As soon as the

PMA contracts or is elongated the inner pressure rises adadlume is reduced.

7 f?

_ 4 2 2 .
V(t) = e (h* — 2°(t)) - 2(t) (4.8)
h [m] - helical fiber length of the PMA
f [m] - diametric distance parameter of the PMA

4.1.6 Load

The second necessary differential equation is the balafoeaes which is based on Newton’s
second law. The affecting forces are shown in Figure 4.2.

F, F. F, F

A A A A

PMA

Load v v
Fg Fext
Figure 4.2: Scheme of the affecting forces on the PMA

The z-direction is defined like drawn in the figure, z risedwiite elongation of the PMA. The

PMA drives a mass vertically.

Fi(t) = Fy 4 Fen(t) — F,(t) — Fu(t) — Fy(t) (4.9)
2(t) [m] - z-coordinate of the driven mass, corresponds to thgtlkeohange of the PMA
F; [N] - inertial force
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F, [N] - gravitational force

Fou(t) [N] - external force

F.(t) [N] - longitudinal PMA force

F.(t)  [N] - elastic force

Fe(t)  [N] - friction force of the driven load

Inertial force

The balance of forces assumes that if all forces are balatheeegarded object does not ac-
celerate [25]. This assumption is only valid if the systemegarded from an inertial reference
frame. This PMA system shall be regarded from a non-indraahe, which means that the ob-
server moves and accelerates with the system. The obsepeniences an acceleration which
does not exist for an observer outside the system. Follofgnthe transformation to a non-

inertial frame a so-called pseudoforce, also called iakftirce, must be introduced. It affects

the PMA in opposite direction of the movement.

Fi(t) = m (1) (4.10)

m [kq] - total solid mass, assumed to be concentrated in tivelmass

Gravitational and external force

As written in Section 2.1 the PMA is a pulling actuator. It canly contract, so for elongation
an antagonistic action must occur. Therefore a weight oxgermal force, e.g. computed by
a second PMA can be used. These forces act in positive ztidinedn contrast to the external

force F.,;(t) the gravitational forcé’, does not depend on the time.

Fy =msg (4.11)

g (@] - gravitation constant

PMA force

The PMA force is generated by the contracting of the PMA, Wwhoeeans that at maximal

contraction the PMA force is maximal and at maximal elorgathe PMA force is minimal. It
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depends on the inner pressure and the volume change dude¢agfie change. It helps carrying

the load, so it is defined against the z-direction.

dv(t)
F,(t) = (p(t) —py) - —=
(1) = () = po) - =
F,, [N] - longitudinal PMA force
Do [%} - environment pressure
with
dv(t) mf?

which is derived in Appendix A.1.

(4.12)

(4.13)

The static characteristics of the PMA force in contracted r@taxed state are plotted for differ-

ent loads in Figure 4.3.

Relation between the PMA length and the PMA force
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Figure 4.3: Static relation between the PMA length respebltithe inner pressure and the PMA

force

50



Elastic force

The elastic force is modeled as spring force. Thereforespedds linearly on the length of the

PMA. It causes contraction of the PMA, so its direction isoagainst the z-direction.
F.(t) = Kz(t) (4.14)
K kg tional spri tant
< - proportional spring constan

Friction force

The direction of the friction force is in general defined agaithe z-direction. For the friction
the model of Karnopp is used which is described in Subse&tibii. There two different modi
of the system are regarded, one describes the system dligpomg and one during sticking.

Both modi have got a different friction law.

For the slipping mode a proportional friction law is used:

Fyaip(t) = C£(1) (4.15)
Fraip  [N] - friction force during slipping
C [k_sg] - proportional friction constant

In the sticking mode the friction depends on the other afigdiorces.
Ff,stick(t) = Fext(t) + Fg — Fm(t) (416)
Fsiie [N] - friction force during sticking

The balance of forces (Equation 4.9) has got the force of W& Bs input and the length of the
PMA as output. During the movement, which means during tippisig mode, all other forces
and constants are known or modeled independently. As satwe &elocity of the load is inside
the zero region, the friction law is switched to the stickiagy. The PMA length is known from
the last value before the law was switched respectively fitoeninitial condition, and instead
the friction force can be calculated with the balance ofésrdue to pressure or load changes
also the friction force changes. As soon as it overcomeseslioid force, the load begins to

move again and the friction law is switched to the slipping.la
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4.2 State space model

In Figure 4.4 the general view of a system is shown. The viemtans the intrinsic system,
inputs and outputs. The intrinsic system is described byeat(rial) state variable(t). The

inputw(t) and the outpuy(t) can also be vectorial.

{717 N— R ( I I—]()

Figure 4.4: General view of a system

One method of describing this system mathematical is ttie sgace form. The general state

space form for nonlinear models is:

i(t) = flz(t),u), ) (4.17)
y(t) = hiz(t),u(t),?) (4.18)
with z(¢) € R™ being the state vectog;(¢) € R™ being the first time derivative of the state

vector,u(t) € R™ being the input vectory(t) € R being the output vector andbeing the

time.

First, the states, inputs and outputs of the regarded syatemtetermined:

p(t)
z(t) = | z2(1) (4.19)
()
u(t) = U(t) (4.20)
y(t) = z(t) (4.21)

with p(¢) being the pressure inside the PMA{) the length of the PMA;(¢) the time deriva-

tive of the length of the PMA andf (¢) the command voltage to the valve.

The regarded system is autonomous, which means that omnediffemes with the same input

and at the same states the system yields the same outpaiwiagl) the model equations do not
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depend explicit on the time. Also, the system is lineat(it) and there is no direct feedthrough,
which means that the outpytt) does not depend directly on the inpL(t). Therefore, Equa-

tion 4.17 can be rewritten as

o(t) = fla(®)+g(z(0)ul) (4.22)

y(t) = h(z(t)) (4.23)

The modeled properties of the PMA system are substitutegplgied and brought into state
space form in Appendix A.2. The physical parameters of thdehare assembled to the con-
stant parameters; which are also defined in Appendix A.2. The resulting sta@cegorm

is

mg(t) = aqu(t)y/oam (1) — as (t)* (4.24)
, _aqiing(t) — xa(t) (as — aix3(t)) 23(1)

hlt) = agTo(t) — agrs(t) (4.25)
ia(t) = ws(t) (4.26)
i3(t) = mis [Fear(t) = (21(t) = po) (as — aroz3(t)) — Kao(t) — Fy(t)]  (4.27)
y(t) = xo(t) (4.28)

whereas Equation 4.24 is no state space equation, butmwsigqearately for a better readability

of the equations.

In the slipping mode the friction force is substituted withuation 4.15:
Fy(t) = Cxs(t) (4.29)

In the sticking mode the state (¢) is constant and following:s(¢) is zero. Alsoi; is zero.

Therefore, the state space model is reduced to

azoqu(t) \/agxl (1) — agay (t)es

ai(t) = 5 (4.30)
gy — ang,stick

5t2,stick =0 (431)

Fi(t) = Fen(t) — (21(t) — po) (aS - Oéloxg,stick) — Ko stick (4.32)

Ystick = L2,stick (433)

whereasF(t) causes no change in the actual output,, but is necessary for the change to

the slipping mode.
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4.3 Extension of the model to a joint driven by PMAs

In this thesis a joint driven by PMAs is modeled. Therefoeesal experimental setups are
possible. One possibility is the setup of two PMAs which adigonistically, illustrated in
Figure 2.3.b). A second possible setup is one PMA which warkagonistically to the weight
of the moved link. This setup is illustrated in Figure 4.5efdnare two links of the limb which
are connected by a mechanical joint. The PMA affects theslinkheir center of gravity. One
of the links is fixed. The moving link is lifted by the contramt of the PMA and lowered by
its weight. The weight is assumed to be concentrated in fleetafg point of the PMA at the
moved link. This setup is adequate to the physiologicalsetioere the muscles which actuate

a joint affect at the bones which are connected by the joint.

Figure 4.5: Joint driven by one PMA

The geometry of the joint is illustrated in Figure 4.6.

51 = g — 2 (4.34)
so(t) = g — (20 — 2(t)) (4.35)
h(t) = g sin <@) (4.36)
B = 3(n—a() @.37)



Figure 4.6: Geometry of the joint

L [m] - length of the link
2(t) [m] - actual length of the PMA
20 [m] - resting length of the PMA
a(t) [rad] - angle of the joint

Now the geometrical relationship between the joint anglg and the PMA lengthx(¢) can
be derived by expressing(t) trigonometric and by adding the lengthes. It has to be reghrd
that the direction of the movement is defined opposite, tmeadonger PMA corresponds to a

smaller joint angle.

ity = 2- L cos (ﬂ) (4.38)
2 2
d(t) = S1+ %2+ Sg(t) (439)
Setting the expressions equal yields
aft) L L
L cos (T) =35 A + 20+ 7" (zo — z(t)) (4.40)
This expression is simplified to
oS (@) =1+ Z<t)L_ 0 (4.41)
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The resulting relationships for both directions of convegtare:

aft) = 2-cos! (1 + @) (4.42)

z(t) = L-cos (%t) — ) + 29 (4.43)
In Figure 4.7 this relationship is plotted for three diffieréengthes of the link. The shorter the
links are the greater is the range of the angle, but this igdoirby the length of the PMA which
has to be shorter than the link length

Relationship between PMA length and joint angle
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Figure 4.7: Relationship between PMA length and joint angialffferent lengthes of the links

The affecting forces and torques are drawn in Figure 4.8. graeitational forceF), induces a
torqueTy in the joint:
L
T,(t) = F, - 5 cos a(t) (4.44)
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Figure 4.8: Affecting forces and torques

The torquel,(¢) is the torque which is necessary to compenggte). It is induced by the
PMA.

