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Chapter 1

Introduction

Capacity planning to ensure adequate network performance is one of the most
important practical problems in network setup and maintenance. It also re-
mains an open problem as to how best plan network capacity. This chapter
should give a short overview of capacity planning, or link provisioning, as it is
sometimes called, and what makes it difficult. In Section 1.1, we will provide
the background for the problem of link provisioning, defining Quality of Ser-
vice (QoS) in the process. In Section 1.2, the method of over-provisioning as
one possible solution to this problem is introduced and justified. In Section
1.3 some of the difficulties encountered in over-provisioning are described.

1.1 Background: Network requirements

Different users use their computers for very different applications; thus net-
works are used for completely different purposes. Some use the Internet to
chat with people all over the world, some just send and receive e-mails, some
are downloading podcasts and some watch streamed videos on youtube, some
are playing poker online, some are playing Counter Strike with their friends
in a Local Area Network, some are sharing their photographs and some are
are sharing songs or movies.
Of course, each of these activities poses completely different requirements on
the network they are done on.

An abstraction of the described activities above could be as follows. Every
user sitting in front of his computer is running one or more applications,
which in turn are using (after some steps that are not of interest for this
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2 1.1: Background: Network requirements

thesis) a transport layer protocol to release their data into the network
(again, some steps are omitted, but again, they do not impact the following.
For details on the so-called OSI seven layer model, see [Zim80]).
To name a few of these applications:

. Voice over IP (VoIP) or even video conferencing require an almost delay
free connection but bandwidth only when the audio and/or video signal
is sent in the respective direction.

. Streaming applications like webradio or Internet TV require a fixed
amount of bandwidth all the time (of course, buffering relaxes this a
little), but a certain delay would not be perceived as too annoying.

. Real time online games like Counter Strike require sufficient bandwidth
plus low delay to function properly.

. Critical applications like remote control of industrial processes (recall
that we are not talking about the Internet only) require absolutely
guaranteed availability of the communication.

. “Normal” applications like file sharing, web browsing or webchats do
not require anything special, nevertheless there are limits to delays and
bandwidth at which the user will call the performance “bad”.

The goal of any network operator is, to make every user “happy”, that is
to meet all requirements of the different applications. The term Quality
of Service (QoS) has been coined to describe both: The perception of the
performance of a network, and technologies and mechanisms, that can be
employed to achieve sufficient performance.
Performance basically is perceived in terms of delays, which mainly occur
because of buffering, losses, which occur mainly because of full buffers, and
jitter, which is a term describing rapid changes of delays.

Our attention in this thesis will be restricted to networks on which computers
are communicating via wired links and whose topology can be described by
the terms access links and core links, see Figure 1.1. With the term
core link, we refer to a link in the network where traffic from many routers
aggregates. By that definition, the core is not the place where losses should
normally occur, and traffic arriving there is an aggregate of aggregates. In
addition, we are interested in core links which are serving a rather big number
of access links.
So we can assume that losses that occur in the core only affect a small part

Chapter 1. Introduction



1.2: Over-provisioning 3

of the flows aggregating there. Consequently, as long as the losses stay on
a low value, we can assume the traffic arrival process not to depend on the
losses. Recall, that the TCP congestion control causes the sender to back off
as soon as a loss occurs, but by our assumptions, only a small fraction of the
aggregating flows will sense a loss.

Users Access links Gateway Core link Higher Network, e.g. Internet

Figure 1.1: Typical network topology with core link and access links

With this additional assumption, we can link losses and delays directly to
the available core link bandwidth: A higher bandwidth prevents large queues
from building up and by that also prevents losses from happening.

Two principal strategies to ensure QoS can be identified: Applying additional
technologies to enable the network to treat data with different requirements
differently or to simply meet all requirements for all applications by providing
the core link with sufficient bandwidth.

1.2 Over-provisioning

Imagine, the core link had infinite bandwidth. Then, there would be no
queueing at the gateway and any access link would get maximum perfor-
mance. This actually kills two birds with one stone: If the packets are
removed fast enough from the gateway queue, there will be no or very short
delays, and each access link can send “as fast as possible”.

Of course, this can be achieved with a finite bandwidth, as long as the band-
width is sufficiently large. Because bandwidth costs money, it is a rather
unsatisfying solution to simply use the fastest available link. Instead, it is
clear, that at a certain bandwidth, the performance will have no perceivable
increase anymore and any additional bandwidth could be seen as a waste of
resources.
With this in mind, we can define core link provisioning as the process of
finding the minimum necessary bandwidth to ensure QoS.

Chapter 1. Introduction



4 1.3: Network traffic

The benefits of over-provisioning are numerous, among these are

Simplicity Once set up, the link requires almost no supervision and main-
tenance.

Good performance Losses and delays introduced by the link are minimal.

Redundancy In the case of link failure, the spare capacity of other links
can be used to bypass the failed link.

Currently, unsatisfactory rules-of-thumb of the form “Take the average of-
fered traffic plus 50% to cater for fluctuations” are the most commonly used
over-provisioning scheme. Of course, this is not very scientific, nor does
it yield a guarantee that no resources are wasted (if the link was under-
provisioned, it probably would be noticed very quickly).

In recent publications [vdM06, FTD03, Pap03], statistical models are derived
from measurements on real core links, which in turn are used to derive for-
mula for the required bandwidth depending on certain performance criteria.
We will give a more detailed review of that in Chapter 2, but here we already
note, that these approaches are deemed unsatisfying, because they either rely
on the applicability of the derived models, what almost certainly cannot be
assumed, or on additional measurements, which can only be obtained by in-
troducing additional technology and by that additional complexity and costs.

Our contribution here is to develop a control scheme, first suggested in
[LKC+07], which uses the capacity of a buffer in front of the link to maintain
a given, very small loss rate at that buffer. The necessary buffer size then
can be seen as additional information on the required bandwidth and can be
used to trigger an upgrade of the link. The novelty of that approach lies in
its closed-loop nature, which makes it independent of traffic modeling and of
more than the available, coarse grained measurements and in the fact that,
under entirely reasonable assumptions, stability of the closed loop can be
demonstrated.

1.3 Network traffic

Figure 1.2 illustrates the main difficulty any link provisioning scheme has
to face: the high variance of the traffic arrivals. Here, averages of different
resolutions are shown. Measurements via SNMP (see B.3) can only be taken
in the order of minutes, so without additional work the dashed line is all

Chapter 1. Introduction
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Figure 1.2: Different averages of the same traffic arrivals: 100ms-averages,
1s-averages and 1min-average

the provisioning can be based on. As can be seen in the figure, the highest
spike reaches as high as 24 Mbit/s, whereas the 60s-average is just around
20 Mbit/s.

In general, one can say that “typical” network traffic is highly variant, non-
stationary, and is a mixture of open loop traffic (caused by connectionless
protocols like e.g. UDP, see B.2) and elastic traffic (caused by the congestion
avoidance algorithms of protocols like TCP, see B.1).

These properties make it hard to model network traffic, even statistical mod-
els are highly questionable because the time variance cannot be captured in
them. Moreover, most key parameters like number of active users, running
applications and so on are not accessible or change very often. So a link pro-
visioning based on models does not seem wise. As we shall see, our proposal
overcomes these difficulties in an elegant and simple manner.

1.4 Outline of the Thesis

We will approach the problem as follows:

. In Chapter 2, we will review work that has been done on the problem
so far. This will be more or less a very detailed summary of the work
of van de Meent [vdM06].

Chapter 1. Introduction



6 1.4: Outline of the Thesis

. In Chapter 3, reasoning and implementation of our new approach is
described in detail. Some simulation results will also be given.

. Chapter 4 will contain the theoretical contribution of this Thesis. We
will recall some results on the stability of switched linear systems and
the Lur’e absolute stability problem, link them together and extend
them to discrete time systems.

. Finally, in Chapter 5, the practical and the theoretical part of the
Thesis will be linked together. Our proposal control scheme will be
described in the Lur’e framework, so our theoretical results on discrete
time Lur’e systems can be used to analyse its stability properties.

. The Appendix holds some Matlab source codes and some basic facts
about network technologies like TCP and SNMP.

Chapter 1. Introduction



Chapter 2

Review of recent work

2.1 Overview

The link provisioning problem has a long history in the communications
community. In this chapter we review some of the suggested approaches to
this problem, and critically discuss some of the most promising approaches.
Recently, a PhD thesis has appeared on this topic. Since this is the most
recent substantial work on this area, our review borrows heavily from this
work. Consequently, the main part of this chapter will be a summary of the
approach and results of [vdM06], because it not only reviews the available
work, but also because it is to our best knowledge the only one which claims
to solve the problem without requiring involved measurements or additional
knowledge.

2.2 Related work

The problem of provisioning link capacity to provide statistical guarantees
for network QoS is not new. Much of the recent work on this topic, from
both academia and industry researchers, is motivated by the fact that real
network traffic cannot be characterised in a simple fashion, a fact that in-
validates many provisioning rules based on assumed traffic arrival processes
[Kle76]. To the best of our knowledge, the most recent work appears to
have been carried out by Fraleigh, Tobagi and Diot [FTD03], by van de
Meent and his co-authors [vdMPM+03, MvdM05, BR06] and in the context
of the Cisco supported start-up Corvil Networks [Co]. The work presented

7



8 2.3: The model-based approach of van de Meent

by these authors represents to varying degrees a direct extension of the work
first presented by Kleinrock. Fraleigh, Tobagi, and Diot [FTD03] use real
measurements of backbone traffic to construct statistical models from which
link provisioning rules are derived. Similarly, van de Meent uses traffic mea-
surements to validate (or invalidate) rules used by network operators to size
backbone links. Typically, network operators assume a relationship between
the mean traffic rate and the peak traffic rate across a link to guide link
provisioning rules. Van de Meent [vdMPM+03, MvdM05] uses real measure-
ments to argue that the (typical) assumed relationship between mean and
peak rate is not supported by evidence from real measurements, and proposes
others which he claims are more realistic. We note that to be effective, both
of these approaches require stationarity of network traffic, and accurate sta-
tistical models, and any deviation from this assumption, or model error, will
invalidate the rules being proposed by these authors. The other work by the
Cisco supported start-up Corvil Networks is proprietary in nature and thus
difficult to quantify. However, it appears that their approach is based upon
fine grained (millisecond level) traffic measurements obtained using network
probes.

2.3 The model-based approach of van de

Meent

In his 2006 PhD-Thesis, van de Meent presented a model-based approach to
the link provisioning problem [vdM06]. Very detailed network measurements
are used to generate a mathematical model of real network traffic. This
model is then utilized to derive an explicit formula for the core link capacity,
which not only involves the measured mean traffic level, but also the variance
of the assumed Gaussian distribution. Whereas the mean is readily available
using network measurements, the variance usually is not. Van de Meents
principal contribution is to develop a lemma which links the distribution of
the buffer occupancy, which can be estimated using available measurements,
to the variance. This relation is then “inverted” to an estimate of the variance
involving the empirically calculated distribution of the buffer occupancy.

2.3.1 Link provisioning

Van de Meent states the problem of bandwidth provisioning in the form of
an explicit performance criterion: namely the offered traffic shall not

Chapter 2. Review of recent work



2.3: The model-based approach of van de Meent 9

exceed the available core link bandwidth for more than a fraction
ε of a time interval of length T . In mathematical terms: let T be
some timescale (the timescale on which performance is perceived, usually
in the order of some tens of milliseconds) and ε a small positive number.
Furthermore, let A(T ) be the amount of traffic arriving at the core link
during an interval of length T , and let C the bandwith of the core link.
Then, the goal is to find a function f(T, ε) which ensures, that for C =
f(T, ε):

P (A(T ) ≥ CT ) ≤ ε (2.1)

where P is a probability.

The first step in van de Meent’s approach is to model traffic in the network
core. Network traces from a variety of points were used to construct this
model. In particular, measurements were taken at five different places and at
different times, chosen to represent a broad number of “possible conditions”.
A sample thereby consists of packet data collected during an interval of
15min.
These locations were chosen with with the following characteristics:

. A location with many access links and a high utilization:
An uplink of a student residence to the university network. The ca. 2000
access links are 100 Mbit/s each and the core link is just 300 Mbit/s,
so a relatively high average load of around 60% is not surprising.

