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1 Introduction

Anesthesia is a complicated medical process involving several drugs for different purposes. One important

aspect of it is the relaxation of muscles before and during surgery. This is usually done by an anesthesiol-

ogist who administers the drug Rocuronium to the patient. Initially, a large bolus is given to saturate the

patient causing the muscles to relax quickly. Because different people vary in their reaction to Rocuronium,

the return of muscle function is used to identify the injection time for the second bolus. When muscle action

is observed, another large dose of the drug is given to the patient, usually causing saturation again (A.D.

McLeod [4]). The large amounts of drug involved in this process show that an overdose of Rocuronium is

not poisonous to the patient. The problems of this method arise mainly from the long saturation times. One

example is the inability to recover the patient from paralysis if needed during surgery. Another issue is the

possibly long recovery time after the surgery. Additionally muscle movement becomes very likely during the

surgery if this drug procedure is used. This can be very unpleasant for both the patient and the medical staff.

It is believed that closed-loop control can improve this procedure. The use of computer control could de-

crease the usage of drugs that would lower the cost of surgery and reduce the impact of the drugs to the

patient. Additionally, closed-loop control can help maintain an even relaxation level during the surgery, de-

creasing the time periods in which the patient is saturated (T. J. Gilhuly [3]). Therefore, the goal of this

work is to achieve a closed-loop control which provides fast relaxation of the muscles initially and holds a

constant level of paralysis throughout surgery. The objective is to minimize the time of drug saturation.

The first step to a closed-loop control is the identification of the system model. The main problem of model-

ing muscle relaxation is the large variability between different patients and “it is unlikely that this variability

can be reduced below a minimum level, [...]” (Gepts [5]) even by using parameters which model specific

patient differences. The control of the muscle relaxation during surgery introduces additional problems. Un-

expected events in the operating room, such as immense blood loss or respiration problems can influence

the dynamics of the system and can lead to time variant parameters or unexpected disturbances. To ad-

dress all these issues, a hybrid system approach in connection with a switched controller will be used in this

work. Therefore, the patient is modeled as a hybrid system with m different modes and arbitrary switches

between them. The different modes of this system are linear Laguerre models which represent the muscle

relaxation dynamics of different patients (see Fig. 1.1). These models were identified in [3] by using real

surgery data. During the closed-loop control, the model that best matches the patient is identified in every

time step. This model selection is done by a hybrid observer which calculates the discrete state estimate µ̂,

with µ̂ being the best matching model. This estimator is additionally able to calculate the state estimate x̂k

of every model k by using m different Kalman filters. Both information are used by the switched controller to
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Chapter 1. Introduction

Fig. 1.1: Closed loop (schematic)

calculate the input u(n). This part of the closed loop consists of m separate controllers Ck, each tuned for

one model. Based on the discrete state estimate µ̂ the controller tuned for model µ̂ is selected and calcu-

lates the input u(n) by using the continuous state estimate x̂µ̂, the output y and the setpoint yr (see Fig. 1.1).

This algorithm uses a large number of different patient models to handle patient variability. The ability to

adapt to unexpected disturbances as well as parameter changes is achieved by allowing switches between

the different models during the entire duration of the surgery. Conclusions about the applicability of the

proposed algorithm to muscle relaxation in anesthesia will be drawn based on simulation results. First,

patient models will be introduced in chapter 2. Afterwards different hybrid observers are introduced in

chapter 3 and their performance is compared during simulations. These results are then used with the

controller introduced in chapter 4, to simulate the closed-loop performance of the system in chapter 5.

Finally, conclusions and suggestions about useful further investigations are presented.
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2 Patient Models

It is assumed that the patient can be modeled as a hybrid system with modes that are represented by

different linear Laguerre models (see Fig. 2.1). These models were identified in [3] using real surgery data

and represent the muscle relaxation dynamics of different monitored patients.

Fig. 2.1: Patient model as a hybrid system (schematic)

Arbitrary switches between the different models are allowed to account for parameter changes or distur-

bances during surgery. This leads to the following system representation

xk(n + 1) = Akxk(n) + Bku(n) k ∈ N, k = 1 . . .m (2.1)

yk(n) = Ckxk(n)

with m = 59 being the total number of models used and k being the discrete parameter of the system. As

can be seen in (2.1), every mode k has its own system matrices Ak, Bk and Ck and can be interpreted as a

discrete-time, time-invariant linear plant. The measured output is assumed to be produced by a true model

µ that represents the current patient dynamics.

y(n) = yµ(n) (2.2)

It will be shown in this section how the system matrices of the different models are identified and how the

output y is measured. The characteristics of the patient models are discussed with the help of their step

responses.
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Chapter 2. Patient Models

2.1 Laguerre Polynomials

Laguerre models are black box models which do not include any information about the pharmacological

dynamics involved in muscle relaxation. Only input and output data collected during surgery were used in

[3] to identify the system dynamics. The basic idea of this identification technique is to rebuild the shape of

the impulse response S(t) by using a weighted finite sum of orthonormal Laguerre polynomials li (similar

to a Fourier representation).

S(t) =
N∑

i=1

cili (2.3)

To express these dynamics in form of a linear model (2.4) the Laguerre polynomials li are used as states

xi of the system. Since N = 6 polynomials are used in [3], the model has 6 states.

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) (2.4)

This implies that the weights ci are combined in the C matrix. Furthermore, the A and B matrices are used

to calculate the Laguerre polynomials xi recursively. The matrices A and B are built by using the Laguerre

pole p of the system which is identified along with the weights ci by using the input and output data of the

system.

Aij =







p if i = j

(1 − p2)(−p)i−j−i if i > j

0 otherwise

(2.5)

Bi =
√

i − p2(−p)i−1

Ci =
[

c1 c2 . . . cm

]

One advantage of this method is that it leads to a convenient linear system representation (2.4) even if the

real plant includes nonlinearities. Furthermore, filters similar to a Padé approximation are used to calculate

the Laguerre polynomials. This is useful for identifying time delays without using them explicitly in the

model representation. For more information concerning the use and calculation of Laguerre models please

refer to [6] or other related work.
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Chapter 2. Patient Models

2.2 Input and Output

Based on the input and output data used in [3] to identify the models, the infusion rate of Rocuronium to the

patient and the level of muscle relaxation are used as system input u and output y respectively. A normal

dose of Rocuronium is 0.6 mg/kg according to the manufacturers recommendation (T.Gilhuly [3]) and

therefore the upper bound of the input is set to umax = 0.8 mg/kg. Since the drug can only be injected to

and not taken out of the patient, the infusion rate has to be positive. Therefore the lower bound is umin = 0.

The value of y is obtained by measuring the response of muscles in the human forearm to stimuli. This

measured degree of relaxation is normalized to a value between zero and one. With this scale a relaxation

of zero means full muscle function, whereas a relaxation of one means full paralysis of the patient. The

desired value of muscle relaxation throughout the surgery is y = 0.9 and will be used as a setpoint for

the controller. One problem of the output measurement is the muscle recovering time of 20 seconds after

each stimuli. This means that an output measurement is only available every 20 seconds. In addition high

measurement noise is also problematic. Measurement data published in [3] shows a standard deviation of

y to be approximately σ = 0.3. This value will be used as a parameter for the Kalman Filters.