To(t) = F,(t)-h(t) (4.45)
= F,(t)- gsin (%t)) (4.46)

With T,,(t) = T,(t) the necessary forcg,(t) is
() = F, . COSig) (4.47)

This necessary forcE, () is the external forcé’,,, in the balance of forces of the PMA (Equa-
tion 4.9). Because of the assumption that all mass is coratedtm the gravitation centerof
the driven load there is no additional gravitation force m@driction occurs in the joint. It is

modeled identical to the friction of the vertically drivezeld before.

In Figure 4.9 the relationship between the joint angle aeckttiernal force is plotted for differ-
ent masses. The external force is very high for a small angiehws the case if the moved link
lies on the ground. Also at = 0 the external force is not defined. Because of this the initial

angle is greater than zero.
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Relationship between joint angle and external force
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Figure 4.9: Relationship between joint angle and externakféor different driven masses
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4.4 Implementation of the model in MATLAB / Simulink

The described model of the PMA is implemented in Simulinks implemented in signal flow
form with several different levels. For single equationsitiedded Matlab Functions’ are used.
The different implementation variants are printed in Apgigrs.2. By opening the control loop

experiments with the model can be performed.

There are three different model variants implemented. Timbi@ variants simulate the PMA
driving vertically a load; one of them uses the Karnopp imictmodel and one uses a simple

proportional friction law. The third variant simulates floent driven by one PMA.

The input into the PMA is the command voltagét), and the output is the PMA lengt{t)

respectively the joint angle(t).

The parameters driven mass, temperaturd’ and supply pressune can be changed during

the simulation.

4.4.1 Actual values of the model parameters

The actual parameters used in the simulations are assemflalle 4.1. The PMA parameters

are taken from Caldwell et al. [2].

4.4.2 Simulation results of the model

The modeled system behaves very unstable. Therefore, hpassible simulated experiments
are to record the step response and the impulse responseitpth. At timet = 0 s the input
u(t) is set from 0 to 0.02 V.

In Figure 4.10 the simulated pressure and length valuestmput step are plotted with differ-
ent friction models. The first friction model is a simple poogonal law, the second model is
the model of Karnopp. The driven massig = 1 kg. The threshold force i8% sick thr = 0.5
N, and the threshold velocity i, = 0.0001 'J.

As expected, with the Karnopp friction model the PMA lengtimains constant for a longer

time with nevertheless rising pressure. Du%bo this presssing the characteristics of the PMA



Table 4.1: Actual values of the model parameters

symbol meaning value unit
R gas constant of air 287 [kgLK}
n specific heat ratio 1.4 [-]
T=T,="1T, temperature 298 K]
Do environment pressure 101325 %
Ds supply pressure 303975 %
¢ constant of proportionality of the valve | 10°7 %2
polytrophic exponent 1.26 [-]
h helical fiber length 0.152 [m]
f diametric distance parameter 0.0145 [m]
M mass 0.5...1.5] [ka]
g gravitational constant 9.81 (2]
C slipping friction constant 20 {k—sg
K elastic force constant 40 (2]
S velocity threshold 0.0001 (D]
EFo, force threshold 0.5 [N]
L length of the link 0.1 [m]
20 relaxation length of the PMA 0.079 [m]
Zmin length of the PMA at maximum contractign 0.052 [m]
Zm AT length of the PMA at maximum elongation 0.143 [m]

length is not exactly time-shifted.

In Figure 4.11 the experiment is repeated with the impulpatinThe input is set again to 0 V

at timet = 0.25 s. The difference to the step response is very small.

In Figure 4.12 the characteristics of the PMA length and tlesgure over the time are plotted
for different driven masses. For the friction the Karnoppdelds used. The step in the input
occurs at time zero, and the initial value of the PMA lengtlfixed. The initial value of the
inner pressure is calculated with the static relationship

Fe:vt _KjZ

=2
g — (\T3

r =

+ Do (4.48)
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As expected in Subsection 4.1.2 the inner pressure of the BMWgher for a heavier driven
mass. Also, the pressure behaves inverse to the lengthm#aats that a rising pressure causes

a shortening of the PMA.

In Figure 4.13 the experiment is repeated with the impulpatinThe input is set again to 0 V

at timet = 0.35 s. Also here the difference to the step response is very small

The same experiment is performed with the joint angle. lrufégd.14 the step response is
simulated. As described in Section 4.3, the joint angle beh@verse to the PMA length and

following in equal direction to the pressure.
In Figure 4.15 the impulse response of the joint angle is kited. Also here the valve is closed

at timet = 0.35 s. Also here the difference is minimal. Following, the modehaves very un-

stable.
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Length of the PMA
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Figure 4.10: Step response of length and pressure for eliftériction models
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Figure 4.11: Impulse response of length and pressure fiardift friction models
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Length of the PMA
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Figure 4.12: Step response of length and pressure for eliftelriven masses

valve closed
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Figure 4.13: Impulse response of length and pressure fiardift driven masses
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Angle of the joint
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Figure 4.14: Step response of joint angle and pressureffereint driven masses
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Chapter 5

Closed-loop control

In this chapter the controller for the model is describedcéstroller a flatness based controller
Is chosen and introduced in Section 5.1. In Section 5.2 tipicagbion on the PMA driving
vertically a load is described. In Section 5.3 the contrates is extended to the control of
the joint angle. The implementation of the controller imMAB / Simulink and the performed

experiments are described and discussed in Section 5.4.

5.1 Flatness based control

The model of the PMA behaves unstable, so it is necessarghdise it. Also it is desired that
the PMA follows a given trajectory. So a closed loop trackomgtroller has to be designed.
The model is strongly nonlinear, so the controller has tolide # deal with the nonlinearities.
Some basic working principles are described in Sectionghd,some performed designs are
reviewed in Section 3.2. The main approaches are the dyaafimearization of the model in
order to design a linear controller and the design of a nealicontroller. In general, lineariza-
tion methods combined with linear controller designs ammetically easier to deal with. In
the actual model there are no uncertainties in the parameieit is not necessary to design an
adaptive controller. So a linearization method can be useddback linearization means that
the nonlinearities of the model are canceled by the modeitinipollowing, the nonlinearities
appear in the input. This is a general drawback of feedbaelatization, because due to physi-

cal limits of the actuator this could cause problems [17].

There are different possible designs of a feedback linatwoiz, described in 3.2.1. Here the

input-output linearization is more interesting than thpunstate-linearization, because in a
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tracking control system the output is more important thangtate. There are also the classifi-
cations 'exact feedback linearization’ and "approximdtsetiback linearization’. This depends
on the observability and the controllability of the systeththe system is both, it is exactly

linearizable.

5.1.1 Basic idea of the controller

The structure of a flathess based controller is printed inrf€i¢p.1. This controller works with
exact feedback linearization. The basic idea is to genarateput into the plant which cancels
the nonlinearities of the plant. Therefore the plant is ite@, so that the inverse system and
the plant together set up a linear system. This system caotteotled by a linear tracking

controller.

The actual outpuy(t) of the nonlinear plant is fed into the tracking control. Amtiog to
the desired trajectory,(¢) the tracking controller generates an inpit) into the linear plant
system. In the inverse system this inp(t) is transformed into the input(¢) into the nonlinear

plant. With this input.(¢) the nonlinear plant is driven onto the desired trajectory.

Y
y r—v — = — —|= =
trajectory linear | erse I |
computation > tracking - . |
Yo i . v Yo | comrol | V|| System | w | plant |
| linear plant system ]

Figure 5.1: Structure of the control system

5.1.2 Prerequisites and necessary tools
Differential flatness of the model

One prerequisite for applying a flatness based controllédnasthe model is differential flat.
This concept is described in [9] and [33]. Differential flatis means that there is one output of

the plant (or a set of outputs) which can be described by tdapsending on the state vector and
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the input and a finite number of its derivatives. The statektha input have to be describable

by terms depending on this flat output and a finite number afats/atives:

y = ylx,u,,... ,u(l)) (5.1)
z = 2(y.9,...,y'?) (5.2)
u = u<y7 y? e 7y(q)) (5'3)

This property is necessary for inverting the plant, becauske inverse system all nonlinear-
ities of the plant have to be included in the output of the maar plant to obtain the exact
cancelation. Also the states of the nonlinear plant have dscribable by the output, because

if not the generated input into the nonlinear plant cannatehall the nonlinearities.

Relative degree

Differential flatness is a concept of exact feedback liresion. A system is exact linearizable
if it is controllable and observable, which means that theee no internal (zero) dynamics.
This requirement is fulfilled if the relative degreef the system is equal to the ordeof the

system. If the system is controllable, but not observabis,a@xact input-state linearizable, but
not exact input-output linearizable. Otherwise the deldireearization has to be approximated.
The effectiveness of the approximated linearization ddp@m the stability of the unobservable

or uncontrollable parts of the system.

The relative degreeis the number of times the output equation has to be deriviktiainput

appears.

Following, the relative degree is also the number of dekieatwhich have to be regarded in the
calculations to cover all nonlinearities. That means thatttajectory error and derivatives
have to be compensated by the tracking controller. Becausabthe desired trajectory has to

be derivable- times.
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5.2 Length control of the single PMA

In this section the controller is developed for the PMA drtyia load vertically. Therefore the
controller of Hildebrandt et al. [13] is modified. First thentroller is designed for a propor-

tional friction law and then the Karnopp friction model ispdipd.

5.2.1 Fulfilment of the prerequisites

In this subsection it is shown that the flatness based cdetrcdn be used for controlling the
model of the PMA. First the relative degree of the model isoted and therewith the possibility
of exact linearization is shown. Next, the differentialfiess of the model is shown.

Identification of the relative degree

For obtaining the relative degree, the output equation iivele with respect to the time until

the input appears.