. A location with not so many access links and very modest utilization:
An uplink of a research institute to the Dutch academic and research
network. Here we have around 200 access links with 100 Mbit/s each,
but the core link of 1 Gbit/s sees an average load of only around 1%.

. A location with many access links and modest utilization:
An uplink of 1 Gbit/s, where the over 1000 access links with bandwidth
100 Mbit/s of a college are aggregated. The average load is at 10-15%.

. A location with access links of varying bandwidth and modest utiliza-
tion:
Some hundreds of ADSL customers with links of 256 kbit/s to 1 Mbit/s
are loading this core link of 1 Gbit/s with ca. 15%.

. A location, where an access link has a bigger bandwidth than the core:
A hosting provider is hosting e.g. web-servers for different companies.
The access links are at around 100 Mbit/s, the uplink to the internet
just 50 Mbit/s. The average load nevertheless is at around 25%.

Chapter 2. Review of recent work



10 2.3: The model-based approach of van de Meent

Full details of the measurements are given in [vdM06]. The technical method
of measurement that has been applied is called mirroring, illustrated in Figure
2.1: At the gateway router, an electronic copy of each incoming data packet
is taken and sent to a computer which is running the libpcap/tcpdump-Tool
[Law05a, Law05b] to record the headers (which are containing all relevant
information) into a tracefile. Around 500 samples were taken.

access links

gateway core link

lipcap/tcpdump

copies of arriving data packets

Figure 2.1: Mirroring

2.3.2 The models

Two basic types of traffic models are identified from the given traces:

Flow-based modeling Flow-based models are capturing the characteris-
tics of individual flows. This approach encounters the first difficulty in
defining what a flow actually is. There is no common definition in the
literature, so possible definitions for a flow could be:

. Packets belonging to the same TCP or UDP stream

. Packets, that are exchanged between the same IP addresses (and
ports)

. Packets, that originate from the same source

. and so on.

After a definition for “flow” is chosen, the model consists of three pa-
rameters:

. A random process, which describes the arrival of flows at the node
under consideration.

Chapter 2. Review of recent work



2.3: The model-based approach of van de Meent 11

. The probability distribution for the time arriving flows stay active.

. The rate at which flows produce traffic while they are active.

A commonly used model is the so called M/G/∞ input model. That
means that the time between the arrival of two flows is a Poisson dis-
tributed random variable, the duration for which a flow stays active is
Gaussian distributed and the rate at which it produces traffic during
that time is constant.

Black box modeling In contrast to the flow-based models, black box mod-
els aim at modeling only the aggregate of the arriving flows at the core
link. Here, this refers to finding a probability distribution which de-
scribes the amount A(T ) of arrived traffic during a time interval of
length T . Van de Meent uses measurements and the Central Limit
Theorem (which, roughly speaking, states, that the sum of many in-
dependent random variables approaches a normal distribution as their
number goes to infinity) to argue in favor of a Gaussian distribution:
A(T ) ∼ N(µT, σ2(T )). The mean µ of the offered traffic is easy to
estimate with coarse grained measurements but opposed to that, the
variance σ2 is describing the short time behaviour and thus is depen-
dent on the choice of the duration T and not as easy to obtain as the
mean.

The fidelity of the proposed model types is then tested with the collected
measurements.

For the flow-based modelling it turns out, that the traffic rates, although
they are more or less constant for each flow, differ quite a lot between flows.
Moreover, the duration and the rate seems not to be independent. These
observations are made with different definitions for “flow” and also with
additional assumptions like restricting the attention just to the flows that
consume much bandwidth (“elephants”) or grouping flows according to their
rates, but in the end the flow-based modeling seems to be not suitable and
is rejected.

For the Gaussian black-box models on the other hand, goodness-of-fit and
Kolmogorov-Smirnov tests are applied and they indicate (or, more correctly
speaking, they do not indicate the opposite), that the traffic of the collected
measurements is more or less Gaussian, if at least some tens of users ag-
gregate their flows in the core link and if the timescale T is not too small.
Orders of magnitude between tens and thousands of milliseconds, which is

Chapter 2. Review of recent work



12 2.3: The model-based approach of van de Meent

the interesting range, because as stated earlier performance is believed to be
perceived in this orders, for T are “big enough”.

Van de Meent found that Gaussian black box models were better because
they are applicable to a wide range of conditions, require less knowledge, are
far easier to estimate and, as it will turn out, easier to use in the provisioning
formulas.
As an advantage of flow-based modeling, however, it is pointed out, that
it provides more insight into the traffic distribution, what makes sensitivity
analyses, for instance how changes in the flow rates or the number of users
would affect the needed core link capacity, possible.

2.3.3 The provisioning rules

Van de Meent uses the so called Markov inequality (which states, that for
any nonnegative random variable X and any a ≥ 0: P (X ≥ a) ≤ E(X)/a) to
obtain a “generic” criterion to ensure that the performance criterion (2.1) is
met. With the assumption that the offered traffic A(T ) is a random variable
distributed according to any stationary distribution, the following approxi-
mation for a lower bound for the core link capacity is derived:

C(T, ε) ≥ inf
ϑ≥0

logE(eϑA(T ))− log ε

ϑ T
=⇒ P (A(T ) ≥ CT ) ≤ ε (2.2)

For details of the derivation, see [vdM06, ch. 4.1]. Clearly, the moment
generating function mgf(A(T )) := E(eϑA(T )) of A(T ) is needed in order to
evaluate (2.2), which is of course normally not known. So van der Meent
uses the Gaussian model from 2.3.2 to gain an expression for the mgf.
As the mgf of a Gaussian distribution is well known, it is simply inserted
in (2.2), the infimum is determined analytically, and finally, the following
formula results:

C(T, ε) = µ+
1

T

√
−2σ2(T ) log ε (2.3)

This formula now includes the performance criterion (2.1) with ε and T , and
the model of the offered traffic with µ and σ2(T ). The variance σ2(T ) is not
directly accessible through coarse grained measurements, and so (2.3) is not
directly computable. So, van de Meent uses the following constructions to
estimate the variance only from coarse grained measurements.

Lemma 2.1. Let the traffic of n sources be aggregated in a link with buffer
capacity L, define l with L = l

n
and let nb denote a threshold for the buffer
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2.3: The model-based approach of van de Meent 13

occupancy. Furthermore, assume that the traffic of each source is following a
Gaussian distribution with mean µ̄ and variance σ2. Now, if Q is the buffer
occupancy, then it holds for b > 0 and l > µ̄, that

− lim
n→∞

1

n
log (P (Q ≥ nb)) = inf

t>0

(b+ (l − µ̄)t)2

2σ2(t)
(2.4)

Although this lemma looks strange, it is providing an asymptotic relationship
between the buffer occupancy distribution and the variance of the offered
traffic.
As the lemma is not scale free (depends on the n flows from the aggregate
traffic), some more approximations are made and finally are yielding the
following lemma:

Lemma 2.2. Let µ be the mean and σ2 be the variance of the aggregate
traffic, L still is the buffer capacity. Then it holds for L > µ and B > 0:

P (Q > B) ≈ exp

(
− inf

t>0

(B + (L− µ)t)2

2σ2(t)

)
(2.5)

This can be inverted to

σ2(t) ≈ inf
B>0

(B + (L− µ)t)2

−2 logP (Q > B)
(2.6)

Equation (2.6) now makes it possible, to use coarse grained samples of the
buffer occupancy to gain an empirical distribution which then can be used to
approximate the variance. Then it is possible to evaluate (2.3) which yields
the necessary bandwidth C(T, ε).
For a detailed deduction please see [vdM06, Ch. 5].

Validation of these results is given in his thesis empirically. This is done in
two steps. First, the variance is estimated using the fine grained measure-
ments, and then is inserted in (2.3) to obtain C(T, ε). It then is possible to
simply “count” the spikes that are exceeding C(T, ε) and compare this value
to the target ε.
Although not applicable in practice, this provides a good way of validating
(2.3) and it appears, that the Gaussian model tends to underestimate the
frequency of the highest spikes in the offered traffic, nevertheless the formula
works quite well.
Also, for every location the parameter α for rules-of-thumb of the type
C ≈ (1 + α)µ is calculated, and it turns out, that α varies between close
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14 2.4: Alternatives to over-provisioning

to 1 and nearly 4, so as a side-effect strong evidence is given, that rules-of-
thumb of that type are not very useful.
Second, the variance estimation formula (2.6) is validated by comparing the
result to the empirically calculated variance of the sample measurements.
The buffer occupancy distribution is thereby estimated using the measure-
ments as input to a virtual queue.
The results suggest, that the derived formula gives a reasonable approxima-
tion for the variance.

2.4 Alternatives to over-provisioning

A completely different approach to user satisfaction is to enable network
entities to distinguish between packets that are belonging to different ap-
plications and thus pose different requirements on the network. The two
main implementations of this idea are the reservation based IntServ and the
priority based DiffServ.

2.4.1 DiffServ

DiffServ stands for Differentiated Services and yields a relative performance
guarantee by assigning each data packet to a class. A reserved byte in the IP-
Header of each data packet is used to place each packet into a finite number of
classes. There is no standard behaviour for each class, so each operator of a so
called DiffServ domain (which refers to a group of routers that implement the
same DiffServ policies) is free to choose, how packets belonging to different
classes are treated. Nevertheless, in practice some classes are recommended,
for instance “Expedited Forwarding” (EF) for traffic which requires low loss
and low latency.

So each packet entering a DiffServ aware router is treated according to its
class and the policies of the DiffServ domain the router belongs to. There are
two major points of critique on this approach. One is, that if a packet passes
several networks on its way to its destination, its class can be treated differ-
ently in each one of them, which makes end-to-end behaviour unpredictable.
Another flaw is, that, as everyone wants his packets to be transmitted, there
is a tendency to mark packets with the class of highest priority so in the end
one could end up with all packets marked highest priority and thus DiffServ
virtually disabled.
For details on DiffServ see e.g. [BBC+98] and the references therein.
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2.4.2 IntServ

IntServ stands for Integrated Services. The basic idea is, that flows send
reservation requests to the routers on the way to their destinations, and
routers either accept or reject these reservations.

This offers an absolute performance guarantee, but the disadvantages are
obvious: Each router on the way has to support IntServ. Moreover, IntServ
forces the routers to keep a lot of information about reservations, which
increases the complexity and introduces scalability problems.
For details on IntServ see [BCS94] and references therein.

2.5 A critique of proposed approaches

As for the model-based approaches, it is generally accepted that no model
can cover every condition. In other words models will be wrong under certain
circumstances. For example, the mixture of internet traffic changes continu-
ously: Some years ago, bandwidth did not allow for large down- or uploads,
whereas novadays, movies and large applications are shared and sold via the
internet. At the moment, VoIP and video streaming gain more and more
importance, and so any new application or protocol can change the traffic
mixture conceivably and thereby invalidate empirically derived models com-
pletely.

Additional techniques like DiffServ and IntServ have (in addition to those
mentioned in Section 2.4) the intrinsic disadvantage, that additional tech-
niques cause additional complexity, what creates the need for better trained
and thus more expensive staff on the one hand and leads to scalability prob-
lems on the other hand.

So an approach which ensures QoS without introducing additional complexity
and without dependency on the applicability of model assumptions would
definitely spark interest in many different areas. We hope to present such an
approach in the remainder of this thesis.
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Chapter 3

Feedback control and link
provisioning

3.1 Structure of the chapter to come

In this chapter, we first recall the shortcomings of earlier approaches to mo-
tivate the method proposed here (Section 3.2). The rest of this chapter is
structured as follows. We begin in Section 3.3 by reviewing ADT, which
can be seen as the “older brother” of our approach. We then introduce a
feedback-based approach to the link provisioning problem, and point out the
parallels with ADT [SSK06, KSL06] (Section 3.4).
Section 3.5 is dedicated to the technical details of possible control algorithms
and finally, in Section 3.6, some simulation examples for the usefulness of the
control-based approach are given. These examples illustrate that the queue
information can indeed be utilized to obtain fine information concerning traf-
fic at a core link, without the need for finely sampled measurement data.