2.3 Open Loop Behavior
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Fig. 2.2: Left: Step response for different models, Right: Zoomed view of step responses showing the start up time Tu

Open loop step responses of some representative identified models are shown in Fig. 2.2. The

models represent a slow system with a large gain K. Differences between the models can be seen in
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Chapter 2. Patient Models

their slope S, rise time TR, static gain K∞ and start up time TU (time needed to reach 0.5% of the final gain).

By comparing the static gain K∞ (K∞ ≈ 80 . . .800) to the setpoint yr = 0.9 one can see that only small

amounts of drug will be needed to relax the muscles. The rise time TR of the system indicates the slow

dynamics of the identified models. This implies that the controller has to make the closed loop much faster

than the open loop in order to achieve the control objective.
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3 Hybrid Observer

The hybrid observer is the part of the closed-loop system that identifies the model which matches the patient

best in each time step. It is assumed that the dynamics of the real system are represented by a true model

µ(n) which produces the measured output at time step n (see Equ. (2.2)). Therefore the model identification

is equivalent to the calculation of a discrete state estimate µ̂(n). The hybrid observer must additionally be

able to calculate a continuous state estimate x̂k(n) for every model k. Both information will be used by the

switched controller to calculate the optimal input u(n) to the patient.

Fig. 3.1: Hybrid observer (schematic)

Since little research has been done in the field of hybrid observation, different techniques will be compared

in this section to find the observer most suitable for the proposed problem. All algorithms compared in this

section are based on the “Multiple Model Adaptive Estimation” (MMAE) algorithm and will be introduced

in section 3.1 - 3.2. The MMAE algorithm uses m different Kalman filters to calculate a likelihood Λk for
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Chapter 3. Hybrid Observer

each model to match the patient based on its system dynamics. Additional information about the switching

process is used to calculate a likelihood Vk of the model to match the patient based on the overall discrete

dynamics. Both values are combined in the likelihood Wk to calculate how well the different models match

the controlled patient. Based on that information the best matching model µ̂(n) is selected (see Fig. 3.1).

3.1 Kalman Filter

The hybrid observer uses m Kalman filter to observe the system dynamics of the different modes. The

following section gives a brief review of Kalman filters. To simplify the equations, only one patient model is

used in this section (m = 1, k = 1).

As shown in chapter 2, the patient model can be understood as a discrete-time, time-invariant linear plant

that is driven by white process noise. Furthermore, it is assumed that the measurement is corrupted by

white noise and the input is known and deterministic.

x(n + 1) = Ax(n) + Bu(n) + Γw(n) E{w(n)wT (n)} = Q(n)

y(n) = Cx(n) + v(n) E{v(n)vT (n)} = R(n) (3.1)

In (3.1) w and v are the process and measurement noises respectively and Q and R are the corre-

sponding covariances. Both disturbances are zero-mean white Gaussian sequences which are mutually

independent. The process noise Q is assumed to be zero because all calculations are based on simula-

tions. For the measurement noise R the standard deviation σ = 0.3 of the output y is used (see section 2.2).

In every time step the Kalman filter calculates a first estimate ˆ̃x(n) of the current state and the covariance

P̃ (n) of the prediction error ẽ(n) based on the patient model shown in (3.1). This is done with the recursive

formulas (3.2) which use the updated state estimate x̂(n − 1) and the updated covariance P (n − 1) of the

previous time step.

ˆ̃x(n) = Ax̂(n − 1) + Bu(n − 1)

P̃ (n) = E{ẽ(n)ẽT (n)} = AP (n − 1)AT + ΓQ(n − 1)ΓT ẽ(n) = x(n) − ˆ̃x(n) (3.2)

Based on the first state estimate ˆ̃x(n) the output residual r(n) and its associated covariance S(n) are

calculated.

r(n) = y(n) − ŷ(n) = y(n) − C ˆ̃x(n) (3.3)

S(n) = E{r(n)rT (n)} = CP̃ (n)CT + R(n)

10



Chapter 3. Hybrid Observer

Using the measurement y(n), the state estimate and the covariance are updated.

x̂(n) = ˆ̃x(n) + K(n)r(n)

P (n) = (I − K(n)C)P̃ (n) (3.4)

The Kalman Gain K(n) involved in this process is designed to make the state estimate optimal.

K(n) = P̃ (n)CT
(

CP̃ (n)CT + R(n)
)
−1

(3.5)

The MMAE algorithm introduced in the following section will use the residual r(n) and its associated

covariance S(n) of every model.

3.2 Multiple Model Adaptive Estimation (MMAE)

The basic idea of the MMAE algorithm is to combine information about the m different linear systems and

the discrete process to calculate the best matching model µ̂(n) in every time step. As mentioned in the

previous section, the residuals rk(n) and their associated covariances Sk(n) are provided by the Kalman

filters. Those values are used to calculate the probability Λk(n) of model k to match the patient based

on its system dynamics. The basic idea behind this is the inverse relation of the residual rk(n) to the

best matching model. If the measurement noise would only be white (what is assumed but not possible in

reality) the true model would generate a residual rk(n) = 0. Therefore the probability Λk(n) is calculated as

a normal Gaussian distribution with mean value ξ = 0 and covariance σ2 = Sk(n).

Λk(n) = N(rk(n); 0; Sk(n)) =
1

√

2πSk(n)
e
−

r2
k
(n)

2Sk(n)

This probability Λk(n) is maximal if rk(n) = 0 indicating a perfect match between the patient and the model.

Additionally the MMAE calculates the probability Vk(n) for every model to match the patient based on

information about the switching scheme. Since all observation algorithms compared in this section vary in

the calculation of this second probability, the different methods to estimate Vk are presented in section 3.2.1.

The final probability Wk(n) of model k to match the patient is calculated by multiplying both probabilities

and normalizing them.

Wk(n) =
Λk(n)Vk(n)

∑m
j=1 Λj(n)Vj(n)

(3.6)

After the likelihood Wk(n) is calculated for every model, the discrete state estimate µ̂(n) is calculated by

identifying the model with the highest probability.

µ̂(n) = arg max
k

Wk(n)

The schematic representation of this algorithm can be seen in Fig. 3.1.
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Chapter 3. Hybrid Observer

3.2.1 Calculation of Vk(n)

The hybrid observers compared in this work use two different approaches to calculate the likelihood Vk(n).

The first was published by S. Fekri, M. Athans and A. Pascoal in [1] and uses no assumptions about

the switching scheme. This algorithm was explicitly invented for model switched adaptive control. The

second method uses a Markov process to model switches between the different models. This strategy was

introduced by I. Hwang, H. Balakrishnan and C. Tomlin in [2] to track the flight mode of aircrafts.

No Assumptions about Switching Scheme

This method to calculate Vk(n) was presented in [1] and uses no assumptions about the switching scheme.