For a better readability of the equations the dependenaci¢isne@ are not notated herg, u, all

x; and the external force,,; depend on the time. Following, also all depend on the time.

First some abbreviations which also include the statestarkrivatives are introduced to sim-

plify the differential equation of the pressure (Equatiod/and 4.25):

(z1) = a1/ asx!* — agx]® (5.4)

o1y, 12) = m?ﬂl(iﬁ) (5.5)
¢3($1,$27$3) = VE;Q)%(GZ; - alolfg)x:a (5.6)

The abbreviated equation is:
@1(t) = ta(z1, T2)u(t) — Y3(21, 22, 73) (5.7)

Next the output equation (Equation 4.28) is derived.
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y = @2 (5.8)
Yy = x3=1 (5.9)
. 1

Yy = J(Fext—*_Fg_Fm_Fe—Ff)

s

1

= o (Fext +msg — (21 — po)(as — am:l:%) — Ky — Cl’s)
1
= o (Fext + Msg — agT1 + G109€13?§ + agpo — alopol’g — Ky — 0373) (5.10)
y = — (—agﬂfl + CL10£C1$§ + 2a10(131 - p0)$2133 + Fegy — Kig — Cl’g) (511)

s

Also here some abbreviations are introduced to simplifythirel derivative of the output (Equa-
tion 5.11):

) . K . C .
¢4($1, T2, T3, 553) = —Clm(ﬂ?l - po)l’z»’lfz + —Fp — —Tg — — X3 (5-12)
S ms ms TTLS
1
1/15(9517552) = _E(GS - Gloﬂfg)%(%l,lcz) (5-13)
. 1 )
VYe(x1, 29, T3, T3) = E(as — a1023) V3 (21, T2, 23) + Va1, 02, 23, 43)  (5.14)
The abbreviated equation is
1 9 ) .
y = H(alofz — ag)&1 + Va(1, 22, 13, T3)
1 .
= E(Clmﬂﬂg - CLS)(%(%, 5172)U - ¢3($1, X2, 5173)) + @04(961, Lo, T3, iﬂs)
= Y5(x1, x2)u + VYg(21, 9, T3, T3) (5.15)

The inputu appears in the third derivative of the output equation, sorélative degree of the
system is- = 3. The ordem of the system is the number of states which is alse 3. So the
system is controllable and observable which means thag ter no internal (zero) dynamics.

Following, the desired exact input-output linearizatisipossible.

Also, the desired trajectory has to be at least three tinfesrelntiable.

Differential flatness of the PMA model

The PMA can be in several different states and modi. It cambelaxed, elongated or con-

tracted state. Another criterion is whether the driven |@asticking or slipping. The latter
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criterion concerns the modeled friction force. First, thpmng modus is discussed.

According to Equation 5.8 Equation 5.1 is fulfilled.

Fopp — Ky — Cy — mgy

r = 5 +po (from Equation 4.27) (5.16)
ag — aiy
Ty = Y (5.17)

Equation 5.2 is mainly fulfilled, the only problem occurs gmée aty = , /2. In this case the

PMA is in elongated state.

With Equation 4.24, 4.25, 5.4, 5.5 and 5.6 the state devivati is expressed as

l"l = 'gbz(l‘l)u — 1/)3(1’1, T, .Z‘g) (519)

and with Equations 5.16, 5.17 and 5.18 the inpeain be described as

o — D199, 9) + ¥aly, 5. §) (5.20)
2/12(97 Y, y)

Also Equation 5.3 is fulfilled with the exception inner press= supply pressure. This is un-
critical, because the parameters like the driven mass cahds®en so that the problem does not
occur in the possible range of length values. So in contdeatel relaxed state the model of the

plant is differential flat.

During the sticking mode the velocity and the acceleratibthe PMA are set to zero. There-
fore, the balance of forces (Equation 4.9) is in sticking mod differential equation, but re-
duced to an algebraic equation (Equation 4.16). So in stickiode Equation 5.16 is reduced
to

3y = Lot —RY + po (5.21)

ag — a10y2

which is nevertheless differential flat with the describrdeption in elongated state.

In sticking mode the input equation (Equation 5.20) is

) (5.22)




which is also flat with the exception inner pressure = suppdgsgure. The other equations are

identical to the equations for the slipping mode.

Therefore, the plant is differential flat with the two debew exceptions, one pole in elongated

state and one pole at = p,.

Following, if the PMA is also driven in elongated state amottontroller has to be used or other
solutions have to be found. In this thesis the PMA is onlyeniin contracted and relaxed state,

so inside the used range of values the problem does not occur.

Summarizing, the required prerequisites are fulfilled f®oRMA can be controlled by a flatness

based controller.

5.2.2 Controller equations

In this subsection the equations for the controller arevedri Therefore the tracking control

and the inverse system have to be developed.

Tracking control

The PMA shall be driven along a given trajectory. For thigkrag control a simple linear ap-
proach can be used, here a pole placement controller. Tlee ofdhe controller has to be the
relative degree of the system. Following, the desired trajectgryt) has to be at least = 3

times differentiable.

The tracking erroe(¢) and its derivatives are defined as

e(t) = —(y(t) —valt)) (5.23)
et) = =) —vat)) (5.24)
ét) = —(it) — dalt)) (5.25)
et) = (V) - Va®) (5.26)

whereas the minus is due to the negative relation betweendimputed input.(t) into the

model and the model outpytt), which means that a positive model input leads to a smaller
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model output.

The differential equation
0="¢(t) + Ké(t) + K1é(t) + Koe(t) VK; >0 (5.27)

guarantees an asymptotic tracking.

The controller parameters; are calculated from the desired poléf the closed loop control

system. Therefore the error differential equation is Leplaansformed and divided by(s).

0 = s°F(s)+ Kys°E(s) + K1sE(s) + KoE(s) (5.28)
0 = %+ Kys*> + Kys+ K, (5.29)

With
83+K282+K15+K0 = (S—Pl)(S—PQ)(S—Pg) (530)

= 33_(Pl+P2+P3)32+(P1P2+P2P3+P1P3)S—P1P2P3

(5.31)
the controller parameters are obtained as:
Ky, = —(Pi+ P+ Ps) (5.32)
Kl - P1P2+P2P3+P1P3 (533)
Ky = —P PP (5.34)

with P, < 0.

The computed inpuk(t) into the linear plant system is set to the third derivativehef real
trajectory [13]:
v(t) =:Y(t) (5.35)

With Equation 5.23 - 5.26 follows

v(t) = —Uq(t) + Koé(t) + K1é(t) + Koe(t) (5.36)
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Inverse system

The inverse system transforms the computed input into tieatisysteny(¢) into the inputu(t)

into the nonlinear plant. Therefore, Equation 5.15 and Eqn®.35 are put together to

v(t) = s (y(0). 9(0),5(8) ) ult) + o (y(8),5(0), (1)) (5.37)

and transformed to

() = s (y(), 5(8), (1))
u(t) = (5.38)

s (), 500, (1))

This inputu(t) into the nonlinear system contains the linear compensaticdhe trajectory

error and the exact cancelation of the nonlinearities.ovofig, with this inputu(t) the PMA is

driven along the desired trajectory.

5.2.3 Application of the Karnopp friction

The friction force is modeled at first proportional to theomty of the movement. In a second
step the model is extended by the model of Karnopp [16], desdin Subsection 3.1.1. Here
the mode of the PMA is split into a slipping mode where the PMAnioving and the friction
is described by a simple model and a sticking mode where th& RBNMesting. This sticking
friction force is modeled to depend on the other forces wihigelength of the PMA is constant.
For the resting a region is defined where the velocity of thédR¥/hear to zero and the sticking
friction force is also small. Inside this region the velgaind also the acceleration are set to
zero. This occurs in the model, so the controller itself doasswitch between the different

modi.

The controller is dimensioned for the slipping mode. Theuaai® control depends on the
knowledge and the correctness of the velocity and the aetile at every time. During stick-
ing mode the knowledge is assured, so the model is stillréiffigal flat and the controller can
work. The velocity and acceleration values are not corradnd sticking mode, so the accu-
racy of the tracking and the smoothness of the control sigiibbe reduced. Following, also

the smoothness of the state characteristics will be reduced
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5.3 Extension to the control of the joint

The desired trajectory is given as joint angle. With Equatiad3 the trajectory is transformed
into the desired length trajectory. The simulated modegbotis computed for the PMA length
and then transformed with Equation 4.42 into the joint anglee tracking error is computed
with the length values. Also in the inverse system the catoans takes place with the PMA
length, but there the joint angle is needed explicitly. Iru&pn 5.12 the derivative of the
external forcel".,, occurs. In the control of the PMA length with a verticallywdr mass the

external forceF,,, is the gravitational force which is constant. In the contfolhe joint angle

the external force,,.(t) depends on the time-dependent angle) which depends nonlinear
geometrical on the PMA length. Therefore, the time denestiof the external force and the

joint angle have to be calculated by using Equation 4.47 andion 4.42.

a(t) = 2-cos”! (1+@) for 2(t) # 2

2z(t
at) = — A _ (5.39)
L\/l - (1 n —Z(t)L‘ZO)
cos a(t)
Fnlt) = F,- 20
S1n 5
: a(t) sin a(t) sin 28 4+ 0 o5 20 o 0 (1)
Flt) = —F,- R Bl (5.40)

S1n

l\-)|

The other necessary equations are taken from the PMA |eiogitincd.