3.2 Shortcomings of earlier approaches

The approaches in Chapter 2 suffer major shortcomings.

Principally, model based approaches rely crucially on the fidelity of the pro-
posed model. However, all models are only as good as the assumptions that
they are built under, and given the nonstationary behaviour of networks,
and network traffic, such models are highly questionable in internet environ-
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3.3: Preamble: Adaptive Drop-Tail queueing 17

ments. These concerns clearly undermine rules-of-thumb for link provisioning
derived from these models.

Conventional measurement-based approaches suffer from the drawback, that
the available, coarse grained measurements itself may not contain enough
information to base a link provisioning on. Such approaches, to function
effectively, must have access not only to mean traffic levels, but also to burst
behaviour. Such information is clearly not available without finely sampled
measurements [Co].

Our control-based approach however overcomes these concerns. We exploit
information in the queue size that not only reflects traffic patterns over short
time scales, but also information on traffic bursts.

3.3 Preamble: Adaptive Drop-Tail queueing

The basic idea exploited here has been proposed to solve a different problem.
Network buffers are typically provided with capacity according to the BDP
(Bandwidth Delay Product) rule. The BDP rule determines the amount of
buffering needed to ensure full utilization of a congested link and gives the
buffer capacity L = BW ×RTT , where RTT is the average round trip time,
under the assumption of source synchronisation.

In [AKM04], Appenzeller et. al. proposed an improved formula exploiting
the fact that TCP flows backoff in an asynchronous manner. He showed, for
highly multiplexed links, that buffers can be sized as L = a√

n
BW × RTT ,

where n denotes the number of active flows that are sharing the link under
observation and a is a scaling factor which depends on the desired utilization
of the link. This utilization can be chosen arbitrarily close to 100% while still
keeping a small, for instance corresponds a = 2 to a utilization of 99.99997%.
Considering, that core links normally carry tens of thousands of flows simul-
taneously, the reduction of necessary buffer space, and hence the reduction
of the costs for memory devices, is huge. The problem in applying this result
lies in the number of active flows, which is normally not known. In [Mor00],
this problem is handled by parsing every arriving packet to maintain an in-
ternal counter. Indeed, this is not possible with standard routers and thus
again makes additional technologies necessary.

But the mere observation, that there exists an unique optimal queue capacity
for every utilization that only depends on some “environmental” conditions
can be used as a starting point for a closed-loop algorithm that seeks to find
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Router

Controller

offered traffic

queue capacity utilization

Figure 3.1: The signal flow diagram of ADT

the target buffer for a given target utilization. This idea was introduced
in [SSK06]: Adaptive Drop-Tail (ADT). This algorithm applies a control
scheme which is trying to find the minimum queue capacity to reach the
target utilization. The ADT algorithm consists basically of two steps: In the
first step, the controller calculates the average utilization over the last time
interval, using the readily available measurements via SNMP. As a second
step, the controller decides on the new queue capacity according to some
algorithm. This algorithm can be chosen out of a vast range of control al-
gorithms, which of course all have in common that they react to a too low
utilization with an increase in queue capacity and vice versa. The new queue
capacity is then applied to the router via ssh, a functionality which most
routers already support.
The implementation of this idea is non-invasive and only requires one ad-
ditional workstation which is polling the router via SNMP, evaluating the
control algorithm and applying the new queue capacity via ssh every time
interval. Typical time intervals are in the order of minutes, so absolutely
no complexity is added. See the signal-flow diagram of the feedback loop in
Figure 3.1 and a schematic illustration of the implementation in Figure 3.2.

3.4 Control-based core link provisioning

As already mentioned in Section 3.3, ADT is useful for congested links. A
sufficiently over-provisioned core link opposed to that is not congested, so
very low utilization is intrinsic to it and an ADT would not make much
sense in that case.

So instead, one could employ the queue capacity to control another important
parameter, namely the loss rate λ. We will show, that using the queue
capacity to control λ yields additional insights into the traffic arrival process
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Measurements via SNMP
e.g. Packet arrivals/drops

via ssh

new queue capacity
Polling via SNMP/

inbound traffic outbound trafficRouter

Control algorithm

Figure 3.2: Schematic implementation of ADT or control-based link provi-
sioning, respectively

which can be used to trigger link upgrades.

3.4.1 Motivating example

Example 3.1 (On/Off CBR traffic). Imagine a very artificial traffic scenario
where the traffic consists of a constant bitrate (CBR) flow with rectangular
shaped bitrate, oscillating with amplitude α around the mean µ (see Figure
3.3). For that basic case, it is very easy to derive a formula which connects

the queue capacity L and the loss rate explicitly: λ := #{lost bytes}
#{arrived bytes} :

The queue has to cater for the traffic exceeding the Bandwidth β; if the queue
is full, the exceeding bytes get dropped. In the phase, where the offered traffic
is less than the bandwidth, no bytes are lost, so:

#{lost bytes} = max{0, (µ+ α− β)T − L}

And, of course #{arrived bytes} = (µ+ α)T + (µ− α)T = 2µT . Thus if we
assume that there are losses at all:

λ =
(µ+ α− β)T − L

2µT
(3.1)

which is then easily inverted to

αT = T (2λ− 1)µ+ βT + L (3.2)

or
L = T (µ(1− 2λ) + α− β) (3.3)
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20 3.4: Control-based core link provisioning

As L is known and µ and λ are available through coarse grained measure-
ments, we could infer an “effective amplitude” of the offered traffic for any
timescale T we choose and, more important, that makes it possible to differ
between two scenarios with the same mean.

Simulation results that illustrate the derived relations are given in Example
3.2.

BW

µ

T

α

Figure 3.3: Cutout of the offered Traffic in Example 3.1. BW is the band-
width β of the link, µ is the mean, α the amplitude, and T half the period
of the oscillating offered traffic.

3.4.2 Basic idea

The basic idea described here is very simple. Instead of measuring the short
time scale behaviour, we employ a control algorithm to find the queue capac-
ity that corresponds to a pre-specified loss rate. Indeed, the target loss rate
has to be a very small one, otherwise it would lead to severe performance
degradation.
Intuitively, traffic with more spikes that are exceeding the core link capacity
should require a bigger queue capacity. So the queue capacity is capable of
tracking short time scale behaviour that is not accessible by just observing
long term averages. Thus, a rising trend in the queue capacity could be seen
as an indication that an upgrade of the core link is advisable.

Another interpretation also is available:
If you have a gateway router to a core link with a fixed (and normally large)
buffer capacity, losses only occur when the offered traffic is exceeding the
bandwidth in an amount (that means “high” and “long” enough), sufficient
to fill the buffer. Then, the number of losses is a secure indicator for how
much the link is underprovisioned. So the event of the loss rate exceeding
a certain threshhold could be seen as the “too small”-event, the upgrade
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Router

Controller

offered traffic

queue capacity utilization
λ

Figure 3.4: The signal-flow diagram of the loss rate control

should be done “at once”. Considering that we are talking about core links
which normally are laid subsurface, an instantaneous upgrade certainly is
not possible.
So the alternative interpretation of our approach could be: by decreasing the
queue capacity, we force “too small” events, but we can react to this kind
simply by increasing the queuesize. If the event was only valid temporarily,
the controller will decrease the capacity again, but a number of “too small”-
events at increasing capacities then can be used to trigger the upgrade.

The connection to ADT (Section 3.3) is pointed out in the signal-flow diagram
in Figure 3.4. The implementation can be illustrated with Figure 3.2 because
it is the same as for ADT.

3.4.3 Discussion of the control-based approach

This approach does not suffer from the weaknesses of other approaches. In
particular it is characterised by the following properties.

(a) Model-independence: Because our approach is a closed-loop ap-
proach, it does not depend on a certain model for the traffic arrival
process. Model-based approaches on the other hand rely on the appli-
cability of the models they are based on.

(b) It is non-invasive, easily implemented: The controller relies only
on coarse grained measurements which are readily available by polling
the router via SNMP. The control action of adjusting the queue ca-
pacity is only to be executed in the same frequency as the polling and
can be done via ssh, since most routers novadays are equipped with
this functionality. So no additional technologies are needed, just one
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22 3.4: Control-based core link provisioning

workstation in the network to gather the information and adjust the
queue capacity. For an illustration of the implementation see Figure
3.2

Of course, there are some drawbacks as well. Opposed to performance criteria
like (2.1), our approach is not based upon an explicit performance criterion,
so some intuition is still needed to decide which queue capacity is “too much”.
Further, care must be taken while choosing the target loss rate. Chosen too
small, it will make control useless because it might not even correspond to
a single dropped packet during a sampling interval, chosen to high it will
degrade the utilization because the TCP senders “think” the link is already
congested while in fact it is not.

Example 3.2 (The motivating example revisited). We ran a ns2 simulation
of the scenario of Example 3.1. Our parameters are: β = 7Mbit/s, µ =
5Mbit/s, α1 = 3Mbit/s, α2 = 4Mbit/s and T = 1s. The packet size is hereby
fixed to 500bytes, so the calculations can be directly converted from the unit
bits to packets. See the results in Figure 3.5.
This should illustrate, that (3.3) does indeed give the right queue capacity, or
in other words, that a perfect control would do in that case, what we expect:
The queue capacity informs us of the increased peaks in the offered traffic.
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Figure 3.5: ns2 results. The slight deviation between λ and the target of
0.01 is to be blamed on the integer nature of the process: The computation
of (3.3) requires at least rounding to whole bits, the conversion to packets
introduces another rounding error.
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3.5 Control algorithms

The basic difficulty in this control problem is, that there is no model for
our plant. The only assumption, that clearly holds, is that the gain indeed
is non-positive: A bigger queue capacity never yields a higher loss rate.

A second problem is caused by the discrete-event nature of this problem:
Although we are treating loss rate as a continuous quantity, it of course is
a discrete one. The highest possible resolution is either a single packet or
a bit. Nevertheless, we are ignoring this fact, which seems reasonable, as
we are focussing on big core links and large sampling intervals, so a sample
contains some tens of thousands up to some tens of milions of packets. The
controller maintains the floating point variable q̃ as a state, which is then
rounded to an integer value before being sent to the router. Still, some care
needs to be taken with the target loss rate, because it should be “reachable”,
which means it should not be 1.5 packets or 0.2 bytes.

Another difficulty is that of limited controller output: Of course, the
queue capacity has an upper threshold as well as a lower threshhold. It
is known to control engineers, that saturating inputs in connection with
integrating controllers can lead to so called Wind-Up phenomena. Roughly
speaking this means, that the controller does not notice the saturating input
and keeps on demanding higher values. We address this problem by simply
limiting the state of the controller q̃. Therefore we define a function SAT :
R→ [x, x] as follows:

SAT(x) =


x if x > x
x if x ≤ x ≤ x
x if x < x

(3.4)

where x > x are some upper and lower limits.

Another peculiarity is the asymmetry between positive and negative con-
trol deviations. A too low loss rate would not trouble anybody, whereas a
large peak in the loss rate would cause some problems: Time consuming
retransmits and TCP sources backing off would degrade the performance
conceivably.

So model-based algorithms like MPC or feedback linearisation are not suit-
able for this problem. Instead, we focus on simple and robust control al-
gorithms. Therefore we employ a linear filter to smoothen the data, which
despite of relatively long sampling intervals still is very noisy. The filter will
be detailed in Section 3.5.1.
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The filter will then be combined with a simple control algorithm, either a
linear integral controller, a MIMD or a MIAD algorithm. Those will be
described in Sections 3.5.2, 3.5.3 and 3.5.4.