It is assumed that the essential information about the discrete dynamics is the evolution of the probabilities

Wk for every model over time. Considering that abrupt changes in the true model µ are unlikely to occur,

a change in µ would be indicated by changing probabilities Wµ. That means that an unlikely model of

time step n − 1 will be unlikely to match perfectly in time step n and vice versa. Therefore, the probability

Fig. 3.2: Calculation of Probability Wk(n)

Wk(n − 1) of model k to match the patient in the previous time step is used as Vk(n) (see Fig. 3.2).

Vk(n) = Wk(n − 1)

This changes the final probability Wk(n) in (3.6) to

Wk(n) =
Λk(n)Wk(n − 1)

∑m

j=1 Λj(n)Wj(n − 1)
(3.7)

The algorithm is initialized with Wk(0) = 1
m

.

12



Chapter 3. Hybrid Observer

Stochastic Switching Scheme

This method to calculate Vk(n) was presented in [2] and models the mode transitions as a Markov process,

shown in (3.8). The transition matrix Π contains the probabilities πij to switch from mode j to mode i and

its column sum is one (
∑m

i=1 πij = 1, ∀j).

µ(n + 1) = Πµ(n) (3.8)

The calculation of the probabilities πij is based on additional patient information (e.g. gender, race or

weight) leading to a formation of model subgroups in the data set. If the controlled patient belongs to one

subgroup, models in this subgroup are more likely to be the best match. This leads to a Markov matrix Π

with nonzero entries (i.e. theoretically every model can match the patient) and higher values for transitions

into the selected subgroup.

Fig. 3.3: Calculation of Probability Wk(n)

To use this additional information, Vk(n) is calculated as the sum over joint probabilities vj(n) (see Fig. 3.3).

These probabilities vj(n) combine the probability Wj(n − 1) of model j to match the patient in the previous

time step and the transition probability πkj to switch from mode j to mode k. The use of the probabilities

Wj(n − 1) in Vk(n) can be argued in the same way as presented in section 3.2.1.

vj(n) = πkjWj(n − 1)

Vk(n) =

m∑

j=1

vj(n) =

m∑

j=1

πkjWj(n − 1) (3.9)

This changes the final probability Wk(n) in (3.6) to

13



Chapter 3. Hybrid Observer

Wk(n) =
Λk(n)

∑m

i=1 πkiWi(n − 1)
∑m

j=1 [Λj(n)
∑m

i=1 πjiWi(n − 1)]
(3.10)

The algorithm is initialized with Wk(0) = 1/m.

3.2.2 Improvements

Some improvements to the discrete state estimation were suggested in [2]. Those improvements will be

introduced and their influences on the hybrid observers in muscle relaxation will be evaluated.

Coupling Kalman Filters

The idea behind the coupling of Kalman filters is to use the likelihoods Wk to improve the observation of the

linear process. Therefore the state estimates x̂k(n), ∀k are updated in every time step by using a mixing

probability νki(n).

νki(n) =
πkiWi(n)

∑m

k=1 πkiWi(n)

The updated state estimate x̂0,k(n) will then be used by the Kalman filter in (3.2) to calculate the first state

estimate of time step k+1. It is assumed that the Kalman filter converges better if more information about the

process are provided. Since the covariance Pk(n) is connected to the state estimate, it has to be updated

as well to ensure the Kalman filter is working optimally. (note: ∗ stands for element-wise multiplication)

x̂0,k(n) =
m∑

i=1

x̂i(n) ∗ νki

P0k(n) =

m∑

i=1

[

Pi(n) + (x̂i(n) − x̂0,k(n)) (x̂i(n) − x̂0,k(n))
T
∗ νki

]

(3.11)

Residual Mean

The second improvement considered in this work is to use the mean value of all residuals from the start to

the current time step of the current model r̄k(n)

r̄k(n) =

√
∑n

j=1 r2
k(j)

n

It was shown in [2] that this leads to an improvement of the performance of the MMAE.
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Chapter 3. Hybrid Observer

3.2.3 Algorithms

Based on the algorithms discussed in section 3.2.1 and the improvements shown in section 3.2.2, a variety

of different hybrid observation algorithms can be formulated

B-MMAE B asic - Multiple Model Adaptive Estimation

- without any knowledge about the switching

Wk(n) =
Λk(n)Wk(n − 1)

∑m

j=1 Λj(n)Wj(n − 1)

B-RM-MMAE B asic - Residual Mean - Multiple Model Adaptive Estimation

- B-MMAE with mean values of residuals r̄k

S-MMAE Stochastic - Multiple Model Adaptive Estimation

- stochastic switching scheme

Wk(n) =
Λk(n)

∑m
i=1 ΠkiWi(n − 1)

∑m

j=1 [Λj(n)
∑m

i=1 ΠjiWi(n − 1)]

S-RM-MMAE Stochastic - Residual Mean - Multiple Model Adaptive Estimation

- S-MMAE with mean values of residuals r̄k

S-I-MMAE Stochastic - Interactive - Multiple Model Adaptive Estimation

- S-MMAE with coupling of Kalman Filters

S-RM-I-MMAE Stochastic - Residual Mean - Interactive - Multiple Model Adaptive Estimation

- S-MMAE with:

- coupling of Kalman Filters

- mean values of residuals r̄k

3.3 Simulations

In order to compare the different algorithms outlined above simulations needed to be done. For this purpose

one model k was randomly selected to be the true model µ. It was used to generate the output y as its open

loop step response. Based on this data the hybrid estimation algorithms were run. It was observed how fast

and how well they were able to track the true model µ. As a result of the open loop analysis discussed in

section 4.2.1, all models were reordered and numbered according to their open loop start up time Tu (time

needed to reach 0.5% of the final gain).
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Fig. 3.4: Number of models: m = 59, true model: µ = 9

All plots of those simulations show the evaluation of the true model likelihood Wµ in the upper graph and

the discrete state estimate µ̂ in the lower graph. To stress the differences between the models, different

studies have been performed. Because the simulation with all m = 59 models (see Fig. 3.4) showed some

performance weaknesses, it was tested if those algorithms will improve by using subgroups of the models.

Therefore Fig. 3.5 and Fig. 3.6 show the simulation of patient subgroups selected by picking every ks

model. As a result those subgroups contain models which are well differentiable in terms of their open loop

behavior. In contrary Fig. 3.7 and Fig. 3.8 show simulations with a subgroup of models with similar step

responses. These were constructed by selecting a certain number of models around the randomly picked

true model µ for simulation.

By looking at Fig. 3.4 - 3.8 it is obvious that both interactive strategies (S-I-MMAE and S-I-RM-MMAE) give

the same estimates and are not able to track the true discrete state in any scenario. It was seen during

implementation that the number of numerical problems, arising by coupling the Kalman filters, increases

with an increasing number of models. Since the algorithm was introduced and tested in [2] by using only

two different modes, it is assumed that the number of modes used in the muscle relaxation problem is not

suitable for this particular estimation technique.