5.4 Implementation of the controller in MATLAB / Simulink

The described controller is implemented in Simulink. Itnsluded into the implementation
of the model. The controller implementations for the défer model variants are printed in

Appendix B.2. There also the handling of the control is expdi

The concrete experiments which are performed with the dkdsep control of the PMA are
described and their results are discussed in Subsectich 5 properties and the values of
the varied parameters are given in Subsection 5.4.2, analdiied characteristics are given in
Subsection 5.4.3.
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5.4.1 Performed experiments with the closed loop control system

To test the performance of the implemented controller sd\kfferent experiments are simu-
lated. Mainly the experiments are performed as follows: At 0 s the load is applied. The
initial value of the PMA length respectively the joint angléfers from the desired value. At
t = 3 s the investigated parameter is changed abruptly, andg-ai s it is changed back to the
initial value. The desired trajectory cannot be changedathy, because the controller requires
that it has to be three times differentiable. So the investig desired trajectories are constant

and sinusoidal.

Control of the vertically driven load, Karnopp friction mod el

At first the onset behavior of the control of the verticallyvdn mass is tested for different

loads. It is shown in Figure 5.2.

The tracking occurs fast. After 0.3 s the desired value igeael for the medium and the heavy
load. It is noticeable that for the lightweight load the adtes oscillate slightly, so the desired

length is achieved after 0.5 s.

The controller also works quite accurate, the maximum exfter achieving the desired trajec-
tory is in the order of 0~> m for the medium and the heavy load artid* m for the lightweight

load. The maximum error occurs at the sticking mode.

The control signal is smooth during the slipping mode. Ingtieking mode, there are abrupt
peaks and little chatters caused by the Karnopp frictioneh(gke Subsection 5.2.3). As ex-
pected, the magnitude of the command voltages corresporttie tveight of the driven load.

A heavier load requires a higher pressure, so for the saneslsgehe controller a higher mass

flow which depends proportional on the command voltage igired.

The second experiment investigates the performance ofahiatler with abrupt changes in

the load. The desired trajectory is a constant value. Thetimapplied at = 0 s, reduced at
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t = 3 sandraised at= 6 s. The simulated characteristics are given in Figure 5.3.

At the reduction of the load the PMA shortens 2 mm and at trengithe PMA elongates 1.3
mm, but after 0.35 s the disturbance is compensated by megluespectively raising the pres-

sure.

The control signal is smaller at the reduction of the loachthithe rising, also at the reduction
the error is greater than at the raise. This signifies thatliregation of the PMA and therewith

the pressure release occurs faster than the contractichersvith the pressure generation.

The third experiment is the same experiment as the secon8uingith a sinusoidal desired
trajectory. Here the disturbances occur during slippinglendl' he characteristics are given in
Figure 5.4.

In the slipping mode the trajectory error is smaller and thietol signal is smoother, because
the controller can react more adequate. The trajectorysad the compensation time at the
load variations are not significant smaller than with thestant trajectory. Also the magnitude

of the control signal is not significant different, but thentrol signal is smoother.

It is noticeable that the pressure behaves within the dinedf the PMA length. Due to the
characteristics of the PMA force a shorter PMA requires algwessure for inducing the same

force, so the controller generates an adequate mass flow.

Control of the vertically driven load, proportional fricti on law

To investigate the influence of the friction model the secand the third experiment are re-
peated with a simple proportional friction law. In the fogkperiment the desired trajectory is

constant. The characteristics are plotted in Figure 5.5.

Here the tracking is nearly perfect, the error after onsdtdter compensating the disturbances
in the load is in the order af0—® m. The trajectory errors at the disturbances, the magrstatie

the control signal and the compensation times are not signifidifferent from the values with
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the Karnopp friction model, but the control signal and thesgure and length characteristics

are very smooth and the changes due to the disturbancesrgrelear.

In the fifth experiment the desired trajectory is sinusoiddle characteristics are given in Fig-
ure 5.6. Also here the significant differences are the snmasth and clearness of the control

signal, pressure and length characteristics.

Control of the joint angle, Karnopp friction model

In the next experiments the performance of the joint anglgrotier is tested. The friction
force is modeled with the Karnopp model. In the working ranfthe angle the external force
is higher than the gravitation force (see Figure 4.9), sadtineen mass has to be reduced for
the joint angle experiments. Alternatively, the lengthlod tinks could be reduced, but this is
limited by the length of the PMA, because the link has to bgyérthan the PMA in relaxed

State.

The second and third experiment are repeated with the dafttbe joint angle which means
that the reaction of the controller to an abrupt change oldhd is investigated. The load is

applied at = 0 s, reduced at = 3 s and raised at= 6 s.

In the sixth experiment the desired trajectory is a constalote. The characteristics are plotted

in Figure 5.7.

The joint angle behaves inverse to the PMA length and folgwnverse to the pressure. The

observed variables oscillate slightly with the reducedsnas

The control signal is quite smooth, it contains no peaksdthweations are waves started with a

small chatter.
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The trajectory error at the mass reduction is 0.15 rad, atidees raise 0.07 rad and without the
disturbances maximal 0.02 rad. The compensation timesrarkasto the compensation time
of the length control. The onset time is with 0.25 s shortet,tbe initial error is smaller than

in the length control.

The seventh experiment is the same experiment as the sigthutrwith a sinusoidal desired

trajectory. The characteristics are plotted in Figure 5.8.

Here the trajectory error at the load reduction is with 0d sagnificant smaller than in the

experiment before, but the compensation time is with 0. hgéo

During the slipping mode the characteristics of the vagalalre smooth.

In the next experiments the controller performance at fhigdas in the supply pressure is in-
vestigated. It has to be remarked that the supply pressaretée reduced under the actual

pressure value, because this causes numerical problems.

In the eights experiment, shown in Figure 5.9, the supplgguree is reduced abruptly at 3

s and raised at = 6 s to the initial value. The expected result of a lower suppgspure is a
higher magnitude of the command voltage, because due torthkes pressure difference the
orifice area of the valve has to be greater for obtaining timeesanass flow. This effect can
be seen in the plot. In the characteristics of the angle amgtbéssure there is no significant

difference.

In the ninth experiment the supply pressure is raised-at3 s and reduced @ = 6 s. In
Figure 5.10 the described effect occurs in the other dwactivhich means that the magnitude

of the command voltage is smaller during the higher supphggure.

In Figure 5.11 the tenth experiment is plotted. There théhmexperiment is performed with a
sinusoidal desired trajectory. Also here the magnitudénefdommand voltage is smaller at a

higher supply pressure. In the other variables there isgrofsiant difference.
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Changes in the temperature are investigated in the elevgp#riment, given in Figure 5.12.
The temperature is raisedéat 3 s and reduced at= 6 s to the initial value. There is no sig-
nificant change in the characteristics. Following, the culgr seems to be robust for changes

in the temperature.

Effects of the threshold parameters for the Karnopp friction model

The Karnopp friction model requires two threshold paramsgtidne threshold velocity,,, and
the threshold friction forcé,,.. In the next experiments the effects of changes in thesempara
eters are investigated. Therefore the driven mass is valtiéslapplied at = 0 s, reduced at

t = 3 s and raised at = 6 s. In the experiments the joint angle is controlled, and #srdd

trajectory is sinusoidal.

The twelfth experiment is identical to the seventh, but tgldtagain for comparison in Fig-

ure 5.13. The velocity threshold is low and the force thrésmmedium-sized.

In the thirteenth experiment, printed in Figure 5.14, thieeity threshold is high and the force
threshold is medium-sized. Here the control signal chattere than with the lower threshold.
Also there are more oscillations for the smaller weight. desqlly for the smaller weight the
tracking error is higher than with the lower threshold. Ie tarnopp friction model the ve-
locity near to zero shall be regarded as zero, so the loweshiotd withz,, = 0.1 [%n} is

chosen as parameter.

The threshold force is reduced in the fourteenth experim&he characteristics are given in
Figure 5.15. In the fifteenth experiment, given in Figure65.the threshold force is raised.
During the slipping mode, there are no differences. At tiekistg mode there are wavelike
deviations in the angle, the pressure and the command eolthgch raise with raising thresh-
old force. Also the tracking error is higher during the singkmode. With the threshold force
it is described which force has to be generated to start a mentof the joint or load. The
medium-sized threshold force #5;,,. = 0.5 N which corresponds to a load of 50 g. With a mass

range ofm, = 0.5 to 1.5 kg this seems to be realistic. So the medium-sized thresbadeé is
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used as parameter for the simulations.

The experiments show that with a supply pressure of 3 barhwisi¢che working range also
postulated in the literature the single PMA used in thisithean carry loads in the range of 0.5
to 1.5 kg. In the described joint design the range of the wegbetween 0.5 and 1 kg with
the range of the angle between 0.75 rad respectively 0.9n@d .& rad. These ranges could be
extended by raising the supply pressure, but it is quedtien&the material of the PMA can
withstand the higher pressure for longer time. The corralan deal with fluctuations of the

driven mass and the supply pressure. The temperature hafiuenice on the experiments.

5.4.2 Actual parameters for the closed-loop control experiments
Actual values of the controller parameters

The actual controller parameters are given in Table 5.1.

Table 5.1: Actual values of the controller parameters

symbol meaning value | unit
P, P, P3 applied poles 25 | []
Ky controller parameter 75 [-]
K controller parameter 1875 | [-]
Ky controller parameter 15625| [-]

Values of the varied model parameters

The parameter values which are used in the single expersnaeatassembled in Table 5.2.