3.5.1 Linear filter

As we here are dealing with sampled data, the behaviour of the filter can
be described either in the z-domain or as a difference equation. Denote the
input of the filter, which will be the control deviation, with e, and its output,
which will be the input for the control algorithm, with u. The order of the
filter NF gives the length of its memory, i.e. over how many intervals it is
averaging.
Now let ρi, i = 1 . . . NF − 1, with ρi ≥ 0 and

∑NF

i=0 ρi = 1 denote some
weighting factors. Then, the transfer function of such a linear filter is given
by

F (z) =
ρNF

zNF

zNF −
∑NF−1

i=0 ρizi
(3.5)

The resulting difference equation is

u(k +NF ) = ρNF
e(k +NF ) +

NF−1∑
i=0

ρiu(k + i) (3.6)

or, equivalently, after applying a time shift of NF time steps

u(k) = ρNF
e(k) +

NF−1∑
i=0

ρiu(k −NF + i) (3.7)

Note, that for the sake of simplicity, the sampling time Ts is set to 1 here.
Otherwise every argument of e and u had to be multiplied by Ts.

3.5.2 Linear controller

As the system is subject to a lot of noise, a differentiating part does not
seem wise. The same applies for a proportional part, so the first proposal is
a simple integral controller. Note, that the system is indeed a sampled one,
so the control law is given by

K(z) =
γz

z − 1
∼ q ((k + 1)Ts) = γu ((k + 1)Ts) + q(kTs) (3.8)
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where Ts denotes the sampling time, γ is the gain of the controller, q is the
output of the controller (viz the queue capacity) and u is the input to it.
Further, note that, as the gain of the plant is non-positive, at some stage
a negative gain needs to be introduced into the loop. We will do this by
computing the deviation as e = λ− λ∗.

A possible extension to cater for the asymmetry mentioned in the intro-
duction of a “relative gain” γrel. This means that for a negative deviation
another gain is used than for a positive one.

γ  

{
γrelγ if u > 0
γ else

(3.9)

Algorithm 1 Linear controller

if now - lasttime > Ts then

λ =
#{dropped since lasttime}
#{arrived since lasttime}

deviation = λ− λ∗

filtered deviation = ρ deviation + (1− ρ) filtered deviation lasttime
if filtered deviation > 0 then
q̃ = SAT(q̃ + γ γrel filtered deviation)

else if filtered deviation < 0 then
q̃ = SAT(q̃ + γ filtered deviation)

end if
q = round(q̃)
lasttime = now
filtered deviation lasttime = filtered deviation

end if

Note that in algorithm 1, only a first order filter (NF = 1) is described.
Higher orders can be realized analogously.

3.5.3 Multiplicative Increase Multiplicative Decrease
- MIMD

In [SSK06], a MIMD algorithm is proposed. Of course, a similar algorithm
is applicable here.

It is described in algorithm 2. Ts denotes the length of a sampling interval,
I > 1 and 0 < D < 1 are the increase and decrease parameters. The
asymmetry mentioned in the introduction to this chapter should be accounted
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Algorithm 2 MIMD

if now - lasttime > Ts then

λ =
#{dropped since lasttime}
#{arrived since lasttime}

deviation = λ− λ∗

filtered deviation = ρ deviation + (1− ρ) filtered deviation lasttime
if filtered deviation > 0 then
q̃ = SAT(q̃ × I)

else if filtered deviation < 0 then
q̃ = SAT(q̃ ×D)

end if
q = round(q̃)
lasttime = now
filtered deviation lasttime = filtered deviation

end if

for by choosing I > D−1, which implies that in the case of a too high loss
rate followed by a too low loss rate, the queue remains at a bigger capacity
than before.

3.5.4 Multiplicative Increase Additive Decrease -
MIAD

As the TCP congestion control is based on a AIMD algorithm, it seems
straight forward to base the loss rate control on the counterpart, namely a
MIAD algorithm. This algorithm is respecting the asymmetry even more
than the MIMD algorithm as the multiplicative increase is responding much
more aggressively to too high loss rates than the additive decrease is to too
low loss rates.

Again, Ts denotes the length of a sampling interval, I and D are the increase
and decrease parameters. This time, D should be a positive integer, D ∈ Z+.

3.6 Basic ns2 simulation results

In this section we will present some simulation results to illustrate further,
how the control-based approach can yield additional information and how this
additional information could be interpreted. Therefore we will first revisit the
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Algorithm 3 MIAD

if now - lasttime > Ts then

λ =
#{dropped since lasttime}
#{arrived since lasttime}

deviation = λ− λ∗

filtered deviation = ρ deviation + (1− ρ) filtered deviation lasttime
if filtered deviation > 0 then
q = SAT(q × I)

else if filtered deviation < 0 then
q = SAT(q −D)

end if
lasttime = now
filtered deviation lasttime = filtered deviation

end if

motivating Example 3.1 and apply a controller to it to show, that it indeed
finds the appropriate queue capacity and by that indicates the difference
between the two parts of the experiment.
In a second experiment, we show how the queue can make the difference
between a rather smooth arrival process and a rather bursty one, namely a
superposition of long-lived TCP-flows and Poisson distributed inter-arrival
times, visible.

3.6.1 The motivating example re-revisited

We are now using the same traffic arrival process as in Example 3.2, i.e.
rectangular oscillations around mean µ with amplitude αi and period 2T .
β = 7Mbit/s, µ = 5Mbit/s, α1 = 3Mbit/s, α2 = 4Mbit/s and T = 1s
(also see Figure 3.3). But instead of just calculating the appropriate queue
capacity and applying it, we connect the controller as depicted in Figure
3.4. The control algorithm is the integral controller with a first order filter,
described in algorithm 1. The parameters for the controller are γ = 600,
γrel = 2, Ts = 60s, ρ = 0.7 and NF = 1.
The results are shown in Figure 3.6 and are quite convincing. Note that,
of course, this is no big surprise, as the example is a very artificial one.
Nevertheless it is apt to give further motivation for our approach.
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Figure 3.6: Simulation results for Section 3.6.1. The traffic arrivals are the
same as in Example 3.2 and are shown in Figure 3.5(a).

3.6.2 Smooth traffic versus bursty traffic

In this section we show how our approach enables us to distinguish between
two arrival processes that show quite similar behaviour on the coarse grained
timescale of the SNMP measurements but exhibit quite different behaviour
on finer timescales, i.e. one has a significantly higher variance than the other.

The first scenario will be Poisson-distributed interarrival times, i.e. the time
between two packet arrivals is a Poisson distributed random variable whose
mean (along with the size of a single packet) can be used to control the mean
arrival rate. This will be the scenario with the higher variance.
The second scenario will include rather well behaved long-lived TCP flows,
where we use the number of active flows to control the arrival rate.

The set-ups

Example 3.3 (Poisson arrivals). For this scenario, we set up two links
in ns2, connected by a drop tail buffer whose capacity is controlled by
our algorithm. The bandwidth of the first link has to be only big enough,
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controlled queue

core link, bandwidth = bwc

TCP source 1

TCP source 2

TCP source n

access links, bandwidth = bwa

Figure 3.7: Topology of the TCP setup

because it will be carrying the Poisson distributed traffic (representing the
superposition of all access links) to the core link. The core link has the
capacity bwc = 15Mbit/s.
We start with an average offered traffic well below the core link bandwidth
and increase the intensity every fixed timestep (around 15min) by decreasing
the mean interarrival time. The decreases are chosen in a way, that the
mean traffic arrival rate increases by 0.1Mbit/s every time.
The integral controller from algorithm 1 with a first order filter is used. The
parameters are: Ts = 60s, γ = 6000, γrel = 5 and q = 30. The filter constant
is ρ = 0.7 and the target loss rate is λ∗ = 5 · 10−4.

Example 3.4 (Long-lived TCP flows). In this experiment, a topology like
depicted in Figure 3.7, where there is a clear distinction between access links
and core link, was set up in ns2.
A certain number N0 of TCP-flows was started at once and then one was
added every fixed time interval to slowly increase the load on the core link.
The bandwidth of the access links and the core link, respectively, is bwa =
0.1Mbit/s and bwc = 15Mbit/s. This parameters are chosen to make this
experiment comparable to the last one, so the aggregate traffic increases in
the same steps. The controller parameters are also the same as in Example
3.3.

A sample of the offered traffic for both scenarios is shown in Figure 3.8. The
measurements are taken on a much finer timescale than the controller is able
to see, namely the plots have a 600 times finer resolution than the data the
controller uses.
The different “burstinesses” are easy to recognize. To be able to assign a value
to this observation, we took samples of 500 consecutive measurement points
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and calculated their variance. This yielded a variance of σ2
pois ≈ 1(Mbit/s)2

for Figure 3.8(a) and σ2
tcp ≈ 0.5(Mbit/s)2 for Figure 3.8(b).

Following our earlier reasoning for the control-based approach, the more
bursty traffic, namely the Poisson traffic, should require an update earlier
than the rather smooth TCP-traffic. Thus, we should see the required queue
capacity rising earlier in the first scenario than in the second one.
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(a) Poisson case (Example 3.3)
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(b) TCP case (Example 3.4)

Figure 3.8: Cutouts of the fine grained measurements of the offered traffic.
Measurements have been taken every 100ms. The different “burstiness” is
obvious.

Results and interpretation

In Figures 3.9 and 3.10, the measurements of the offered traffic the controller
has access to (i.e. on the timescale of Ts, which is 60s in this case) and the
queue capacity is shown for both scenarios. This is basically the information,
a network operator can base his decision on upgrading the link on.
Although not completely identical, the offered traffic looks quite similar,
whereas there is a big difference in the queue capacities!

In the Poisson case (Figure 3.9), we see the queue steadily rising from ap-
proximately tpois ≈ 16000s, when the traffic level reached Apois ≈ 13.7Mbit/s.
This already indicates that “something is going on”, when the margin be-
tween the average offered traffic and the core link bandwith still is β−Apois ≈
1.3Mbit/s. More precisely, from a rising queue the network operator can tell,
that spikes are reaching the core link bandwidth in a sufficient frequency and
height to require an increase in the queue capacity.

In contrast to that, in the TCP case (Figure 3.10), the queue is showing no
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activity until the link is almost fully utilized. Then it rises very quickly to
its maximum.
Indeed, in this scenario, there is no early warning from the queue. But,
thinking the other way round, this just shows, that a well-behaved traffic
like this can be operated with no problem until a utilization of almost 100%.
So in this scenario, the offered traffic could (and should) be used as a trigger
instead of the queue.

The simulations demonstrate the effectiveness of our approach as well as
the fact, that our approach is rather able to supply decision makers with
additional information than to yield explicit criteria one can apply without
further knowledge.

This two examples demonstrated, how a clear distinction between a well-
behaved traffic scenario and a burstier one can be made without requiring
more than the available, coarse grained measurements and without introduc-
ing any noticeable complexity. The queue indicated the spikes of the bursty
traffic early and allowed operation of the core link close to congestion in the
less bursty case.
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Figure 3.9: ns2 simulation results for Example 3.3.
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Figure 3.10: ns2 simulation results for Example 3.4.
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Chapter 4

Theoretical contribution:
Stability of discrete time
switched linear and Lur’e
systems

4.1 Overview

In this chapter, stability results using common quadratic Lyapunov functions
on switched linear systems and the Lur’e absolute stability problem will be
reviewed and connected. Additionally, the Bilinear Transform will be utilized
to translate discrete time problems into continuous time problems.

In Section 4.2, we start with important definitions on systems, switched
linear systems and Lyapunov functions and in Theorem 4.4, the first and
most important stability result on switched systems will be given.
Section 4.3 will contain the definition of the Lur’e system and connect its
stability to switched systems.
The first stability results on continuous time problems will be given in Section
4.4, including the circle criterion and spectral criteria. Robust versions of the
spectral criteria will be added in Section 4.5.
In Section 4.6, the translation of discrete time problems to continuous time
will be demonstrated and some discrete time versions of earlier results will
be given.
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34 4.2: Switched systems and Lyapunov functions

4.2 Switched systems and Lyapunov func-

tions

Definition 4.1 (Continuous, discrete-time and continuous-time systems).
Let n ∈ N+ and f, g: Rn ×Rp ×R+ → Rn for the continuous time case and
Rn × Rp × N → Rn for the discrete time case be functions. Then we have
the system equations

ẋ(t) = f(x(t), u(t), t); x(t0) = x0, t ≥ t0 (CT)

y(t) = g(x, u, t) (CT)

and

x(k + 1) = f(x(k), u(k), k); x(k0) = x0, k = k0, k0 + 1, . . . (DT)

y(k) = g(x, u, t) (DT)

x is called the state of the system, x0 is called initial state and n is the
dimension of the system. u is called the input and y is called the output
of the system. The functions f and g are called the state and output
equations. We will denote a solution of the system according to a certain
initial state x0 and a given input sequence u with x(t;u, x0) or x(k;u, x0)
respectively.
The systems are:

continuous if the state of the systems evolves in (a continuous subset of)
Rn;

autonomous if there are no inputs;

time-variant if f and g directly depend on t or k, respectively and;

time-invariant if f and g do not directly depend on t or k, respectively.