The other four tested algorithms show sufficiently fast convergence to the true mode and are able to track

the true mode µ in all scenarios. It can be seen, that the B-MMAE and the B-RM-MMAE as well as the

S-MMAE and the S-RM-MMAE are behaving similar respectively. The use of the residual mean improves
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Fig. 3.6: Number of models: m = 30, true model: µ = 25

the performance of the S-MMAE but does not improve the performance of the B-MMAE. One main

difference between the basic and the stochastic algorithms can be seen by looking at the convergence of

the likelihood Wµ to one. The graphics show that the basic algorithm will converge after about 20 samples

in each scenario. The convergence of the stochastic algorithm is dependent on the size of the subgroup

and on the true model µ. The second difference between these algorithms is the settling time of their

discrete state estimate. Even though only the stochastic algorithm shows an effect of different subgroup

sizes on the likelihood Wµ, it can be seen that both algorithms converge faster if the subgroup is smaller.

Usually the stochastic algorithm picks a model with a larger start up time Tu first and converges fast to

the true model µ. The basic algorithm converges slower, and usually picks a fast model in the beginning.

These two properties will have an influence on the closed-loop behavior as will be shown in chapter 5.
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Fig. 3.8: Number of models: m = 21, true model: µ = 9

proportional

As a conclusion to this observation, the interacting algorithms will not be used for simulations of the

final closed-loop system. Additionally the use of the residual mean does not improve the performance of

the B-MMAE algorithm but does make the stochastic algorithm significantly more stable. Therefore, the

B-MMAE and the S-RM-MMAE have proved to be the most reliable hybrid observation techniques tested

in this work. The influence of their differences on the closed-loop performance will be investigated with

closed-loop simulations in chapter 5.
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4 Switched Controller

This part of the closed-loop system consists of m different controllers, each one tuned for one specific

model. Based on the discrete state estimate µ̂(n) the controller associated with model µ is selected and its

output u(n) is used as the input to the system (see Fig. 4.1).

Fig. 4.1: Switched controller (schematic)

It was shown in section 2.3 that these controllers have to make the closed loop much faster than the open

loop in order to achieve the control objective. It would be also advantageous if the controller could handle

input constraints, since the infusion rate of Rocuronium has a lower and upper bound. Furthermore, the

measurement is discretized with a fairly large time step of 20 seconds as shown in section 2.2. These facts

indicate that the use of a Model Predictive Controller can be useful to handle the given problems. It was

also shown in [3] that a Generalized Predictive Controller (GPC) is suited well for controlling the proposed

system. Therefore this control technique was chosen.

To introduce this control algorithm, the concept of Generalized Predictive Control will be explained

first. To simplify the equations this will only be done for a single controller (m = 1). Afterwards the tun-

ing of the m different GPC will be explained and their performance will be shown with the help of simulations.
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Chapter 4. Switched Controller

4.1 Generalized Predictive Control (GPC)

As a special Model Predictive Controller, the GPC uses a model of the plant to predict responses of the

system to a given control sequence. This prediction is used to search for an optimal future input sequence

to archive the given control objective. In the proposed problem, the goal is to minimize the sum
∑

j e(n + j)

of the error e(n + j) between the setpoint yr and the output y without using to much control action. This

goal can be formulated in a performance index J shown in (4.1), suggested for example in [7]

J = E





hu∑

j=1

[y(n + j) − yr(n + j)]
2
+

hc∑

j=1

ρ [∆u(n + j − 1)]
2





=





hu∑

j=1

[ŷ(n + j) − yr(n + j)]
2
+

hc∑

j=1

ρ [∆u(n + j − 1)]
2





=
[

(Ŷ − Yr)
T (Ŷ − Yr) + (∆U)T ρ(∆U)

]

(4.1)

The GPC minimizes this index J with respect to an input sequence u(n + j), j = 1 . . . hc. The length of

the input sequence is given by the control horizon hc. For every timestep j > hc the control input u(n + j)

is zero. The number of predicted outputs ŷ(n + j), j = 1 . . . hu used in (4.1) is restricted by the maximal

prediction horizon hu > hc . The factor ρ is a control weighting factor which ensures physical realizability

of the input sequence. A minimal prediction horizon hl can be introduced to handle time delays. Then the

sequence of outputs considered in (4.1) is forced to start at time hl. This accounts for a certain time period

hl · Ts needed by the system to respond to the input sequence. Using hl in (4.1) gives

J = E





hu∑

j=hl

(y(n + j) − yr(n + j))2 +

hc∑

j=1

ρ(∆u(n + j − 1))2



 (4.2)

Laguerre models usually do not have explicit time delays as discussed in section 2.1. Therefore, a minimum

prediction horizon is usually not introduced when using this kind of models. Nevertheless it will be shown in

section 4.2.2 that this forth parameter is very useful for tuning in muscle relaxation control. But to simplify

the equations, we assume hl = 1 in this section (the equations can similarly be used for hl > 1). The

vectors Ŷ , Yr and ∆U in (4.1) are then defined as

Ŷ =










ŷ(n + 1)

ŷ(n + 2)
...

ŷ(n + hu)










Yr =










yr(n + 1)

yr(n + 2)
...

yr(n + hu)










∆U =










u(n) − u(n − 1)

u(n + 1) − u(n)
...

u(n + hc) − u(n + hc − 1)









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Chapter 4. Switched Controller

The components of the output prediction Ŷ are calculated as shown in (4.3).

ŷ(n + j) = Cx̂(n + j) + ǫ(n + j) ǫ(n + j) ≈ ǫ(n) = y(n) − ŷ(n)

= Cx̂(n + j) + (y(n) − ŷ(n))

= y(n) + C(x̂(n + j) − x̂(n)) (4.3)

The output prediction error ǫ(n + j) is assumed to be approximately equal to the current prediction error

ǫ(n+j). This leads to “ [...] a closed-loop prediction which guarantees unbiased prediction in the presence of

unstructured uncertainties” (Dumont [7], p.1914). The predicted future states x̂(n+j) in (4.3) are calculated

based on the current state estimate x̂(n) of the Kalman Filter and the future input sequence u(n + j)

j = 0...hc.

x̂(n + 1) = Ax̂(n) + Bu(n)

x̂(n + 2) = Ax̂(n + 1) + Bu(n + 1) = A2x̂(n) + ABu(n) + Bu(n + 1)

... =
...

x̂(n + j) = Aj x̂(n) + Aj−1Bu(n) + Aj−2Bu(n + 1) + · · · + Bu(n + j − 1) (4.4)

It follows from substituting (4.4) in (4.3) that

ŷ(n + j) =y(n) + C
[
Aj x̂(n) +

[
Aj−1u(n) + Aj−2u(n + 1) + . . . + u(n + j − 1)

]
B − x̂(n)

]

= y(n) + C(Aj − I)x̂(n)
︸ ︷︷ ︸

lj

+C
[
Aj−1u(n) + Aj−2u(n + 1) + . . . + u(n + j − 1)

]
B (4.5)

In matrix form (4.5) becomes










ŷ(n+1)

ŷ(n+2)

...

ŷ(n+hu)










=










l1

l2
...

lhu










+













CB 0 . . . 0

CAB CB . . . 0

. . .
. . .

CAhu−1B CAhu−2B . . . CAhu−hc−1B






















u(n)

u(n+1)

...

u(n+hc)










(4.6)

Equation (4.6) can now be regrouped into know and unknown terms at time t(n) by separating the free and

the forced response of the system. The free response f is the output signal y(n + j) if the present and

future control signals are zero (u(n + j) = 0 ∀j ≥ 0) whereas the forced response is the response of the

system due to future control actions.
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








ŷ(n+1)

ŷ(n+2)

...