5.4.3 Results of the experiments

In the first subplot the command voltage as input into the rhisdgven. In the second subplot
the simulated and the desired trajectory are plotted. Tdjediory error is given in the third

subplot agy(t) — y4(t), and the pressure characteristics are plotted in the fatiplet.
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Table 5.2: Properties and values of the varied parameters

number driven supply threshold| threshold
of mass pressure temperature velocity force Figure
exp. m, [kg] ps ] T K] G 191 | Foe V]
1 0.5,1and 3 303975 298 0.0001 0.5 5.3
2 15| 1 1.5 303975 298 0.0001 0.5 5.3
3 1.5 1 1.5 303975 298 0.0001 0.5 54
4 15| 1 1.5 303975 298 - - 55
5 1.5 1 1.5 303975 298 - - 5.6
6 0.75| 0.5| 0.75 303975 298 0.0001 0.5 5.7
7 0.75| 05| 0.75 303975 298 0.0001 0.5 5.8
8 0.75 303975| 202488 | 303975 298 0.0001 0.5 5.9
9 0.75 303975| 506625| 303975 298 0.0001 0.5 5.10
10 0.75 303975| 506625| 303975 298 0.0001 0.5 511
11 0.75 303975 298| 318 | 298 | 0.0001 0.5 5.12
12 0.75| 0.5| 0.75 303975 298 0.0001 0.5 5.13
13 0.75| 0.5| 0.75 303975 298 0.02 0.5 5.14
14 0.75| 0.5| 0.75 303975 298 0.0001 0.15 5.15
15 0.75| 05| 0.75 303975 298 0.0001 1 5.16
- - mg= 1.5kg
) ‘Command voltage‘ ‘ ‘ m, = 1kg
Friction effects — - — m =05kg
Vs
= - ”"m e— / !
1 I I I I I k‘\/ — - m =15kg
0 0.2 0.4 0.6 0.8 1 1.2 m,=1kg
Length of the PMA — — —m_=0.5kg
0.07 \ \ ¢
E ~—— Friction eﬁects\ desired trajectory
% 0.06 - —— e = »
005 012 o‘.4 015 o‘.s i 1‘,2 1.4
Trajectory error
0.01
E S Friction eﬁectsh
8 or == === B -
oo 02 oa o8 o8 . 12 1.4
X 10° Pressure inside the PMA
N§3—~;_;7 I ‘Iirictioneffects‘\> ,,‘4,k,77 77777
gl0 \;‘;77~140‘477V¥7;57 777;; - i\ﬁiiiileiiiiih

Time [s]

Figure 5.2: Onset behavior of the length control with diferdriven loads and constant desired

trajectory

81



mass reduced mass raised

l Command voltage l

5 T T T T T T T T
Friction effects
= N\
B
o)
5 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Length of the PMA
0.08

T T T
Friction: effects

simulated
— — —desired -

=4

o

N
T

Length [m]
o
8
T
|

©
o
G

x107° Trajectory error
10 T T T T T T T T T

Friction effects

Error [m]
o (&)
T

I

5 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
x10° Pressure inside the PMA
o« 3 T T T T T T T T T
£
£ 251 9
<
o 15 i Frictjon effects ,‘/—y I | | | 1
o 1 2 3 4 5 6 7 8 9 10

Time [s]
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Figure 5.4: Length control with abruptly changed driven sydsarnopp friction model and

sinusoidal desired trajectory
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Figure 5.5: Length control with abruptly changed driven spggoportional friction law and

constant desired trajectory
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Figure 5.6: Length control with abruptly changed driven spggoportional friction law and

sinusoidal desired trajectory
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Figure 5.7: Angle control with abruptly changed driven masd constant desired trajectory
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Figure 5.9: Angle control with abruptly decreasing and naliming supply pressure and con-
stant desired trajectory
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Figure 5.10: Angle control with abruptly increasing andmalizing supply pressure and con-
stant desired trajectory
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Figure 5.11: Angle control with abruptly increasing andmalizing supply pressure and sinu-
soidal desired trajectory
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Figure 5.12: Angle control with abruptly changed tempea®and constant desired trajectory

86



mass reduced mass raised

\lf Command voltage \lf

T T T T T
Friction effects

-1 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Angle of the joint
15 T T T T T T T T T
T
< e
o 1 7
[=2)
2
<
05 I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Error [rad]

x 10 Pressure inside the PMA
3 T T T T T T T T T
E
Z2 B
<
g1 g
£ ~—— Friction effects——— >
[ I | I I I I I I I
0 1 2 3 4 5 6 7 8 9

Time [s]

Figure 5.13: Angle control with low threshold velocity

mass reduced mass raised

l Command voltage l
1

10

T
Friction effect

Z o
]
1 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Angle of the joint
15 T T T T T T T T T
T
S >
o 1= 7 N
[=2)
c
<
05 I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Error [rad]

Pressure [N/mz]

0 1 2 3 4 5 6
Time [s]

Figure 5.14: Angle control with high threshold velocity
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Figure 5.16: Angle control with high threshold force
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Chapter 6

Conclusions and outlook

In this thesis a closed loop control of an artificial jointwatied by Pneumatic Muscle Actuators

(PMA) was designed.

Starting from a detailed literature review a physical basextlel was developed and imple-
mented in MATLAB/ Simulink. In simulated experiments the model was validaed its be-
havior was investigated. Physically the PMA contracts sihg inner pressure. This relation

was also observed in the simulations. The PMA behaves vestable.

There were two different friction models applied and coneplaiThe friction model which dis-
tinguishes between the slipping and the sticking modus ®FRWA represents the occurring

friction more adequate than the simple proportional foictiaw.

The PMA was modeled and implemented in its basic form by dg\a load vertically. For
different applications the external force which affects BMA has to be exchanged. This was

done in the design of a mechanical joint. Also the model ofdirg was validated simulative.

A possible further research topic is the validation of theAlodel by performing experiments

with a real PMA.

Next a closed loop tracking control was applied. Therefdtataess based controller combined
with a pole placement tracking controller was designed. prieeequisites for applying this con-
trol method are fulfilled in relaxed and contracted statehef PMA. The performance of the

closed loop control system was validated byMAB / Simulink simulations. It was shown that
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the controller can compensate abruptly mass changes andaflions in the supply pressure

and in the temperature.

Also the controller performance was compared for the twigebht friction laws. It works very
good for the proportional friction law. The control signglsmooth and the tracking occurs fast
and exact. With the slip-stick model there occur some efféke a slightly chattering in the
control signal and some roughnesses in the control sigrthtrenstate characteristics. These

effects occur during sticking mode, but they are not vergrsjr

Two possible further research topic are the the control d¥li& ih extended state and the vali-

dation of the closed loop control system by performing expents with a real PMA.
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Appendix A

Mathematical derivations

A.1 Derivation of the volume of the PMA

PMA

Figure A.1: lllustration of the geometric variables of tHd/®

For the volume model equation the shell of the PMA is 'openéid’'s presented schematic in
Figure A.1. The shell consists mainly of a braid which formaylittle trapezoids. The angle
of the single braid fibers with respect to the longitudinakas called interweave angte. It

changes during the contraction and extension of the PMA ejpeddency of this interweave
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anglea(t) the lengthz(¢) and the circumferenc@(t) of the PMA are expressed. The diameter

D(t) of the PMA is proportional to the circumference.

z2(t) = 2-A-1-cosa(t) (A.1)
C(t) = 2-B-l-sina(t) (A.2)
D@::%C@ (A3)

A [-] - number of trapezoids in z-direction (longitudinal)

B [-] - number of trapezoids in y-direction (radial)

[ [m] - side length of the trapezoids

The constant parameters of these equations are assembseadifying and included into the
Equations A.1 - A.3.

h = 2-A-1 (A.4)
1
f = —--2-B-1 (A.5)
m
2(t) = h-cosa (A.6)
D(t) = f-sina (A.7)
h [m] - helical fiber length of the PMA
f [m] - diametric distance parameter of the PMA

The surface areé(t) of the PMA is derived as
S(t)=C(t)-z(t) =m-D(t) - 2(t) (A.8)

The volumeV/(¢) of the PMA is determined as
V@ZED%ym) (A.9)

Next the Equations A.6 and A.7 are included:

V@:gjlmhwynmm@ (A.10)

The interweave angle cannot be measured online, so it is replaced by a functioneoteingth
of the PMA. According to Equation A.6os o can be replaced directly. To replage® o Equa-

tion A.6 is squared and the trigonometric law
sina + cos® o = 1 (A.11)
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is applied:

22(t) = h*(1 — sin® @) (A.12)
which yields
o= _th(t) (A.13)
with
0 <sina <1 (A.14)
which means
0<a< g (A.15)

Now Equation A.10 can be rewritten as:

V(t) = % : <h2 - z2(t)) (1) (A.16)
respectively , ,
V(t) = % 2(t) — % - 22(1) (A.17)

The first derivative with respect to the length is
dv(t) nwf? B 3 f2

e R S TR -
respectively

av(t) wf* <h2 B 322@)) (A.19)

dz(t)  4h? |

A.2 Development of the state space form

A.2.1 Assembling and simplification of the modeled properties:

The mass flow through the valve is described by Equation 4dZEauation 4.3. The physical

parameters are summarized for simplification:

a1 = C-Ds (A.20)
2n -2

= s A.21

o2 RT(n — 1) p ( )
2n —nt2

— —_pg " A.22

a3 RT(y—1) p ( )

oy = 2 (A.23)

n
ay = nt2 (A.24)
U]
(A.25)
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The simplified equation for the mass flow is:

g (t) = an - U(t) - \/ag - p(t)*s — ag - p(t)es (A.26)

The inner pressure, derived from ideal gas equation (Egudtid) is with

1
= — A.27
Qg RT ( )
summarized to
myg(t) = agp(t)V (t) (A.28)
Also the polytrophic gas law is important:
pVX = constant (A.29)

The differential equation for the pressure (Equation &&)mplified with

ar = xRT (A.30)
(A.31)
to:
) ring (1) _ .p(t)V t)
whereas
Lo dv(t) dV(t) |
V(t) = R 2(t) (A.33)
The equation for the volume (Equation 4.8) is summarizel wit
ag = Z 2 (A.34)
72
to
V(t) = agz(t) — g2’ (t) (A.36)

The derivative of the volume with respect to the PMA lengtu&tion 4.13) is simplified with

3 f2
190 = Y (A37)
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to
dv (t)

2
= — t
d- ag — (2 ( )

The second main equation is the balance of forces:
mgE(t) = meg + Fogr — Frn(t) — Fo(t) — Fy(t)

The generated PMA forcg,,(t) is modeled as

dv (t)

Fo(t) = (p(t) — po) - 7

the elastic force",(¢) depends linear on the PMA length
Fe(t) =K- Z(t)
and the friction force depends linear on the velocity.