For the sake of simplicity and without loss of generality, we will assume here,
that for time-invariant systems t0 = 0, k0 = 0 and that, if equilibria exist,
one of them is the origin. Otherwise we can simply shift the state-space: If
xs 6= 0 is an equilibrium, then define ξ := x − xs. In the new state ξ, ξ = 0
is an equilibrium.

Many of the following definitions and Theorems will have analogous formu-
lations for discrete and continuous time. We will indicate the relation to
continuous time by CT and discrete time by DT.
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Definition 4.2 (Autonomous LTI systems). Let, for the sake of simplicity,
g(x, u, t) = x, that is the identity. A system of the form (CT) or (DT) is
called a linear time-invariant (LTI) system, if f is a linear function and
does not depend on the time t or k, respectively, i.e. if there exists a matrix
A ∈ Rn×n with which the system equations can be written as

ẋ = Ax; x(t0) = x0 (LCT)

and

x(k + 1) = Ax(k); x(k0) = x0 (LDT)

A is called the system matrix of the LTI system. As the systems (LCT)
and (LDT) are uniquely defined by their system matrices, we sometimes will
refer to the “system A”. Note, that x = 0 always is an equilibrium of (LCT)
and (LDT).

Definition 4.3 (State-space representation of a LTI system with inputs).
The system descriptions

ẋ(t) = Ax(t) +Bu(t) (4.7a)

y(t) = Cx(t) +Du(t) (4.7b)

in continuous time and

x(k + 1) = Ax(k) +Bu(k) (4.8a)

y(k) = Cx(k) +Du(k) (4.8b)

in discrete time are called a state-space representation of a system.
We will denote that by [A,B,C,D].
Here, x is again the state of the system, u is the input and y is the output.
If B and CT are column vectors, that is x, u ∈ R, the system is called a
single-input single-output (SiSo) system.

Definition 4.4 (Transfer function and realization of a SiSo LTI system).
Let [A,B,C,D] be a state-space representation of a SiSo system, either CT
or DT.
We call G(s) = C(sI − A)−1B +D for CT and G(z) = C(zI − A)−1B +D
for DT the transfer function of the system.
Vice versa, [A,B,C,D] is called a realization of G(s) or G(z), respectively.
Note that there are infinitely many realizations for any proper (see the next
definition) transfer function.
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Definition 4.5 (Proper, strictly proper and biproper). Let G(w) =
b0+b1+...bmwm

a0+a1w+...anwn be a transfer function, where w is either s or z. Then the
transfer function is called
proper if m ≤ n;
strictly proper if m < n (Note that in that case, D = 0 in any realization);
biproper if m = n (In that case, D 6= 0 in any realization); and
improper if m > n. In that case, no realization exists.

4.2.1 Lyapunov functions

The idea behind Lyapunov theory is the following: If the distance between
any trajectory and an equilibrium decreases with time to 0, then this equi-
librium is asymptotically stable. Now trajectories do not always choose the
direct way to the equilibrium, so the Euclidian distance does not decrease
necessarily all the time. But if one can find a kind of generalized distance
that decreases monotonically, this generalized distance could be used to prove
stability by looking at its time derivative. This generalized distance is called
a Lyapunov function.

Definition 4.6 (Lyapunov function candidate). A continuous and differen-
tiable function V : Rn → R is called a Lyapunov function candidate, if

V (x) →∞ if ‖x‖ → ∞ (radially unbounded) (4.9a)

V (x) ≥ 0 ∀x ∈ Rn (positive semidefinite) (4.9b)

V (x) = 0 ⇔x = 0 (4.9c)

Note, that every vector norm is a Lyapunov function candidate. This sup-
ports the interpretation as a generalized distance. Now we will state, for
which cases this generalized distance is useful and in Theorem 4.1 the sta-
bility criterion will be given.

Definition 4.7 (CT Lyapunov function). A Lyapunov function candidate is
a Lyapunov function (LF) for the system (CT), if it is strictly decreasing
along solutions of (CT), i.e.:

V̇ (x(t;x0)) =
∂V

∂x
f(x, t) < 0 ∀ t > 0, x, x0 ∈ Rn\{0} (4.10)

Definition 4.8 (DT Lyapunov function). A Lyapunov function candidate is
a Lyapunov function (LF) for the system (DT), if it is strictly decreasing
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along solutions of (DT), i.e.:

V (x(k + 1))− V (x(k)) = V (f(x(k)))− V (x(k)) < 0

∀k > 0, x, x0 ∈ Rn\{0} (4.11)

Theorem 4.1 (Global asymptotic stability). The origin is globally asymp-
totically stable for the system (CT) or (DT), respectively.
⇐=
There exists a Lyapunov function for the system (CT) or (DT), respectively.

So far, no hint on how to actually obtain such a Lyapunov function has been
given. For a general system like (CT) or (DT), there is no general answer to
this question. Usually this presents no problem since we are only concerned
whether a Lyapunov function exists at all. However, for the LTI systems
(LCT) and (LDT), there are some very simple results which we will now
mention briefly.

Definition 4.9 (QLF). A function of the form V (x) = xTPx with a sym-
metric, positive definite n × n matrix P is called a quadratic Lyapunov
function (QLF) candidate.
For functions of this type, all conditions of Definition 4.6 are automatically
satisfied, so they do not need to be checked anymore.

For this type of Lyapunov function candidate in connection with LTI sys-
tems, algebraic criteria for (4.10) and (4.11) can be easily obtained by simply
inserting the system Equations (LCT) and (LDT) into Equations (4.10) and
(4.11), respectively. These algebraic criteria, known as the Lyapunov and
Stein equations (4.12) and (4.13), respectively, and a well known spectral
condition for the stability of LTI systems, are given in the following two
Theorems.

Theorem 4.2 (Stability of CT LTI systems). Let A be the system matrix of
a CT LTI system. Then the following statements are equivalent:

1. The origin is the unique asymptotically stable equilibrium.

2. There exist P > 0 and Q > 0 which satisfy the so called Lyapunov
equation

ATP + PA = −Q (4.12)

and V (x) = xTPx is a QLF.
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3. The matrix A is Hurwitz, that is for any eigenvalue λi of A: Re(λi) <
0.

Theorem 4.3 (Stability of DT LTI systems). Let A be the system matrix of
a DT LTI system. Then the following statements are equivalent:

1. The origin is the unique asymptotically stable equilibrium.

2. There exist P > 0 and Q > 0 which satisfy the so called Stein equa-
tion

ATPA− P = −Q (4.13)

and V (x) = xTPx is a QLF.

3. The matrix A is Schur, that is for any eigenvalue λi of A: |λi| < 1.

4.2.2 Switched linear systems

A switched linear system consists of a finite set A = {A1, . . . , AN} ⊂ Rn×n of
system matrices and some switching mechanism, that triggers the transition
from one system to another. The LTI systems defined by the matrices Ai are
called the subsystems of the switched system. All subsystems share the same
state vector x, and only the subsystem that is active at a time t is governing
the behaviour of the switched system at that time.

Before we give a formal definition for a switched linear system, we list some
situations, where it naturally occurs.

Switching process If the process itself is switching between different work-
ing modes, then a switched system is the most intuitive way to model
it. Examples for this kind of processes are the dynamics of a car, which
change when the gear is changed, or a chemical process with a dedicated
start-up and shut-down phase.

Switching controller In some situations, the controller itself consists of
subcontrollers and is switching between them. One such situation could
be, if the control objective changes, for instance from robustness to
good disturbance rejection because an external condition changes.

Switching process and controller A symbiosis of a switching system
model and a switching controller is the so-called multiple-model adap-
tive control [NB97], where different models of the plant are used to
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represent different working modes and each model is assigned a sub-
controller. The parameters of the active subcontroller are tuned, as
long as changes remain small, if the parameters change rapidly, instead
of tuning the parameters, the controller switches to another subcon-
troller.

Control-based core link provisioning We will see, that the switched
system stability problem is equivalent to the so-called Lur’e absolute
stability problem, which provides a framework for our loss rate control.

Before we can finally define a switched linear system, we first have to define
the switching mechanism. This will be a function, which simply chooses one
system to be active at any time:

Definition 4.10 (Switching signal). Let J = {1, . . . , N} ⊂ N denote an
index set. Let σ be a piecewise constant function σ : R+ → J and denote
the points of discontinuities with 0 < t0 < . . . < tk < . . .. Then, σ is a
switching signal, if

1. ∃ ε > 0: tk+1− tk > ε ∀ k ∈ N, which implies that a subsystem remains
active for a finite time interval.

2. σ is continuous from the right, i.e. lim
t→tk,t>tk

σ(t) = σ(tk) ∀ k ∈ N.

for a discrete time switching signal, we also have to demand that the switching
only occurs on multiples of the sampling time Ts, i.e. that σ maps from the
natural numbers N to J , or

3. ∀ k ∈ N ∃ ν(k) ∈ N: tk = ν(k)Ts.

Now we are able to describe a switched linear system by a set of system
matrices and a set of admissible switching signals:

Definition 4.11 (Switched linear system). Let J = {1, . . . , N} be an index
set, A = {Ai | i ∈ J } ⊂ Rn×n be a finite set of system matrices and S be the
set of admissible switching signals σ : R+ → J . Define further A : R+ → A,
A(t) = Aσ(t). Then we can define the switched linear system ΣA,S as

ΣA,S : ẋ = A(t)x(t) x(0) = x0 ∀ σ ∈ S (CTSS)

for continuous time and

ΣA,S : x(k + 1) = A(k)x(k) x(0) = x0 ∀ σ ∈ S (DTSS)
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for discrete time. Solutions to this equations now of course depend on the
initial state x0 as well as on the switching signal σ ∈ S. We will denote
solutions therefore with x(t;x0, σ) and x(k;x0, σ), respectively.

A switched linear system can be seen as a special case of a time-variant linear
system, as the system matrix is dependent on the time, e.g. ẋ = A(t)x, where
A(t) ∈ A. Alternatively, a switched system can be interpreted as a hybrid
system, where the active subsystem constitutes the continuous part and the
switching events are the discrete-event part. It is worth noting, too, that the
theory of switched systems is closely related to the mathematical theory of
differential and difference inclusions. A differential or difference inclusion is,
roughly speaking, a differential or difference equation where the right hand
side is a set of functions. The related differential inclusion to a switched
system would be for instance ẋ ∈ {A(t)x | A(t) ∈ A} and the set of solutions
of the linear differential inclusion contains the set of solutions of the according
switched system.

Depending on the set of admissible switching signals S, different types of
switched systems can be identified. Our interest will be focussed on arbi-
trary switching signals, i.e. the set S will contain all switching signals
satisfying definition 4.10.

Stability notions for switched systems

Now that we have defined, what a switched system is, we can define different
notions of stability for them. All of them are basically “uniform” extensions
of well known stability concepts for ordinary systems. “Uniform”, because
they are uniform with respect to all switching signals σ in S.