ŷ(n+hu)










=










l1

l2
...

lhu










︸ ︷︷ ︸

L

+










CB

CB + CAB
...

∑hu−1
i=0 CAiB










︸ ︷︷ ︸

S1
︸ ︷︷ ︸

free response (F )

u(n − 1)

+













CB 0 . . . 0

CB + CAB CB . . . 0

. . .
. . .

hu−1∑

i=0

CAiB

hu−2∑

i=0

CAiB . . .

hu−hc∑

i=0

CAiB













︸ ︷︷ ︸

S













u(n)− u(n−1)

u(n+1)− u(n)

...

u(n+hc)

−u(n+hc−1)













︸ ︷︷ ︸

∆U
︸ ︷︷ ︸

forced response

(4.7)

In (4.7) F = [f1f2 . . . fhu
]T is the vector of the free responses and S = [S1S2 . . . Shu

] is a lower triangular

matrix of the step response coefficients where Si is the ith column of S. This leads to the final formula for

the output prediction vector Ŷ :

Ŷ = L + S1u(n − 1) + S∆U = F + S∆U (4.8)

This expression can now be used to calculate the performance index for the given control problem. As one

can see by substituting (4.8) into (4.1) the cost function can be rewritten as

J =
[
(F + S∆U − Yr)

T (F + S∆U − Yr) + ∆UT ρ∆U
]

= ∆UT (ST S + ρI)∆U + 2∆UT ST (F − Yr)
︸ ︷︷ ︸

J1

+(F − Yr)
T (F − Yr) (4.9)

and will be minimal if J1 is minimal with respect to ∆U

min
∆U

J1 = min
∆U

[
∆UT (ST S + ρI)∆U + 2∆UT ST (F − Yr)

]
(4.10)

were (4.10) shows a Quadratic Programming (QP) optimization problem

min
x

[
1

2
xT Hx + gT x

]

(4.11)

with x = ∆U , H = 2(ST S + ρI) and g = 2ST (F − Yr). After the future optimal input sequence is obtained

by solving (4.10), its first component is used to calculate the current control input u(n).

u(n) = ∆u + u(n − 1)

In the next time step the whole procedure is redone and the next optimal input is calculated.
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Chapter 4. Switched Controller

The major advantage of this method is its ability to actively handle constraints. This leads to a reformu-

lation of (4.10) into a constrained QP problem were the optimal input is calculated with respect to those

constraints. A drawback of this method is that the QP problem can only be solved by using numerical

optimization methods which introduces several problems. First, no analytical expression for the controller

can be given if u(n) is calculated numerically. This makes the analysis of the controller, for example

regarding stability or convergence, very difficult. Another problem is that solving a constrained QP problem

in every time step can be very computationally expensive.

Therefore, the introduced GPC was changed to a more practical version that uses a control horizon of one

(hc = 1). This means that the optimization algorithm assumes that the future input changes only at time

t(n) and will be constant for t(n + j). This leads to

u(n + j) = u(n) ∀j ≥ 1

∆u(n + j) = 0 ∀j ≥ 1

Therefore (4.7) simplifies to

Ŷ = F + S1∆u(n) (4.12)

and (4.10) becomes

min
∆u(n)

J1 = min
∆u(n)

[
(ST

1 S1 + ρ)∆u2(n) + 2∆u(n)ST
1 (F − Yr)

]
(4.13)

Since a control horizon of hc = 1 leads to a one dimensional performance index, equation (4.13) can be

solved by setting its derivative to zero

∂J1

∂∆u(n)
= 2(ST

1 S1 + ρ)∆u(n) + 2ST
1 (F − Yr)

!
= 0

leading to

∆u(n) = (ST
1 S1 + ρ)−1ST

1 (Yr − F ) = u(n) − u(n − 1)

u(n) = (ST
1 S1 + ρ)−1ST

1 (Yr − F ) + u(n − 1)

= (ST
1 S1 + ρ)−1

[
ST

1 Yr − ST
1 L + ρu(n − 1)

]
(4.14)

By simplifying the GPC and setting hc to one, the controller looses the ability to handle input constraints.

Therefore the input is set to zero if u(n) < 0.
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Chapter 4. Switched Controller

4.2 Controller Tuning

The concept of the switched controller used in this work, is to have an optimally tuned controller for each

patient model. By using the database of models collected in [3], this involves the tuning of 59 controllers.

Furthermore the future goal of this work is to collect more data leading to new models to be included in the

database. Therefore it is reasonable to develop a tuning routine for the introduced GPC based on the open

loop performance of a model and the closed-loop requirements for the system.

As mentioned in chapter 1 the control objective for this project is to make the closed loop fast while keeping

the time periods of saturation as short as possible. This leads to the following closed-loop constraints:

overshoot ≤ 10%

rise time ≤ 10 minutes

It will be investigated which parameters of the GPC should be used to tune the controllers for those

constraints. Afterwards two different tuning algorithms are introduced and their performance is compared.

Finally closed-loop simulations of the single models with their optimal tuned controller are shown.

4.2.1 Open Loop Analysis
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Fig. 4.2: Step response for different models
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The step responses in Fig. 4.2 and the bode plot in Fig. 4.4 show, that the patient models vary in their
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S slope

TR rise time

K∞ static gain

TU start up time (time needed to reach 0.5% of the final gain)

K gain

In order to develop a tuning routine these open loop parameters are tested for correlations with the tuning

parameters of the GPC. It will be investigated, if the optimal tuning parameters are correlated with the open

loop behavior of each model.

4.2.2 Closed Loop Analysis

The GPC for Laguerre models has three different tuning parameters mentioned in section 4.1.

hu maximum prediction horizon

ρ control weighting factor

hc control horizon

Additionally one can see in Fig. 4.2 that all models are very slow. Between 1 × 104 to 6 × 104 seconds are

needed to reach the steady state compared to the desired rise time in the closed-loop system of 900 seconds

(= 15 minutes). This behavior can be interpreted as a dead time equivalent. With a GPC, dead times are

handled by using a minimum prediction horizon hl as shown in (4.2). Therefore a forth tuning parameter

will be used:

hl minimum prediction horizon
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Therefore four tuning parameters can be used to optimize the control performance for every model. As

discussed in section 4.1, the control horizon hc will be set to one. If the minimum prediction horizon hl is

used for tuning it is furthermore convenient to introduce a new parameter d = hu − hl, where d is called

distance. This parameter replaces hu in the further description. Since the GPC is based on an optimization

over a certain amount of time steps in the future, the distance d is the most important parameter for the

controller and needs to be tuned.