Fy(t) = C- (1)

A.2.2 Overall system

me(t) = aU(2) Vaop(t)*s — agp(t)es
agiing(t) — xp(t) (as — aw2?(t)) £(t)

o (
Bt = agz(t) — agz3(t)

Z(t) = ! [msg + Fuor — (p(t) — po) (s — ao2?(t)) — Kz(t) — C2(t)]

A.2.3 State space form

First, the input, output and state variables are determined

p(t)
z(t) = 2(t)

(1)
u(t) = U(t)
y(t) = 2(¢)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)
(A.44)

(A.45)

(A.46)

(A.47)
(A.48)



Substituting into the model of the overall system yields fibiowing set of equations. For
simplicity, the weight force of the loadyg, is integrated into the external foréé,,. Also, the
gas mass is no state, but the equation for the mass flow (Bguai9) is written separately for

a better readability of the equations.

g(t) = anu(t)y/agr () — gz (t)e (A.49)
. _anig(t) = xan(t) (g — aner3(t)) w3(t)

hll) = agra(t) — g3 (t) (A.50)
ba(t) = ) (A51)
ia(t) = mi [Frur + (21(8) — po) (as — anoz(t) — Kao(t) — Cas(t)]  (A52)

S
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Appendix B

Programs

In this chapter the Simulink models of the closed loop cdrare printed and their handling is
explained. At first the control of the driven load with profional friction is described, second
the control of the driven load with Karnopp friction modeladt, the implementation of the
control of the joint with Karnopp friction model is descrihdn every implementation the loop

can be opened so that the model can be simulated separately.

B.1 Initialization

In the init-file the parameters and initial conditions of #waulink model are set. It is called as
callback function from the ’init’-block in the model. Thiddiis used by all implementations;
for the control of the angle the external force has to be chdng

% init.m

% initializes the simulink model PMAystem.mdl: sets sample time,

% parameters and initial conditions for the ODEs

% is automatically called by the block 'Init’ in the highestystem level

% author: Sabine Haumann

clear all;
clc;

close all;

% Sample time
ts =0; %[s] sample time

R s T s T s T s T s T T 2 e I T T T T T A L )

% Model parameter %
OB/ B/ 8/ 8/ S/ /S5 S/ 8/ S S/ 8Y S/ 8/ S/ 88 S/ 8/ 8/ S S8/ 8 S/ 8 88/ 8/ S/ 868/ 8/ 8 6/ 8/ SRRy S/ 818/ S/ 8/ S/ 8/ 8/ 8/8/8/8/8/ 5o
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% Air properties
param.R = 287; %[ J/kgK] gas constant for air
param. eta =1.41; %[ —1] specific heat ratio of air

% Environment properties
param.T = 298; %[K] temperature

param.pO0 =101325; %[N/m~2] environment pressure

% Supply properties
param.nps = 5+%101325; %[N/m~2] supply pressure

% Valve properties

param.c = (le-7); %[m~2/V] valve constant of proportionality

% PMA properties

param. chi =1.26; %[ —] polytrophic exponent
param.h = 0.152; %[m] helical fiber length of the PMA
param. f = 0.0145; %[m] diametric distance parameter
a8 = pi/4 « param.fkparam.f;

%[m~2] summarized parameter
alo = 3/4x pixparam. fkparam.f/(param.kparam.h);

%[ —1] summarized parameter

% Load properties

param .M =1; %[ kg ] driven mass

param.g =9.81; %[m/s " 2] gravitation constant
param.C = 20; %[kg/s] friction coefficient
param .K = 40; %[kg/s"2] elastic coefficient

% Joint properties
param.L =0.1; %[m] length of one link

param.z0 = 0.079; %[m] relaxation length of the PMA

% Switching thresholds (whether system is slipping or stirtk)
param. FEthr = 0.5; %[N] threshold sticking friction force
param.zdotthr = 0.0001; %[m/s] threshold velocity

% Initial conditions

% x =[p z zdot]
z0 = 0.065; %[m] initial PMA length
alphaO = 2acos(l+(z0-param.z0)/param.L);
%[rad ] initial joint angle
F_ext0 = param .Mparam.g %[N] external force for a vertically
% driven load (=gravitational force)

% F_extO0 = param.Mparam.g«cos(alpha0)./sin(alpha0/2);
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%[N] external force for a joint

p0 = (F.ext0 — param.kz0) ./ (a8 — al0«z0.xz0) + param.pO;
%[N/m~2] initial inner pressure

xinit = [p0 z0 0];

OB/ S/ 8Y S/ 8/ S8/ S S/ 8/ S S/ 8 S/ 8/ S/ 8/ S S/ 8/ 8/ S S/ S S/ 8 S/ 8 8 S/ 8/ S/ 885/ 8/ 8 S/ 8/ SRRy S/ 81/ S/ Y S/ 8/ Y/ 8/ 8/8/8/ o

% Controller parameter %

B s e A T s A T T T T )

% desired poles of the closed loop control

P1 = -25;
P2 = -25;
P3 = -25;

% corresponding controller parameters

param.K2 =— P1 — P2 — P3;
param.K1 = P%P2 + PZP3 + P3P1,;
param.KO = — P1xP2«P3;

B.2 Simulink model of the closed loop PMA control system

B.2.1 Control of the driven load with proportional friction law

In Figure B.1 the main level is printed. With the hand switcbah be decided whether the ex-
periments are performed with the model of the PMA or with tlesed loop control. Not only
the output, but also its derivatives and the pressure aretedhe controller; this is numeri-
cally necessary, because Simulink executes the settiigegfdrameters in the initialization as
steps, and therefore the numerically derivatives at iiEaéon are infinite. So the calculated

derivatives are additionally transferred.

In Figure B.2 the init block is plotted. Here the init functios called as callback and the
parameters are abbreviated. Also here the parameters teag®rature and supply pressure
can be varied during the simulations by switching to the $teywtion blocks. It has to be
regarded that the initial value has to be identical to theevgiven in the init file. The parameters
are written into the memory store block 'modehrameters’. The Embedded Matlab function
IS:

% Embedded Matlab function: summarize

% summarizes the physical parameters
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Data Store

Memory
’g‘ model_parameters

Init

z(t) [m]
upv] ———p—=
_»_o/o—’ um v z_vec(t) {
Input generation anual Switch1 p(t) [N/m*2] 11—
PMA_Model
=j
Scopet
y_vec(t) -
u(t) x1(t) f—
yd(t)
PMA_Controller

y_d(t) [m]

Desired trajectory

Figure B.1: Main level of the control of a driven load with posponal friction law

function [al,a2,a3,a4,a5,a6,a7,a8,a9,al0] = summarize(p,c,R,eta,chi,h,f ,M,g,C,K)
al=cxp.s;

a2=2eta/(RTx(eta—1)) *« p_.s™(—2/eta);
a3=2eta/(RTx(eta—1)) x p.s”(—(eta+2)/eta);
ad=2/eta;

ab=(eta+2)/eta;

a6=1/(RT);

a7=chixRxT;

a8=pi/4 x fxf,

a9=pi/4 x f«f/(hxh);

al0=3/4« pixfxf/(hxh);

The input generation (Figure B.3) is only necessary for theehexperiments, here the valve
can be closed and opened. This can occur constant or as séspropulse. The input data is

saved in the Matlab workspace.
In the subsystem ’'Desiretlajectory’ (Figure B.4) the desired trajectory can be choke-

tween a constant and a sinusoidal trajectory. The desiagettory data is saved in the Matlab

workspace.
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Figure B.2: Init block of the control of a driven load with praional friction law

In the subsystem 'PMAnodel’ (Figure B.5) the PMA is modeled with the valve and theim
sic PMA.

In the subsystem 'PMA’ (Figure B.6) the intrinsic PMA is moeél The main parts are the

calculation of the inner pressure and the length of the PMA.

In the subsystem ’Internal pressure of the PMA' (Figure Bh#) internal pressure of the PMA
is calculated by integrating the model equation. The pressdata is saved in the Matlab

workspace. The model equation is implemented as:

% Embedded Matlab function: pressure

% calculates the derivative of the pressure

function pdot = pressure(mdag,p,V,dVdz,z,zdot, chi,a7)
pdot = 1/V x (a7«mdotg — chixpxdVdzxzdot);

One necessary variable is the volume of the PMA which is ¢afed in the subsystem 'PMA

volume’ (Figure B.8) and in the function:

% Embedded Matlab function
% calculates the PMA volume

% and the derivative with respect to the length
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Figure B.4: Desired trajectory for the control of a drivendagith proportional friction law

function [V,dVdz]= volume(z,a8,a9,al0)
V = a8xz — a%zxzxz;
dvVdz = a8 — alOxzxz;

In the subsystem 'PMA length’ (Figure B.9) the length of the M calculated. Mainly the
affecting forces are calculated in two subsystems, addddnaegrated two times. The length

data is saved in the Matlab workspace.

In the subsystem 'PMA force’ (Figure B.10) the longitudindR force is calculated. The
Embedded Matlab function is:

% Embedded Matlab function: PMAorce

% calculates the longitudinal PMA force

function F.m= PMA_force(p,z,p0,a8,al0)

dvdz = (a8 — alOxzxz);

Fm = (p — p-0) x dvdz;

In the subsystem 'Other forces’ (Figure B.11) the other aiffigcforces (elastic force, propor-

tional friction force and gravitational force) are caldeia.