Recall for the following, that the origin is an equilibrium of (CTSS) and
(DTSS) and that we denote solutions with x(t;x0, σ) and x(k;x0, σ), respec-
tively. Then we can define

Definition 4.12 (Uniform stability). The origin is called an uniformly
stable equilibrium of the switched system (CTSS) or (DTSS), if

∀ε > 0 ∃δ(ε) :

‖x0‖ < δ(ε) ⇒ ‖x(t or k;x0, σ)‖ < ε ∀ t or k ≥ 0, σ ∈ S. (4.16)

Uniform stability does not imply, that the trajectories actually converge to
the origin. It only implies, that they will stay in any ε-ball around it if they
start close enough to it. Convergence is part of the notion of attractivity:
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Definition 4.13 (Uniform attractivity). The origin is called an uniformly
attractive equilibrium of the switched system (CTSS) or (DTSS), if

∃δ > 0 :

‖x0‖ < δ ⇒ x(t or k;x0, σ) → 0 as t or k →∞ ∀σ ∈ S. (4.17)

Combining uniform attractivity and stability yields uniform asymptotic sta-
bility:

Definition 4.14 (Uniform asymptotic stability). The origin is called an
uniformly asymptotically stable equilibrium of the switched system
(CTSS) or (DTSS), if and only if it is an uniformly stable and uniformly
attractive equilibrium.

An even stronger concept results, if the speed of convergence to the origin is
also bounded:

Definition 4.15 (Uniform exponential stability). The origin is called an
uniformly exponentially stable equilibrium of the CT switched system
(CTSS) , if

∃a, b > 0 :

‖x(t;x0, σ)‖ < a‖x0‖e−bt ∀ t ≥ 0, σ ∈ S (4.18)

and of the DT switched system (DTSS), if

∃a > 0, 0 < b < 1 :

‖x(k;x0, σ)‖ < a bk‖x0‖ ∀ k ≥ 0, σ ∈ S. (4.19)

The relations between the different notions can be depicted as follows:

Uniform stability &
attractivity

⇔ Uniform asymptotic
stability

⇐ Uniform exponential
stability

It is worth noting, that for linear time-varying systems asymptotic stability
coincides with global asymptotic stability, that is δ = ∞ in definition 4.13.
Furthermore, for switched linear systems, the notions of uniform attractivity
and of asymptotic and exponential stability are equivalent:

Lemma 4.1 (Stability for switched LTI systems [DM99]). The origin of a
switched linear system is uniformly attractive if and only if it is uniformly
asymptotically stable if and only if it is uniformly exponentially stable.
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4.2.3 Switched systems and Lyapunov functions

In the last section, we defined several notions of stability for switched systems
but did not give any conditions to actually check a given switched system for
stability. This will be done now.

Firstly, note that Theorem 4.1 was formulated in terms of the general systems
(CT) and (DT), which in particular also allowed time-variant right hand
sides. So it still stays valid for the switched system case:

Lemma 4.2 (Stability of switched systems [DM99]). The origin is an uni-
formly stable equilibrium for the switched system (CTSS), if and only if there
exists a Lyapunov function candidate V (x) with

V̇ (x(t;x0, σ)) < 0 ∀ t ≥ 0, x0 ∈ Rn\{0}, σ ∈ S (4.20)

and for the switched system (DTSS), if and only if there exists a Lyapunov
function candidate V (x) with

V (x(k + 1; x0, σ))− V (x(k;x0, σ)) < 0

∀k > 0, x0 ∈ Rn\{0}, σ ∈ S. (4.21)

This statement is true for any class of switching signals. Thus also for con-
stant switching signals, so every Lyapunov function for a switched system
with arbitrary switching signals certainly also is a Lyapunov function for ev-
ery subsystem. This leads to the definition of common Lyapunov functions:

Definition 4.16 (CLF). Let A be a set of system matrices. A Lyapunov
function candidate V (x) is a common Lyapunov function (CLF) for the
family of LTI systems constituted by A, if V (x) is a Lyapunov function for
every A ∈ A.
If A is the set of system matrices belonging to a switched system (CTSS) or
(DTSS), then we call V the CLF for the switched system.

A CLF not only is a Lyapunov function for the the matrices in A, but also for
combinations of them. In the case of continuous time systems, this applies
to any kind of LF and to linear combinations with nonnegative coefficients:

Lemma 4.3 (CLF and positive linear combinations, CT). Let V (x) be a CLF
for the CT LTI systems constituted by A = {Ai | i = 1, . . . , N}. Let αi ≥ 0,

i = 1, . . . , N with
N∑
i=1

αi > 0 be the coefficients of the linear combination

Ã =
N∑
i=1

αiAi.
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Then, V (x) is also a Lyapunov function for the CT LTI system constituted
by Ã.

Proof. So the system under consideration is ẋ = Ãx. Now we simply check
condition (4.10) in definition 4.7:

∂V

∂x
ẋ =

∂V

∂x
Ãx =

∂V

∂x

N∑
i=1

αiAix

=
N∑
i=1

αi(∂V∂x Aix
)

︸ ︷︷ ︸
<0

 < 0.

This shows, that V is a Lyapunov function for Ã.

Unfortunately, in the discrete time case, no such general statement could
be made so far. But at least we can state a result on quadratic Lyapunov
functions, which will be sufficient for our further analysis:

Lemma 4.4 (CQLF and convex combinations, DT). Given a family of DT
LTI systems constituted by A = {Ai | i = 1, . . . , N}, let αi ≥ 0, i = 1, . . . , N

with
∑N

i=1 αi = 1. Then Ã =
N∑
i=1

αiAi is called a convex combination of the

matrices in A.
Let V (x) = xTPx be a CQLF for A. Then V is also a QLF for any convex
combination Ã of the matrices in A.

Proof. We will show the following: If P > 0 satisfies the Stein inequality
(4.13) for every Ai ∈ A, then it also satisfies the Stein inequality for the
convex combination Ã and then, by Theorem 4.3, V (x) = xTPx is also LF
for Ã.
Let J = {1, . . . , N} be the index set for A, and for simplicity of notation,
denote the left hand side of the Stein inequality with S:

Sij := ATi PAj − P for i 6= j

Si := ATi PAi − P for i = j

Note, that Sji = STij and that with this notation, V is a CQLF if and only if
Si < 0 ∀i ∈ J .
Then, the following holds:

Sij + Sji = Si + Sj − (Ai − Aj)
TP (Ai − Aj) < 0.
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Next, insert Ã into the Stein inequality:

ÃTPÃ− P =

(∑
i∈J

αiA
T
i

)
P

(∑
i∈J

αiAi

)
−
∑
i∈J

αi
∑
i∈J

αiP

=
∑
i,j∈J

αiαjA
T
i PAj −

∑
i,j∈J

αiαjP

=
∑
i,j∈J

αiαj
(
ATi PAj − P

)
=
∑
i∈J

α2
iSi +

∑
i,j∈J , i<j

αiαjSij +
∑

i,j∈J , i>j

αiαjSij

=
∑
i∈J

α2
iSi +

∑
i,j∈J , i<j

αiαjSij +
∑

i,j∈J , j>i

αjαiSji

=
∑
i∈J

α2
iSi +

∑
i,j∈J , i<j

αiαj(Sij + Sji)

< 0.

In the first line, the fact that
∑

i∈J αi = 1 is used. This shows, that P satisfies

(4.13) for any convex combination Ã and thus completes the proof.

Now consider the following: As a subsystem stays active for at least a finite
time interval, at any time t exactly one subsystem is active. If V (x) is a CLF
for the switched system, then independent of which subsystem is active, V
decreases along the trajectory at any time t. Thus, V satisfies Lemma 4.2.
This is detailed in the following Theorem:

Theorem 4.4 (Stability of switched linear systems with arbitrary switching
signals [DM99]). The origin is the globally asymptotically stable equilibrium
of a switched system ΣA,S like in definition 4.11, where S consists of arbitrary
switching signals.
⇐⇒
There exists a CLF V for ΣA,S .

There are many results on the actual form of the CLF. So it could be shown,
that if any CLF exists, then e.g. a common piecewise linear LF and a common
piecewise quadratic LF exist. Unfortunately, this does not include common
quadratic Lyapunov functions, so unlike in the case of one LTI system treated
in Theorems (4.2) and (4.3), in the case of a switched linear system, the
existence of a common quadratic Lyapunov function (CQLF) is only sufficient
and not necessary for stability.
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Theorem 4.5 (Sufficient condition for stability of a CT switched linear
system). Let A = {A1, . . . , AN} ⊂ Rn×n and ΣA,S be a continuous time
switched linear system under arbitrary switching. Then the origin is globally
asymptotically stable, if:
A CQLF exists: ∃P ∈ Rn×n, P > 0: V (x) = xTPx is a CLF for ΣA,S or,
which is the same, a common solution P for the Lyapunov equation (4.12)
exists:

∃P,Qi, . . . , QN ∈ Rn×n, P,Qi, . . . , QN > 0 :

ATi P + PAi = −Qi ∀Ai ∈ A, i = 1, . . . , N (4.22)

Theorem 4.6 (Sufficient condition for stability of a DT switched linear sys-
tem). Let A = {A1, . . . , AN} ⊂ Rn×n and ΣA,S be a discrete time switched
linear system under arbitrary switching. Then the origin is globally asymp-
totically stable, if:
A CQLF exists: ∃P ∈ Rn×n, P > 0: V (x) = xTPx is a CLF for ΣA,S or,
which is the same, a common solution P for the Stein equation (4.13) exists:

∃P,Qi, . . . , QN ∈ Rn×n, P,Qi, . . . , QN > 0 :

ATi PAi − P = −Qi ∀Ai ∈ A, i = 1, . . . , N (4.23)
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[A,B,C,D]

φ(·, ·)

yu

Figure 4.1: Block diagram of the Lur’e system

4.3 The Lur’e absolute stability problem

A Lur’e system is a nonlinear system, which consists of a linear dynamical
system and a memoryless nonlinearity in the the feedback path. The block
structure is shown in Figure 4.3, and the constituting equations are:

ẋ(t) = Ax(t) +Bu(t) (CT Lure i)

y(t) = Cx(t) +Du(t) (CT Lure ii)

u(t) = −φ(t, y(t)) (CT Lure iii)

for the continuous time case and

x(k + 1) = Ax(k) +Bu(k) (DT Lure i)

y(k) = Cx(k) +Du(k) (DT Lure ii)

u(k) = −φ(k, y(k)) (DT Lure iii)

for the discrete time case.

In every case, we are focussing on the single-input single-output (SiSo) Lur’e
System, so u, y,D ∈ R, x ∈ Rn, A ∈ Rn×n and B,CT ∈ Rn×1. n is called
the order of the system.
The feedback nonlinearity φ(·, ·) is an arbitrary function R+×R→ R which
satisfies the so-called sector condition

k1y(t)
2 ≤ φ(t, y(t))y(t) ≤ k2y(t)

2. (4.26)

A geometric interpretation is, that the graph of φ(t, y) at any time entirely
lies between the two lines k1y and k2y. We then say, that φ belongs to the
sector [k1, k2].

Now we can define the notion of absolute stability:
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[A,B,C,D]
yu

φ(·, ·)

k1

k1

[A,B,C,D]
yu

φ(·, ·)

k1

k1

yu
[Ã, B̃, C̃, D̃]

φ̃(·, ·)

Figure 4.2: Loop transformation

Definition 4.17 (Absolute stability). Given the Lur’e system defined by the
linear system (CT Lure i) and (CT Lure ii) or (DT Lure i) and (DT Lure ii)
and the two bounds k1 < k2, the origin is absolutely stable, if it is globally
asymptotically stable for any feedback nonlinearity φ: R+×R→ R belonging
to the sector [k1, k2].

Remark 4.1 (Loop transformation). A Lur’e system with nonlinearity be-
longing to the sector [k1, k2] can always be transformed to a Lur’e system
with nonlinearity belonging to the sector [0, k], where k = k2 − k1 > 0.
Consider the loop transformation in Figure 4.3 with

Ã = A−Bk1(1 +Dk1)
−1C

B̃ = B(1 +Dk1)
−1

C̃ = (1 +Dk1)
−1C

D̃ = (1 +Dk1)
−1D

φ̃(·, y) = φ(·, y)− k1y.