To verify the influence of ρ and hl on the closed-loop behavior of the system, a slow model (#1) and a fast

model (#59) were tuned with different ρ and hc. This was done by holding one tuning parameter constant

while the other one was varied over time. Tab. 4.1 shows that ρ has no significant influence on the rise

time nor the overshoot. On the contrary, Tab. 4.2 shows the strong influence of hl on the closed-loop

performance of the two chosen models. Therefore the latter was used in combination with the distance d to

tune the 59 patient models. Varying d will change the number of predicted outputs used in the performance

index J and varying hl shifts this window of predicted outputs back and forth in time. The control weighting

factor ρ will be set to zero for all further simulations.

model #1 model #59
d hl ρ rise time (TR) overshoot rise time (TR) overshoot
10 1 0.0 15.509209 1.050939 19.626359 19.137556
10 1 0.8 15.503514 1.053000 19.617628 19.145494
10 1 1.6 15.497807 1.055060 19.608878 19.153438
10 1 2.4 15.492090 1.057121 19.600107 19.161390
10 1 3.2 15.486363 1.059182 19.591317 19.169348
10 1 4.0 15.480624 1.061242 19.582506 19.177314
10 1 4.4 15.477750 1.062272 19.578094 19.181300
10 1 5.2 15.471996 1.064333 19.569253 19.189276
10 1 6.0 15.466230 1.066393 19.560392 19.197260

Tab. 4.1: ρ changed with d = 10 and hl = 1

model#1 model #59
d ρ hl rise time (TR) overshoot rise time (TR) overshoot
10 0 1 3.217464 76.768513 35.609671 0.509675
10 0 4 10.159198 23.403202 41.699064 0.637995
10 0 7 17.480939 6.127580 48.523603 0.749980
10 0 10 24.874413 0.219567 55.668963 0.830926
10 0 13 32.305714 0.366357 62.792331 0.873307
10 0 16 40.178461 0.525486 69.674838 0.874151
10 0 19 48.385933 0.664337 76.244483 0.835467

Tab. 4.2: hl changed with d = 10 and ρ = 0
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4.2.3 Tuning Algorithms

By defining different distances d = 2 . . . 15 and shifting them with different minimum horizons hl = 1 . . . 15,

closed-loop data was collected for every model. The maximum values of d and hl are based on time

delay measurements done in [3] where the latest response was measured after about 15 time steps (∼= 5

minutes). Based on the collected closed-loop data, the combination of d and h1 connected with the best

closed-loop behavior was selected. The two algorithms introduced in this section will weight the importance

of the rise time and the overshoot constraint differently when picking the optimal tuning parameters.

Tuning Algorithm (A)

The first tuning algorithm assumes that a short rise time is the most important constraint for the closed loop

and that the overshoot constraint can be relaxed to achieve the desired rise time. This assumption is based

on the methodology used by the anesthesiologist, where the patient is paralyzed fast with a large initial

bolus of Rocuronium.

Therefore the following routine for selecting d and hl was implemented:

• The fastest response that did not violate the overshoot nor the rise time constraint was selected (small

dots).

◦ If there was no combination of d and hl found that did not violate the overshoot constraint while being

fast enough, the allowed overshoot was doubled. The fastest response that did not violate the new

constraints was selected (little circles).

⋆ If tuning for this relaxed constraints was not possible either, the parameter combination leading to the

smallest overshoot while still satisfying the rise time constraints, was selected (stars).

Tuning Algorithm (B)

The second tuning algorithm puts more emphasis on a small overshoot more than on a fast rise time. This

approach would minimize the saturation time of the patient. However, it might introduce a longer waiting

time for surgery to begin. This leads to the following tuning algorithm:

• The response with the smallest overshoot that did not violate the overshoot nor the rise time constraint

was selected (small dots).

◦ If there was no combination of d and hl found that did not violate the overshoot constraint while being

fast enough, the allowed overshoot was doubled. The response with the smallest overshoot that did

not violate the new constraints was selected (little circles).

27



Chapter 4. Switched Controller

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

d

S

optimal d plotted over different open loop parameter

0 500 1000 1500 2000 2500 3000
0

5

10

15

d

T
R

0 200 400 600 800 1000 1200
0

5

10

15

d

K∞

0 2 4 6 8 10 12 14
0

5

10

15

d

T
U

−10 0 10 20 30 40
0

5

10

15

d

gain in dB

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

h l

S

optimal h
l
 plotted over different open loop parameter

0 500 1000 1500 2000 2500 3000
0

5

10

15

h l

T
R

0 200 400 600 800 1000 1200
0

5

10

15

h l

K∞

0 2 4 6 8 10 12 14
0

5

10

15
h l

T
U

−10 0 10 20 30 40
0

5

10

15

h l

gain in dB

good
Ok: double os
bad: high os

Fig. 4.5: (A): Chosen d and hl over different parameters

⋆ If tuning for this relaxed constraints was not possible either, the parameter combination leading to the

smallest overshoot while still satisfying the rise time constraints, was selected (stars).

4.2.4 Conclusions for Tuning

It can be seen in Fig. 4.5 and Fig. 4.6, that there is no good correlation between the optimal values for d and

hl and any open loop properties for tuning algorithm. Therefore the attempt to find a tuning routine based

on open loop parameters was not successful. All schemes tested decreased the performance significantly.

Therefore the optimal tuning parameters d and hl calculated during the routines outlined above, will be used

in the following simulations.

Fig. 4.5 - 4.8 show additionally that both tuning algorithms lead to controllers which are usually able to

achieve good control performance (dots). Only the controllers for six models out of 59 can not be tuned to

match the closed-loop requirements. Nevertheless four out of these six models (#25, #47, #52, #59) have
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Chapter 4. Switched Controller
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Fig. 4.6: (B): Chosen d and hl over different parameters

only a slight increase in the overshoot while being still sufficiently fast (circles). Only two models (#26,

#36) overshoot enormously when forced to meet the desired rise time (stars). Surprisingly this does not

depend on the algorithm used.

Fig. 4.7 and Fig. 4.10 show, that model #26 and #36 can be separated by their start up time Tu as well

as by their gain K. The red circle models (#25, #47, #52, #59) can not be separated as clearly, because

they do not show significant differences in their step response nor bode plot. It is still believed, that models

with a similar open loop start up time behave similar during control. Therefore the database of models was

resorted according to the start up time Tu. The new model number will be indicated by ## and a list of the

corresponding model number # can be found in appendix A.

The closed-loop performance of the tuned controllers is illustrated in Fig. 4.11 - 4.16. The simulation was

performed by using only the controller tuned for the selected model. Therefore, those graphs present the

29



Chapter 4. Switched Controller

0 2 4 6 8 10 12 14
0

5

10

15

d

T
U

optimal h1 and d plotted over open loop start up time

0 2 4 6 8 10 12 14
0

5

10

15

h l

T
U

0 2 4 6 8 10 12 14
0

10

20

30

ris
et

im
e

T
U

0 2 4 6 8 10 12 14
0

50

100

150

ov
er

sh
oo

t

T
U

Fig. 4.7: (A): Closed loop performance over TU
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Fig. 4.8: (B): Closed loop performance over TU

ideal case. This control performance could only be achieved in reality, if the patient model could be known

a priori. In those figures the differences in the tuning algorithms can be seen clearly.
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Fig. 4.12: (B): Model ## = 7: Good performance (dots)
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Fig. 4.13: (A): Model ## = 23: Double overshoot (circles)
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Fig. 4.14: (B): Model ## = 23: Double overshoot (circles)
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5 Closed Loop Simulations

In chapter 3 and chapter 4 the hybrid observation algorithm and the switched controller were introduced.