In the subsystem 'valve’ (Figure B.12) the valve is modelelde Embedded function is:
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Figure B.5: PMA model for the control of a driven load with posfonal friction law

% Embedded Matlab function: valve
% models the valve

function mdotg = valve(p,U,al,a2,a3,a4,ab)
abb = aZp~“a4 — a3«p~a5;
if abb< 0

mdotg = — al = U % sqrt(—abb);
else

mdotg = al = U x sqrt(abb);
end
Next the controller implementation is presented. In thesgatem 'PMAController’ (Fig-
ure B.13) the controller with trajectory computation, trieagkcontrol and the inverse system is

given.

In the subsystem "Trajectory computation’ (Figure B.14) degivatives of the desired trajec-
tory are computed. Because of the numerical problems theadiens are calculated manually.
For the constant desired trajectory the constants zeroaritid sinusoidal desired trajectory

the sinus generators have to be chosen as derivatives.

In the subsystem 'Tracking control’ (Figure B.15) the ling@acking control takes place. The
Embedded function is:

% Embedded Matlab function: tracking

% linear tracking control

function ny = tracking (e, edot,e2dot,yd3dot,K2,K1,KO0)
ny = yd_3dot + K2«e_2dot + Klxe_dot + KO«e;

In the subsystem ’Inverse system’ (Figure B.16) the intdregintrol signal is computed. The

Embedded function is
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Figure B.6: Intrinsic PMA model in the control of a driven loatth proportional friction law

% Embedded Matlab function: insys
% Inverse system , generates input u(t) which cancels the Ihoearities of the system

function u = inv_sys(y,y.dot,y 2dot,x1,ny,al,a2,a3,a4,a5,a6,a7,a8,a9,al0,g,m0,K,C,chi)

% Abbrevations

\% = a8xy — a9%xyxyxy;

psi-1 = alxsqrt(a2«x1”a4 — a3«x1"a5);

psi_2 = a7/\Vkpsi_1l;

psi-3 = chi/Vxx1lx(a8-alOxyxy)xy_dot;

psi-4 = 2/ms*xal0«(x1—p-0)*xyxy_dot — K/m_sxy_dot — C/m_sxy_2dot;
psi_5 = —1/m_sx(a8-alOxyx*y)x psi_2;

psi_6 = 1/msx(a8-allxyxy)* psi_.3 + psi_4;

% Generation of the input

u=(ny—psi-6)/psi.5;

112



1
mdot_g(t) [kg/s]

h 4

mdot_g

> p
2
V(t) [N/mA3]
V(t) [m"3] 2
z(t) [m]
dVdz(t) [m"2]
PMA volume P
dVdz
pressure pdot
C2) SE
z(t) [m]
a2 P zdot
zdot(t) [m/s]
param.chi chi
polytrophic coefficient chi [-]
model_parameters U U(E) a7
Data Store Embedded
Read S MATLAB Function

1

S

Integrator2

Ly
1

]
p(t) [N'm"2]

pressure

0 Workspace4

Figure B.7: Internal pressure in the control of a driven loatth\wroportional friction law

z
z(f) [m! a8 volume v
!
model_parameters +—{U U(E) V() [m"3]
al0 dvaz
Data Store Selector T dvdz(r) 2]

MATLAB Function

Figure B.8: Volume in the control of a driven load with proponial friction law
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Figure B.12: Valve in the control of a driven load with propontal friction law
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Figure B.15: Tracking control for a driven load with proportal friction law
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B.2.2 Control of the driven load with Karnopp friction law

In this subsection the implementation of the control of theah load with the Karnopp friction
model is presented. Most of the features are identical tontipdementation with the simple

proportional friction law. In Figure B.17 the main level ismied.
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model_parameters
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u(t) (V1 z_vec t—
Input generation anual Switch1 Rtk m'e)
PMA_Model
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S 1
. vec() {a¢— cope
utty X1(t)
yd(t)
PMA_Controller
y_d(t) [m]

Desired trajectory

Figure B.17: Main level of the control of a driven load with Kapp friction model

In Figure B.18 the init block is plotted. With the hand swit¢tcan be decided whether the
experiments are performed with the model of the PMA or with ¢tosed loop control. The
Embedded Matlab function is:

% Embedded Matlab function: summarize

% summarizes the physical parameters
function [al,a2,a3,a4,a5,a6,a7,a8,a9,al0] = summarize(p,c,R,eta,chi, h,f ,M,g,C,K)
al=ctp_s;

a2=2ceta/(RTx(eta—1)) x p_s™(—2/eta);
a3=2ceta/(RTx(eta—1)) x p_s"(—(eta+2)/eta);
ad=2/eta;

a5=(eta+2)/eta;

a6=1/(RT);

a7=chixRxT;

a8=pi/4 x fxf;

a9=pi/4 x fxf/(hxh);

al0=3/4x pixfxf/(hxh);
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Figure B.18: Init block of the control of a driven load with Kexpp friction model

The input generation (Figure B.19) is only necessary for thdehexperiments. Here the valve
can be closed and opened. This can occur constant or as séspropulse. The input data is

saved in the Matlab workspace.

In the subsystem 'Desiretlajectory’ (Figure B.20) the desired trajectory can be elmoke-

tween a constant and a sinusoidal trajectory. The desiagettory data is saved in the Matlab

workspace.

In the subsystem 'PMAnodel’ (Figure B.21) the PMA is modeled with the valve and the i

trinsic PMA.

In the subsystem 'PMA’ (Figure B.22) the intrinsic PMA is m¢etk The main parts are the

calculation of the inner pressure and the length of the PMA.
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Figure B.20: Desired trajectory for the control of a driveadowvith Karnopp friction model

In the subsystem ’Internal pressure of the PMA' (Figure B.2®) internal pressure of the
PMA is calculated by integrating the model equation. Thesguee data is saved in the Matlab

workspace. The model equation is implemented as:

% Embedded Matlab function: pressure

% calculates the derivative of the inner pressure
function pdot = pressure(mdag,p,V,dVdz,z, zdot, chi,a7)
pdot = 1/V % (a7+mdotg — chixpxdVdzxzdot);

One necessary variable is the volume of the PMA which is ¢afled in the subsystem 'PMA

volume’ (Figure B.24) and in the function:

% Embedded Matlab function

% calculates the PMA volume

% and the derivative with respect to the length
function [V,dVdz]= volume(z,a8,a9,al0)

V = a8z — a%zxzxz;

dvVdz = a8 — alO«zxz;

In the subsystem 'PMA length’ (Figure B.25) the length of thdARis calculated. Mainly the
affecting forces are calculated in two subsystems, addddraegrated two times. The second
derivative is multiplied by a state value which represehts sticking and the slipping mode

of the PMA. For slipping this value is one, so the integratgiaccur as with the proportional
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Figure B.21: PMA model for the control of a driven load with Kapp friction model

friction. During sticking the state is zero, so the derwatis zero and the PMA length remains

constant. The length data is saved in the Matlab workspace.

In the subsystem 'PMA force’ (Figure B.26) the longitudindR force is calculated. The
Embedded Matlab function is:

% Embedded Matlab function: PMAorce

% calculates the longitudinal PMA force
function F-m = PMA_force(p,z,p0,a8,a10)
dvdz = (a8 — alOxzxz);

Fm = (p— p-0) x dvdz;

In the subsystem 'Other forces’ (Figure B.27) the other aiffigcforces are calculated. The
elastic force, the gravitational force and the slippingtfan force are calculated like before.

The status is calculated in the Embedded function:

% Embedded matlab function
% detects whether the PMA is in slipping or in sticking mode

function status = stickslip (zdot, zdathr ,F.s, F_thr)

if (abs(zdot) < zdot.-thr) && (abs(F_s) < F_thr) %sticking
status = 0;

else
status = 1; %slipping

end

The sticking friction force is calculated in the Embeddexidtion:

% Embedded Matlab function: stick
% Calculates the sticking friction force
function F_s = stick(status ,Fn,F.e,F.g)
if status ==1

F.s =0;

else
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Figure B.22: Intrinsic PMA model in the control of a driven tbaith Karnopp friction model

F.s = Fg — F.e — F.m;
end
In the subsystem 'valve’ (Figure B.28) the valve is modelede Embedded function is:

% Embedded Matlab function: valve
% models the valve
function mdotg = valve(p,U,al,a2,a3,a4,ab)
abb = aZp~a4 — a3xp~a5;
if abb< 0
mdotg = — al = U % sqrt(—abb);
else
mdotg = al = U % sqrt(abb);
end

Next the controller implementation is presented. In thesgatem 'PMAController’ (Fig-
ure B.29) the controller with trajectory computation, trieagkcontrol and the inverse system is

given. Itis identical to the controller of the system witte tbroportional friction law.
In the subsystem "Trajectory computation’ (Figure B.30) dlegivatives of the desired trajec-

tory are computed. For the constant desired trajectorydhstants zero and for the sinusoidal

desired trajectory the sinus generators have to be chostariaatives.
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Figure B.23: Internal pressure in the control of a driven lagtth Karnopp friction model
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Figure B.24: Volume in the control of a driven load with Karpdpiction model

In the subsystem 'Tracking control’ (Figure B.31) the lin&acking control takes place. The
Embedded function is:

% Embedded Matlab function: tracking

% linear tracking control

function ny = tracking (e, edot,e2dot,yd3dot,K2,K1,KO0)
ny = yd_3dot + K2«e_2dot + Klxe_dot + KOxe;

In the subsystem ’Inverse system’ (Figure B.32) the intdregintrol signal is computed. The

Embedded function is

% Embedded Matlab function: insys
% Inverse system, generates input u(t) which cancels the Iho@arities of the system

function u = inv_sys(y,y.dot,y 2dot,x1l,ny,al,a2,a3,a4,a5,a6,a7,a8,a9,al0,g,m0,K,C,chi)