Then, the Lur’e system defined by the linear system [A,B,C,D] (CT or
DT) and a nonlinearity belonging to [k1, k2] is absolutely stable if and only if
the Lur’e system defined by the linear systen [Ã, B̃, C̃, D̃] and a nonlinearity
belonging to the sector [0, k2 − k1] is absolutely stable.
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4.3.1 The Lur’e problem and switched systems

In this section we will show the connection between the absolute stability of
a Lur’e system in discrete or continuous time and the uniform asymptotic
stability of a corresponding switched system. Remark 4.1 allows us to assume
a nonlinearity belonging to [0, k] without loss of generality.

Theorem 4.7 (DT: Quadratic stability of switched linear system implies
absolute stability). The DT Lur’e system consisting of the linear system
[A,B,C,D] and a nonlinearity belonging to [0, γ] is absolutely stable.
⇐=
The DT switched system ΣA,S as in (DTSS) with

A = {A,A−Bγ(1−Dγ)−1C}

has a common quadratic Lyapunov function.

Proof. We will show, that the CQLF V (x) also is a Lyapunov function for
the Lur’e system with any possible nonlinearity.

Define ψ: N+ → R with

ψ(k) =

{
0 ∀ k : y(k) = 0
φ(k,y(k))
y(k)

else.

Then: ψ(k) ∈ [0, γ] and at any time k, the Lur’e system is equivalent to a
closed loop system with feedback gain ψ(k):

x(k + 1) = (A−Bψ(k)(1− ψ(k)D)−1C)x(k)

On the other hand, let V (x) be the CQLF. Then, by Lemma 4.4, V also is a
LF for every matrix out of the set

M := {αA+ (1− α)(A−Bγ(1−Dγ)−1C) | 0 ≤ α ≤ 1}

that is V is decreasing along solutions of any system x(k+1) = Mix(k) with
Mi ∈M .

Now choose αψ = 1− 1+γD
γ

ψ
1+ψD

. Then, the following holds:

1. αψ ∈ [0, 1] for any ψ ∈ [0, γ].

2. αψA+ (1− αψ)(A−Bγ(1−Dγ)−1C) = A−Bψ(1− ψD)−1C
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Thus, V is also decreasing along any solution of the Lur’e system. Thus it is
a Lyapunov function and by Theorem 4.1 absolute stability follows.

Remark 4.2 (Necessary condition for absolute stability). Of course it is
necessary for the absolute stability of the Lur’e system, that the correspond-
ing switched linear system is uniformly stable. Otherwise a switching signal
σ∗ exists, for which the switched system is not stable. Then choose φ such
that ψ is γ, where subsystem A − Bγ(1 − Dγ)−1C is active and 0, where
subsystem A is active according to σ∗. For this φ, the Lur’e system is not
stable, thus it is not absolutely stable.

In the case of a continuous time Lur’e system, even a strict equivalence holds:

Theorem 4.8 (CT: Equivalence of absolute and uniform asymptotic stability
[Wul05]). The CT Lur’e system consisting of the linear system [A,B,C,D]
and a nonlinearity belonging to [0, k] is absolutely stable.
⇐⇒
The CT switched system ΣA,S like in (CTSS) with

A = {A,A−Bk(1−Dk)−1C}

is uniformly asymptotically stable under arbitrary switching.

The proof is analogous to the proof of Theorem 4.7 but unlike in the discrete
time case, Lemma 4.3 extends to any type of Lyapunov function, therefore
strict equivalence holds in continuous time. For the proof, see [Wul05].

4.4 Stability results for continuous time

4.4.1 The circle criterion

Theorem 4.9 (SISO [0, k] circle criterion [NG64, GGS01]). Let [A,B,C,D]
be a stable linear system and let G(s) = C(sI − A)−1B + D be its transfer
function. There exists a CQLF for the Lur’e system consisting of [A,B,C,D]
and any nonlinearity belonging to [0, k], which ensures absolute stability, if
and only if

1

k
+ Re (G(jω)) > 0 ∀ω ∈ R (4.27)

Remark 4.3 ([0,∞) circle criterion). The circle criterion also holds for k →
∞.
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4.4.2 Spectral conditions

Before we start giving conditions in terms of the spectrum of a matrix prod-
uct, we first define a special type of matrices, which will be important later:

Definition 4.18 (Companion form [HJ85]). A matrix in companion form is
completely defined by its last row. So we can define:

[
a0 a1 . . . an−1

][
=


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 .

The characteristic polynomial pA(λ) of a companion matrix is given by

ph
a0 a1 . . . an−1

i[ (λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0

Theorem 4.10 (CQLF for rank-1-difference [Mas04, Th.5.3.3]). Let A1, A2

be Hurwitz n× n-matrices with rank(A2 − A1) = 1. Then:
The LTI systems constituted by A1 and A2 have a CQLF
⇐⇒
The matrix product A2A1 has no negative real eigenvalue.

Note, that this Theorem gives a necessary and sufficient condition for the ex-
istence of a common quadratic Lyapunov function. As we know by Theorem
4.5, the existence of a CQLF is just a sufficient condition for absolute sta-
bility. Hence, the application of this result to the Lur’e system via Theorem
4.8 only yields a sufficient condition:

Theorem 4.11 (Spectral condition for absolute stability). The SiSo CT
Lur’e system consisting of the linear system [A,B,C,D] and a nonlinearity
belonging to [0, k] is absolutely stable
⇐=
The matrix product A

(
A− k

1+kD
BC
)

has no negative real eigenvalue.

Proof. By Theorem 4.8, the Lur’e system is absolutely stable if and only if
the switched system ΣA,S with A = {A,A − k

1+kD
BC} is uniformly asymp-

totically stable. By Theorem 4.5, CQLF existence is sufficient for that. Now
note that rank

(
A− (A− k

1+kD
BC)

)
= rank

(
k

1+kD
BC
)

= 1 because BC is
the dyadic product of a column and a row vector. Application of Theorem
4.10 then completes the proof.
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Remark 4.4 ([0,∞)-version for D 6= 0). Note, that the proof of Theorem
4.5 stays valid for k → ∞. Note further, that k

1+kD
→ 1

D
as k → ∞. Then,

the matrix product under consideration is A(A− 1
D
BC) and we can state:

The SiSo CT Lur’e system consisting of the linear system [A,B,C,D] with
D 6= 0 and a nonlinearity which belongs to the sector [0,∞) is absolutely
stable
⇐=
The matrix product A(A− 1

D
BC) has no negative real eigenvalue.

There are two results from [SK04] and [ZS06] which can be used alongside
with the circle criterion 4.9 to derive a criterion for the case k → ∞ and
D = 0:

Theorem 4.12 (Strict positive realness of a strictly proper transfer function
[SK04, Th.3.2]). Let A be Hurwitz and [A,B,C, 0] be a strictly proper CT
SiSo LTI system. Let G(s) = C(sI −A)−1B. Then, Re(G(jω)) > 0 ∀ω ∈ R
⇐⇒

1. CAB < 0;

2. CA−1B < 0; and

3. A
(
I − 1

CAB
ABC

)
A has no negative real eigenvalue.

In [ZS06], another criterion was derived, which reduces the order of the prob-
lem by 1, so instead of the n × n-matrix of 3. in Theorem 4.12, only a
(n − 1) × (n − 1)-matrix, which is admittedly tricky to construct, needs to
be checked.

Theorem 4.13 (Strict positive realness of a strictly proper transfer func-
tion [ZS06, Th.1]). Let [A,B,C, 0] be a CT SiSo-system. Further denote its

transfer function with G(s) = C(sI − A)−1B =
Pn−1

i=0 bis
i

sn+
Pn−1

i=0 aisi .

Construct the matrices A1 ∈ R(n−1)×(n−1), D1 ∈ R and C1, B1 ∈ R(n−1)×1:

A1 =
[

b0
bn−1

· · · bn−2

bn−1

][
(4.28a)

B1 =
[
b′1 · · · b′n−1

]
(4.28b)

C1 =
[
1 0 · · · 0

]
(4.28c)

D1 = an−1 −
bn−2

bn−1

(4.28d)
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where

b′1 = an−2 −
bn−3

bn−1

− bn−2

bn−1

d1 (4.28e)

b′2 = an−3 −
bn−4

bn−1

− bn−2

bn−1

b′1 −
bn−3

bn−1

d1 (4.28f)

...

b′n−2 = a1 −
b0
bn−1

− bn−2

bn−1

b′n−3 . . .−
b2
bn−1

b′1 −
b1
bn−1

d1 (4.28g)

b′n−1 = a0 −
bn−2

bn−1

b′n−2 −
bn−3

bn−1

b′n−3 . . .−
b1
bn−1

b′1 −
b0
bn−1

d1. (4.28h)

Then: Re (G(jω)) > 0
⇐⇒

1. bn−1 > 0;

2. A1 is Hurwitz; and

3. the matrix product (A1 − B1C
T
1 /D1)A1 has no real nonpositive eigen-

value.

Now the circle criterion 4.9 can be used to link each one of them to the CQLF
existence problem for D = 0 and k →∞.

Theorem 4.14 ([0,∞)-version for D = 0). Let A be Hurwitz and [A,B,C, 0]

be a LTI system with transfer function G(s) = C(sI −A)−1B =
Pn−1

i=0 bis
i

sn+
Pn−1

i=0 aisi .

Further, define A1, b1, c1 and d1 like in (4.28). Then, all of the following
equivalent conditions are sufficient for absolute stability of the Lur’e system
with linear part [A,B,C, 0] and nonlinearity belonging to [0,∞):

1. A and A− kBC have a CQLF for any k ∈ R+.

2. Re(G(jω)) > 0 for all ω ∈ R+.

3. 1.–3. of Theorem 4.12 hold.

4. 1.–3. of Theorem 4.13 hold.
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Furthermore it follows from 1. through 4., that there exists a P ≥ 0 which
simultaneously satisfies the non-strict Lyapunov equations

ATP + PA ≤ 0

(−BC)TP + P (−BC) ≤ 0

We then call V (x) = xTPx a “weak CQLF” for A and −BC.

Proof. All conditions are equivalent:
1.⇔2. is exactly the circle criterion 4.9 for k →∞.
2.⇔3. is exactly Theorem 4.12.
2.⇔4. is exactly Theorem 4.13.

For 1.⇒weak CQLF existence consider the following:
From e.g.[Mas04], it is known that CQLF existence corresponds to the inter-
section of two convex cones in the space of positive definite matrices. Because
of 1., the cones for A and 1

k
A − BC have a non-empty intersection for any

finite k. If k → ∞, 1
k
A − BC → −BC. As rank(BC) = 1, a CQLF cannot

exist anymore for k = ∞, but it certainly has existed for any finite k, so
it follows from continuity arguments, that the two cones must touch each
other, which yields a weak CQLF.

Sufficiency of 1. for absolute stability follows from Theorems 4.8 and 4.5.

Note that this Theorem also yields a sufficient condition for weak CQLF
existence for a Hurwitz matrix A and a rank-1-matrix BC.
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4.5 Robust stability results for continuous

time

In practical applications, parameters are often not known exactly but can be
said to lie in a certain interval. By means of the so called Kharitonov Theorem
4.15, which reduces checking the stability of infinitely many polynomials in
an infinite set of polynomials to checking only four polynomials, the results
of Section 4.4 can be extended to the case with uncertain matrix entries.

Theorem 4.15 (Kharitonov’s Theorem). Let P ={∑n
i=1 pis

i | pi ∈ [p
i
, pi] ∀i = 1 . . . n

}
be a set of polynomials of order n

and uncertain coefficients pi in s. Then:
The zeros of any p(s) ∈ P have negative real parts
⇐⇒
The zeros of the four polynomials

k1(s) = p
0
+ p

1
s+ p2s

2 + p3s
3 + p

4
s4 + . . .

k2(s) = p
0
+ p1s+ p2s

2 + p
3
s3 + p

4
s4 + . . .

k3(s) = p0 + p
1
s+ p

2
s2 + p3s

3 + p4s
4 + . . .

k4(s) = p0 + p1s+ p
2
s2 + p

3
s3 + p4s

4 + . . .

have all negative real parts.