It was argued that the B-MMAE and the S-RM-MMAE algorithm works best for the muscle relaxation

problem. Furthermore two different tuning algorithms (A) and (B) of the parameters d and hl for the

GPC were explained. The closed-loop simulations in this section will compare the two hybrid observation

algorithms B-MMAE and S-RM-MMAE and the two tuning algorithms (A) and (B). The aim is to investigate

which algorithm works best and how applicable the introduced algorithms are to a closed-loop control of

muscle relaxation in anesthesia.
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Fig. 5.1: (A): Closed loop simulation model (µ = ##37) which showed good performance (dots)

0 100 200 300 400 500 600
0

0.5

1

t in [20 sec]

W
µ

hybid observation

0 100 200 300 400 500 600
0

20

40

60

t in [20 sec]

ha
t µ

 

0 100 200 300 400 500 600
0

0.5

1

1.5

t in [20 sec]

y

closed loop simulation with switched controller (µ=37)

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

t in [20 sec]

u

 

 
B−MMAE
S−RM−MMAE

Fig. 5.2: (B): Closed loop simulation for model (µ = ##37) which showed good performance (dots)

In section 4.2.4 was shown that it is not possible to find suitable tuning parameter for every model. Therefore

representatives of every performance group were selected for closed-loop simulations:

• good performance (dots): ##1, ##7, ##37

◦ slightly larger overshoot (circles): ##23, ##46, ##56

⋆ abnormal behavior (stars): ##58, ##59
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Fig. 5.3: (A): Closed loop simulation for model (µ = ##7) which showed good performance (dots)
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Fig. 5.4: (B): Closed loop simulation for model (µ = ##7)which showed good performance (dots)

The main goal of this work was to design a closed loop which meets the following constraints:

overshoot ≤ 10%

rise time ≤ 10 minutes

To investigate how well the different algorithms meet these values, the four algorithms were combined with

each other and closed-loop data was collected for every model. Tab. 5.1 shows the results for the eight

selected models. The data for all models can be found in the appendix B.

The overshoot Os and rise time Tr listed in Tab. 5.1 are illustrated in Fig. 5.1 - 5.8 which show the evolution

of the input u and the output y on the right hand side. The performance of the hybrid observer is shown on

the left hand side. The upper left graph displays the likelihood Wµ of the true model µ and the lower left

graph displays the discrete state estimate µ̂.

By looking at those figures one can see, that the stochastic algorithm usually converges faster to the true

model than the basic one. That was already shown in the open loop simulations. This means that the
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Chapter 5. Closed Loop Simulations

Tuning Algorithm (A) Tuning Algorithm (B)

B-MMAE S-RM-MMAE B-MMAE S-RM-MMAE
## TR in [min] Os in [%] TR in [min] Os in [%] TR in [min] Os in [%] TR in [min] Os in [%]
1 1.43 29.93 1.18 45.81 2.97 18.39 2.89 19.32
7 1.63 119.70 1.39 142.83 2.98 76.13 2.85 77.81
37 3.57 35.39 3.83 34.01 5.46 36.14 6.62 22.21
46 4.98 35.36 7.49 25.37 5.71 38.88 9.27 31.59
56 4.14 24.29 3.54 25.61 5.58 32.24 5.55 30.73
58 8.43 152.15 8.03 156.15 10.56 137.14 9.07 147.46
59 10.32 122.93 9.97 124.73 11.28 120.19 10.54 120.33

Tab. 5.1: Closed loop data
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Fig. 5.5: (A): Closed loop simulation for model (µ = ##23) that showed normal performance (cicles)
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Fig. 5.6: (B): Closed loop simulation for model (µ = ##23) that showed normal performance (cicles)

closed loop that uses the S-RM-MMAE observation algorithm switches to the right controller earlier than

the closed loop using the B-MMAE algorithm. This leads to an improved closed-loop performance in many

simulations. In the case of unexpected large overshoots as seen with model ##7 in Fig. 5.3, the use of the

tuning algorithm (B) decreases the overshoot significantly.

Both Tab. 5.1 and Fig. 5.1- 5.8 show that the simulated closed loop is very fast, but non of the algorithms is

able to meet the overshoot constraint. The reason for that is that all control action takes place in the first 10
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Fig. 5.7: (A): Closed loop simulation for model (µ = ##59) that showed bad performance (stars)

0 100 200 300 400 500 600
0

0.5

1

t in [20 sec]

W
µ

hybid observation

0 100 200 300 400 500 600
0

20

40

60

t in [20 sec]

ha
t µ

 

0 100 200 300 400 500 600
0

1

2

3

t in [20 sec]

y

closed loop simulation with switched controller (µ=59)

0 100 200 300 400 500 600
0

0.5

1

t in [20 sec]

u

 

 
B−MMAE
S−RM−MMAE

Fig. 5.8: (B): Closed loop simulation for model (µ = ##59) that showed bad performance (stars)

samples (∼= 4 minutes) as can be seen in the lower right graph of Fig. 5.1- 5.8. This is a very short time for

the hybrid observer to select the right controller. Therefore the largest control actions are performed, when

the right controller has not been selected yet. This could lead to serious problems if the database would

contain more models than the one used for these simulations.

It was nevertheless observed that the use of the S-RM-MMAE in combination with the tuning algorithm

(B) can lead to a sufficiently good control performance for the normal models and the once with a slight

overshoot. It is therefore concluded that an S-RM-MMAE observer and the tuning algorithm (B) are best

suited for controlling muscle relaxation, based on the provided simulation results.
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6 Conclusion

It was investigated in this work how well hybrid observation techniques in combination with a switched

Generalized Predictive Controller are suited for a closed-loop control of muscle relaxation. Six different

hybrid observers, all based on the Multiple Model Adaptive Estimation (MMAE) algorithm, were intro-

duced and tested with step responses of the open loop system. Based on those simulations the Basic

MMAE (B-MMAE) and the Stochastic MMAE that uses the mean value of the residuals (S-RM-MMAE)

were selected to perform best for the given models. It was shown during the tuning of the different

GPC that no good correlation between the optimal values of the tuning parameters and any open loop

property could be found. Therefore the attempt to find a tuning routine for the GPC based on open loop

parameters was not successful. The tuning was therefore done by applying two different optimization

routines (A) and (B) to the collected closed-loop data to select the best tuning parameters. Finally, the

observation algorithms B-MMAE and S-RM-MMAE were combined with the tuned switched controller and

closed-loop simulations were performed. It was shown that the S-RM-MMAE in combination with the tun-

ing algorithm (B) leads to the best closed-loop performance during simulation for the majority of the models.

It was additionally shown, that none of the tested algorithms was able to meet the overshoot constraint of

the closed-loop system. It is believed that this problem arises because of the complexity of the investigated

system. To achieve good control performance, the GPC has to act very aggressively on the system to make

it sufficiently fast. This leads to large control actions during the first 10 time steps. During this time, the hy-

brid observer has not converged yet. Therefore the wrong controller is used to calculate the infusion rate of

Rocuronium leading to a non optimal control input. When the discrete state estimate has converged to the

right model after about 15 time steps the control inputs has no impact on the closed-loop performance any

more. This problem could be addressed by including more information about the patient into the algorithm.