% Abbrevations

\ = a8xy — a%xyxyxy;

psi-1 = alxsqgrt (a2«xx1"a4 — a3«xx1"ab);

psi_2 = a7/\kpsi_l;

psi-3 = chi/Vxx1lx(a8-allxyxy)xy_dot;

psi_-4 = 2/ms*xal0«(x1-p_-0)xyxy_dot — K/m_sxy_dot — C/m_sxy_2dot;
psi-5 = —1/m_sx(a8-alOxyx*y)* psi_2;

psi_6 = 1/msx*(a8-allxyxy)* psi_-3 + psi_4;
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Figure B.25: PMA length in the control of a driven load with IKapp friction model
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Figure B.26: PMA force in the control of a driven load with Kapp friction model

% Generation of the input

u=(ny—psi_-6)/psi.5;
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Figure B.27: Other forces in the control of a driven load witiriopp friction model
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Figure B.28: Valve in the control of a driven load with Karndpigtion model
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Figure B.31: Tracking control for a driven load with Karnopjefion model
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Figure B.32: Inverse system for the control of a driven loathwdarnopp friction model
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B.2.3 Control of the driven joint with Karnopp friction law

In this subsection the implementation of the control of theesh joint with the Karnopp friction
model is presented. Most of the features are identical tonipéementations of the driven load.
In Figure B.33 the main level is printed. The intrinsic catidns take place with the PMA
length.
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Figure B.33: Main level of the control of a driven joint with Kepp friction model

With the subsystem ’length2ang’ (Figure B.34) the lengthasverted to the joint angle. The
angle and the length data are saved in the Matlab workspaesEmbedded function is

% Embedded Matlab function: length2ang

% converts the PMA length to the joint angle

function alpha = length2ang(z,L,z0)

alpha = 2cacos(1+(z—z0)/L);

In Figure B.35 the init block is plotted. With the hand swit¢lcan be decided whether the
experiments are performed with the model of the PMA or with ¢tlosed loop control. The
Embedded Matlab function is:

% Embedded Matlab function: summarize
% summarizes the physical parameters
function [al,a2,a3,a4,a5,a6,a7,a8,a9,al0] = summarize(p,c,R,eta,chi,h,f ,M,g,C,K)
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Figure B.34: Conversion length to angle in the control of aaijoint with Karnopp friction
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Figure B.35: Init block of the control of a driven joint with IK@opp friction model
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The input generation (Figure B.36) is only necessary for thdehexperiments. Here the valve
can be closed and opened. This can occur constant or as séspropulse. The input data is

saved in the Matlab workspace.
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Figure B.36: Input generation for the control of a driven fairth Karnopp friction model

In the subsystem 'Desiretlajectory’ (Figure B.37) the desired trajectory can be elmoke-
tween a constant and a sinusoidal trajectory. The desiagettory data is saved in the Matlab

workspace.
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Figure B.37: Desired trajectory for the control of a drivemjavith Karnopp friction model

In the subsystem 'PMAnodel’ (Figure B.38) the PMA is modeled with the valve and the i
trinsic PMA.

In the subsystem 'PMA’ (Figure B.39) the intrinsic PMA is mtéetk The main parts are the

calculation of the inner pressure and the length of the PMA.
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Figure B.38: PMA model for the control of a driven joint with Kepp friction model

In the subsystem ’Internal pressure of the PMA' (Figure B.4® internal pressure of the
PMA is calculated by integrating the model equation. Thesguee data is saved in the Matlab

workspace. The model equation is implemented as:

% Embedded Matlab function: pressure

% calculates the first derivative of the inner pressure
function pdot = pressure(mdog,p,V,dVdz,z, zdot,chi,a7)
pdot = 1/V % (a7+mdotg — chixpxdVdzxzdot);

One necessary variable is the volume of the PMA which is ¢afled in the subsystem 'PMA

volume’ (Figure B.41) and in the function:

% Embedded Matlab function

% calculates the PMA volume

% and the derivative with respect to the length
function [V,dVdz]= volume(z,a8,a9,al0)

V = a8z — a9%zxzxz,

dvVdz = a8 — alO«zxz;

In the subsystem 'PMA length’ (Figure B.42) the length of tM/ARis calculated. Mainly the

affecting forces are calculated in two subsystems, addddraegrated two times. The second
derivative is multiplied by a state value which represehts sticking and the slipping mode
of the PMA. For slipping this value is one, so the integragiaccur as with the proportional
friction. During sticking the state is zero, so the deriwaiis zero and the PMA length remains

constant.

In the subsystem 'PMA force’ (Figure B.43) the longitudindR force is calculated. The
Embedded Matlab function is:

% Embedded Matlab function: PMAorce
% calculates the longitudinal PMA force

function F.m = PMA_force(p,z,p0,a8,al0)
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Figure B.39: Intrinsic PMA model in the control of a drivengoiwith Karnopp friction model

dvVdz = (a8 — alO«zxz);
Fm = (p — p.0) x dvdz;

In the subsystem 'Other forces’ (Figure B.44) the other diffigcforces are calculated. The
elastic force and the slipping friction force are calculdike before. The status is calculated in

the Embedded function:

% Embedded matlab function

% detects whether the PMA is in slipping or in sticking mode

function status = stickslip(zdot,zdathr ,F.s, F_thr)

if (abs(zdot) < zdot-thr) && (abs(F_s) < F_thr) %sticking
status = O0;

else
status = 1,; %slipping

end

The sticking friction force is calculated in the Embeddexidtion:

% Embedded Matlab function: stick
% Calculates the sticking friction force
function F_s = stick(status ,Fn,F_e, F_ext)
if status == 1%sticking mode

F.s =0;
else

F_.s = F.ext — F.e — F.m;

end
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Figure B.40: Internal pressure in the control of a driventjaith Karnopp friction model
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Figure B.41: Volume in the control of a driven joint with Kappfriction model

The gravitational force is exchanged by the external foftes force is calculated by

% Embedded Matlab function: ext

% Calculates the external force
function F_ext = ext(alpha,Eg)
F_ext = F.g«cos(alpha)/sin(alpha/2);

Therefore, the length has to be converted to the angle:

% Embedded Matlab function: length2ang

% converts the PMA length to the joint angle
function alpha = length2ang(z,L,z0)

alpha = 2cacos(1l+(z—z0)/L);

In the subsystem 'valve’ (Figure B.45) the valve is modelelde Embedded function is:

% Embedded Matlab function: valve
% models the valve
function mdotg = valve(p,U,al,a2,a3,a4,ab)
abb = aZp~“a4 — a3«p~ab5;
if abb< 0
mdotg = — al = U x sqrt(—abb);
else
mdotg = al = U % sqrt(abb);

end
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Figure B.42: PMA length in the control of a driven joint with Kepp friction model
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Figure B.43: PMA force in the control of a driven joint with Keapp friction model

Next the controller implementation is presented. In thesgatem 'PMAController’ (Fig-
ure B.46) the controller with trajectory computation, triaagkcontrol and the inverse system is

given.

In the subsystem "Trajectory computation’ (Figure B.47) desired trajectory and its deriva-
tives are computed. For the constant desired trajectorgdhstants zero and for the sinusoidal

desired trajectory the sinus generators have to be chos#sriaatives.

The desired trajectory is given as angle, so it has to be ctaa/to the length with the subsystem
'angle2length’ (Figure B.48) and the Embedded function

% Embedded Matlab function: ang2length
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Figure B.44: Other forces in the control of a driven joint withrnopp friction model

% converts the joint angle to the PMA length
function z = ang2length(alpha,L,z0)
z = Lx(cos(alpha/2)-1) + z0;

In the subsystem 'Tracking control’ (Figure B.49) the ling@cking control takes place with
the PMA length. The Embedded function is:

% Embedded Matlab function: tracking

% linear tracking control

function ny = tracking (e, edot,e2dot,yd3dot,K2,K1,KO0)
ny = (yd_3dot + K2xe_2dot + Klxe_dot + KOxe);

In the subsystem ’Inverse system’ (Figure B.50) the intdregintrol signal is computed. The
Embedded function is

% Embedded Matlab function: insys

% Inverse system , generates input u(t) which cancels the Ihomarities of the system

function u= inv_sys(y,y.dot,y.2dot,x1,ny,al,a2,a3,a4,a5,a6,a7,a8,a9,al0,g,m0 ,K,C,chi,L,z0)

% External force

psi-0 = 1+(y-z0)/L;

alpha = Zacos(psi_0);

alphadot = —2xy_dot/(Lxsqrt(1—psi_Oxpsi_0));
F_ext = msxgxcos(alpha)/sin(alpha/2);

F_ext.dot = msxgx(—alphadotxsin(alpha}sin(alpha/2)-0.5xalphadotxcos(alpha/2}cos(alpha))/(sin(alpha/2}sin(al

% Abbrevations

\ = a8xy — a9%xyxyxy,;
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Figure B.45: Valve in the control of a driven joint with Karrmofriction model
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Figure B.46: Controller of a driven joint with Karnopp frictionodel

psi-1 = alxsqgrt (a2«xx1"a4 — a3«xx1"ab);
psi_2 = a7/\kpsi_1;
psi-3 = chi/Vxx1lx(a8-allxyxy)xy_dot;
psi_4 = 2/ms*al0«(x1-p_0)*xyxy_dot — K/m_sxy_dot — C/m_sxy_2dot + F.ext.dot/m.s;
psi_5 = —1/m_sx(a8—alO«yxy)x psi_-2;
psi-6 = 1/msx*(a8—allxyxy)* psi_-3 + psi.4;

% Generation of the input

u=(ny—psi_-6)/psi.5;
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Figure B.50: Inverse system for the control of a driven joiithviKkarnopp friction model
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