It was shown, that the discrete state estimate converges faster if the number of models considered de-

creases. This could be done by using subgroups based on patient information (e.g. gender, race or weight).

All simulations done in this work used a randomly selected patient model of the database to generate an

output y. This data is treated as the actual measurement by the algorithms. This leads to a very predictable

system behavior that does not include disturbances, model uncertainties or measurement noise. Therefore

more work needs to be done to ensure that the introduced algorithms perform equally well in actual surgery

environments.
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A Renumbering of Models

In the following table can be seen, which old model number # is connected to the model number ##

generated by renumbering the data base according to the start up time Tu of the models.

# ## # ##

1 4 31 29

2 1 32 37

3 2 33 41

4 5 34 35

5 6 35 44

6 3 36 58

7 7 37 36

8 30 38 28

9 22 39 26

10 19 40 50

11 9 41 34

12 31 42 51

13 11 43 40

14 10 44 32

15 8 45 21

16 38 46 18

17 20 47 46

18 27 48 39

19 48 49 33

20 13 50 47

21 14 51 53

22 42 52 45

23 17 53 57

24 24 54 49

25 23 55 52

26 59 56 54

27 25 57 55

28 16 58 15

29 43 59 56

30 12
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B Closed loop data

In the following tables is shown, how the observation techniques B-MMAE and S-RM-MMAE and the tuning

algorithms (A) and (B) influence the closed loop performance.

Tuning Algorithm (A) Tuning Algorithm (B)

B-MMAE S-RM-MMAE B-MMAE S-RM-MMAE

## TR in [min] Os in [%] TR in [min] Os in [%] TR in [min] Os in [%] TR in [min] Os in [%]

1 1.43 29.93 1.18 45.81 2.97 18.39 2.89 19.32

2 2.50 6.25 2.40 6.37 4.21 15.54 4.18 15.49

3 2.91 1.87 1.91 6.37 4.24 18.08 3.99 18.04

4 2.61 26.34 2.36 30.58 4.14 19.17 3.70 21.10

5 2.98 31.70 2.75 31.69 5.35 29.71 4.23 31.11

6 2.10 37.04 1.82 42.34 3.79 29.83 3.56 30.35

7 1.63 119.70 1.39 142.83 2.98 76.13 2.85 77.81

8 2.99 11.26 3.21 9.61 5.42 20.99 5.60 17.05

9 2.58 25.85 2.69 24.19 4.12 23.90 5.57 21.02

10 2.94 16.41 3.24 14.66 5.40 22.53 5.85 16.23

11 2.68 18.57 2.89 17.02 4.24 21.59 5.60 16.14

12 2.33 22.25 2.74 19.88 3.98 26.64 5.52 18.10

13 3.13 29.33 3.39 26.65 5.41 28.29 5.81 18.52

14 3.06 22.89 4.16 14.63 5.43 28.15 7.55 19.75

15 2.55 1.99 1.89 4.65 3.93 27.88 7.59 17.06

16 2.91 20.80 4.37 10.43 5.39 24.62 6.60 18.41

17 3.18 20.93 4.85 9.10 5.43 24.71 7.62 17.76

18 1.81 50.26 2.63 39.43 3.69 42.39 5.50 16.83

19 3.65 26.89 4.79 13.89 5.47 27.37 7.64 16.64

20 3.12 32.81 4.19 18.45 5.34 29.90 6.61 15.96

21 1.66 81.00 2.48 53.37 3.48 57.60 4.14 25.95

22 3.73 30.06 4.58 16.41 5.51 29.68 7.63 13.87

23 3.65 43.15 5.12 32.01 5.50 46.15 9.23 28.16

24 3.35 27.64 4.64 17.00 5.44 27.53 7.62 17.21

25 2.95 34.23 4.10 22.76 5.37 31.14 6.63 20.30
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Appendix B. Closed loop data

Tuning Algorithm (A) Tuning Algorithm (B)

B-MMAE S-RM-MMAE B-MMAE S-RM-MMAE

## TR in [min] Os in [%] TR in [min] Os in [%] TR in [min] Os in [%] TR in [min] Os in [%]

26 3.04 21.95 4.42 13.73 5.41 26.09 7.60 17.84

27 3.54 32.84 4.73 19.70 5.47 31.25 7.65 20.36

28 3.31 17.60 4.43 12.63 5.46 25.75 7.62 16.39

29 3.22 33.73 3.48 31.87 5.43 33.07 6.60 18.87

30 4.52 15.70 3.96 35.96 6.55 25.96 6.56 15.96

31 3.73 32.01 3.65 36.39 5.56 29.61 5.97 16.03

32 2.81 32.70 3.43 27.41 4.28 29.87 5.63 16.27

33 3.51 14.55 4.78 9.66 5.49 26.53 7.61 17.19

34 3.78 12.73 4.48 9.30 5.55 24.04 9.24 16.33

35 3.11 37.08 3.36 35.14 5.40 32.24 5.88 18.41

36 2.11 106.01 2.30 105.33 3.61 78.19 3.96 52.09

37 3.57 35.39 3.83 34.01 5.46 36.14 6.62 22.21

38 4.33 26.07 4.24 42.42 5.96 32.01 5.97 18.18

39 3.53 20.99 4.13 18.18 5.50 30.41 7.60 19.58

40 3.47 29.80 5.94 15.06 5.49 32.28 6.63 17.92

41 3.90 35.24 6.22 19.69 5.56 36.29 7.56 20.35

42 3.39 54.48 4.44 38.76 5.39 45.58 5.48 28.80

43 3.73 46.41 5.39 26.55 5.55 38.08 5.87 19.87

44 3.27 49.88 5.02 29.43 5.37 40.87 5.58 23.62

45 4.09 29.94 8.10 19.99 5.60 36.06 9.24 31.16

46 4.98 35.36 7.49 25.37 5.71 38.88 9.27 31.59

47 2.32 137.54 2.82 142.41 3.86 101.24 3.90 82.68

48 4.04 55.39 4.59 71.05 5.92 40.35 5.53 52.01

49 3.16 56.57 3.50 56.62 5.33 45.69 5.46 34.85

50 4.45 46.27 4.52 59.70 5.78 48.62 5.57 41.56

51 3.80 76.11 4.16 93.33 5.64 59.20 5.43 65.19

52 4.11 10.37 3.92 9.90 5.57 21.67 7.62 18.84

53 4.94 10.44 5.95 9.79 6.64 21.20 7.59 20.78

54 3.42 11.78 2.10 14.81 5.46 27.73 5.53 18.87

55 4.02 16.26 3.36 15.03 5.55 32.10 5.55 22.96

56 4.14 24.29 3.54 25.61 5.58 32.24 5.55 30.73

57 3.66 2.13 1.79 0.18 5.49 17.73 5.56 14.96

58 8.43 152.15 8.03 156.15 10.56 137.14 9.07 147.46

59 10.32 122.93 9.97 124.73 11.28 120.19 10.54 120.33
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