Corollary 4.1 (Kharitonov’s Theorem for companion matrices). Let A ={[
a0 a1 . . . an−1

][ | ai ∈ [ai, ai] ∀i = 1 . . . n− 1
}

be a set of companion

matrices with interval uncertainties. Then:
Any A ∈ A is Hurwitz
⇐⇒
The four matrices

A1 =
[
a0 a1 a2 a3 a4 . . .

][
A2 =

[
a0 a1 a2 a3 a4 . . .

][
A3 =

[
a0 a1 a2 a3 a4 . . .

][
A4 =

[
a0 a1 a2 a3 a4 . . .

][
are Hurwitz.

Proof.
[
a0 a1 . . . an−1

][
is Hurwitz⇔ p(A) = λn+an−1λ

n−1+. . .+a1λ+a0

has all zeros in the open left complex halfplane ⇔ k1 through k4 like in
Theorem 4.15 have their zeros there ⇔ A1 through A4 are Hurwitz.
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In [ZMSS05], an extension of that theorem to rational functions with uncer-
tain parameters in [CDB91] is utilized to derive robust versions of Theorem
4.10 for companion matrices (which always differ by rank-1) and for general
rank-1-difference. As the result restricted to matrices A and A− k

1+kD
BC in

companion form is much simpler than that for general rank-1-difference, and
shall turn out sufficient for our analysis of the Lur’e problem, we restrict our
attention to that.

Theorem 4.16 (Theorem 4.10 for companion matrices with uncertainties
[ZMSS05]). Let

A =
{[
a0 a1 . . . an−1

][ | ai ∈ [ai, ai] ∀i = 0 . . . n− 1
}

and B in a similar manner denote two sets of companion form matrices with
uncertain entries.
Define further

A1 =
[
a0 a1 a2 a3 a4 . . .

][
A2 =

[
a0 a1 a2 a3 a4 . . .

][
A3 =

[
a0 a1 a2 a3 a4 . . .

][
A4 =

[
a0 a1 a2 a3 a4 . . .

][
and B1,...,4 accordingly. Then, any two matrices A ∈ A and B ∈ B have a
CQLF
⇐⇒

1. Every A ∈ A and B ∈ B are Hurwitz and,

2. None of the eight matrix products

A1B2, A1B3, A2B1, A2B4,
A3B1, A3B4, A4B2, A4B3

has a negative real eigenvalue.

The application of this Theorem to the Lur’e problem is straightforward, if
the linear part [A,B,C,D] is in a form, that A and A− k

1+kD
BC are both in

companion form. Of course, this may not be assumed in general. However,
any Input-Output behaviour G(s) can be represented by a state space real-
ization which leaves the both aforementioned matrices in companion form.
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Definition 4.19 (Control Canonical Form). Let G(s) = bnsn+bn−1sn−1+...+b0
sn+an−1sn−1+...+a0

be a transfer function model for the Input-Output-behaviour of a system.
The quadruple [A,B,C,D] is a realization of the I/O-behaviour of G(s), if
D + C(sI − A)−1B = G(s).
The realization [Ac, Bc, Cc, Dc] with

Ac =
[
a0 a1 . . . an−1

][
Bc =

[
0 . . . 0 1

]T
Cc =

[
b0 − a0bn b1 − a1bn . . . bn−1 − an−1bn

]
Dc = bn

is called the Control Canonical Form.

Lemma 4.5 (Control Canonical Form always exists [Kai80]). For any re-
alization [A,B,C,D] there exists a Control Canonical Form [Ac, Bc, Cc, D]
that realizes the same I/O behaviour as [A,B,C,D].

Now we can formulate a robust stability condition for a Lur’e system in terms
of the I/O behaviour.

Theorem 4.17 (Robust stability of a Lur’e system). Let

G =

{ ∑n−1
i=0 bis

i

sn +
∑n−1

i=0 ais
i
| ai ∈ [ai, ai], bi ∈ [bi, bi] ∀i = 0 . . . n− 1

}
be a set of nth-order, strictly proper transfer functions with uncertain coeffi-
cients.
Define further

A1 =
[
a0 a1 a2 a3 a4 . . .

][
A2 =

[
a0 a1 a2 a3 a4 . . .

][
A3 =

[
a0 a1 a2 a3 a4 . . .

][
A4 =

[
a0 a1 a2 a3 a4 . . .

][
and

K1 =
[
a0 − kb0 a1 − kb1 a2 − kb2 a3 − kb3 a4 − kb4 . . .

][
K2 =

[
a0 − kb0 a1 − kb1 a2 − kb2 a3 − kb3 a4 − kb4 . . .

][
K3 =

[
a0 − kb0 a1 − kb1 a2 − kb2 a3 − kb3 a4 − kb4 . . .

][
K4 =

[
a0 − kb0 a1 − kb1 a2 − kb2 a3 − kb3 a4 − kb4 . . .

][
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Then, the Lur’e system with linear part G(s) ∈ G and a feedback nonlinearity
belonging to [0, k] is absolutely stable
⇐=

1. All Ki and Ai, i = 0, . . . , 4, are Hurwitz.

2. None of the eight matrix products

A1K2, A1K3, A2K1, A2K4,
A3K1, A3K4, A4K2, A4K3

has a negative real eigenvalue.

Proof. Any G(s) ∈ G can be realized by [A,B,C, 0] with

A =
[
a0 a1 . . . an−1

][
B =

[
0 0 . . . 0 1

]T
C =

[
b0 b1 . . . bn−1

]
From the definition of G, one can directly derive the set A of A-matrices and
the set C of C-vectors:

A =
{[
a0 a1 . . . an−1

][ | ai ∈ [ai, ai] ∀0 = 1 . . . n− 1
}

C =
{[
b0 b1 . . . bn−1

]
| bi ∈ [bi, bi] ∀0 = 1 . . . n− 1

}
The problem thus can be restated as: Is the Lur’e problem stable for any
[A,B,C, 0] with A ∈ A and C ∈ C?
By Theorem 4.8 this is equivalent to asking, whether the switched system
ẋ = F (t)x(t) with F (t) ∈ {A,A − kBC} is uniformly asymptotically stable
for any A ∈ A and C ∈ C.
A sufficient condition for that is by Theorem 4.5, that A and A−kBC share
a CQLF for any A ∈ A and C ∈ C.
Now denote the set of all A− kBC by K. Then direct calculation yields:

K =
{[
α0 α1 . . . αn−1

][ |αi ∈ [ai − kbi, ai − kbi] ∀i = 0 . . . n− 1
}

And the question of CQLF existence can be treated by Theorem 4.16. The
matrix product conditions directly translate to each other, condition 1 is a
direct translation of condition 1 of Theorem 4.16 via Corollary 4.1.
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4.6 Discrete time versions

In this section we will use the so-called Bilinear Transform to link continuous-
time with discrete-time and extend results to DT by translating conditions
on the DT systems to conditions on corresponding CT systems.

4.6.1 Linking discrete-time and continuous time re-
sults: The Bilinear Transform

There is a close relationship between discrete and continuous time CQLF
existence problems. Every discrete time LTI system can be assigned a con-
tinuous time equivalent (and vice versa) and conditions on the one can be
directly translated to conditions on the other.

Definition 4.20 (The Bilinear Transform). Let Rn×n
H and Rn×n

S be the set
of Hurwitz and Schur n× n-matrices and I denote the identity matrix in
appropriate dimension.
The mapping

C : Rn×n
S → Rn×n C(A) = (A− I)(A+ I)−1

then is called the Bilinear Transform, the mapping

C−1 : Rn×n
H → Rn×n C−1(A) = (I + A)(I − A)−1

the inverse Bilinear Transform.

Remark 4.5 (Bilinear transform is a bijective mapping from Rn×n
S to Rn×n

H ).
Note, that C maps the set of Schur stable matrices to the set of Hurwitz stable
matrices and C−1 vice versa. In other words, if the eigenvalues of A lie in
the unit circle, then the eigenvalues of C(A) lie in the open left half plane.
To see that, consider the characteristic polynomial of C(A):

det(λI − (A− I)(A+ I)−1) = 0

⇔ det(λ(A+ I)− (A− I)) = det((λ− 1)A+ (λ+ 1)I) = 0

⇔ det

(
1 + λ

1− λ
I − A

)
= 0

Because A is Schur, any eigenvalue has magnitude smaller than one, so for
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any eigenvalue λ of C(A) it holds:∣∣∣∣1 + λ

1− λ

∣∣∣∣ < 1 ⇔
∣∣∣∣1 + λ

1− λ

∣∣∣∣2 < 1

⇔ (1 + λ)(1 + λ)

(1− λ)(1− λ)
=

(1 + Re(λ))2 + Im(λ)2

(1− Re(λ))2 + Im(λ)2
< 1

⇔ Re(λ) < 0

In other words, the set of eigenvalues of C(A) is given by{
λ ∈ C |

∣∣1+λ
1−λ

∣∣ < 1
}

= {λ ∈ C | Re(λ) < 0}. A similar calculation yields

the corresponding result for C−1.
So the Bilinear Transform exactly maps the stability regions into each other
and is invertible, so it is a bijective mapping.

Theorem 4.18 (QLF is preserved under Bilinear Transform [MNMK06]).
V = xTPx is a QLF for the DT system x(k + 1) = Ax(k)
⇐⇒
V = xTPx is a QLF for the associated CT system ẋ = C(A)x.

Lemma 4.6 (Multiplication with nonsingular matrices does not change rank,
e.g. [HJ85]). Let A ∈ Rn×n with rank(A) = n, B ∈ Rm×m with rank(B) = m
and X ∈ Rn×m with rank(X) = r. Then:

rank(AXB) = rank(X) = r.

Theorem 4.19 (Bilinear Transform preserves rank of differences). Let
A,B ∈ Rn×n

H with D = A−B and ∆ = C−1(A)− C−1(B)
Then rank(D) = p ⇐⇒ rank(∆) = p.
In other words: If two matrices have a rank-p-difference, their Bilinear Trans-
forms also have a rank-p-difference.

Proof.

∆ = C−1(A)− C−1(B)

= (I + A)(I − A)−1 − (I +B)(I −B)−1

= (I + A)(I − A)−1 − (I + A−D)(I − A+D)−1 | · (I − A+D)

∆(I − A+D) = (I + A)(I − A)−1(I − A+D)− (I + A) +D

= (I + A) + (I + A)(I − A)−1D − (I + A) +D

=
[
I + (I + A)(I − A)−1

]
D | · (I − A+D)−1

∆ =
[
I + (I + A)(I − A)−1

]
D(I − A+D)−1

=
[
C−1(A) + I

]
D(I −B)−1
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Now observe, that det
(
λI −

[
C−1(A) + I

])
= det

(
(λ− 1)I − C−1(A)

)
, so

if
[
C−1(A) + I

]
has an eigenvalue 0, then C−1(A) has an eigenvalue −1,

which is not possible, because C−1(A) is Schur. So: rank
([

C−1(A) + I
])

=
n. Of course, rank ((I −B)−1) = n, too, so by Lemma 4.6: rank(∆) =
rank(D).

The two Theorems from this Section now enable us to translate every CQLF
existence problem in discrete time to a equivalent CQLF existence and
thereby make use of the rank of the differences.

4.6.2 Results for discrete time

We are now going to demonstrate, how the results for continuous time can be
translated to results for discrete time. First of all, we will give Theorem 4.10
in discrete time and then derive a sufficient condition for the Lur’e system
in discrete time.

Theorem 4.20 (CQLF rank-1-difference). Let A1, A2 be Schur n × n-
matrices with rank(A2 − A1) = 1. Then:
The LTI systems constituted by A1 and A2 have a CQLF
⇐⇒
The matrix product C(A2) C(A1) has no negative real eigenvalue.

Proof. From Theorem 4.18 it follows, that A1 and A2 have a CQLF ⇔
C(A1) and C(A2) have a CQLF. With Theorem 4.19 it follows, that
rank (C(A1)− C(A2)) = 1, so Theorem 4.10 can be applied which completes
the proof.

Now we are applying Theorem 4.7 to translate Theorem 4.20 in a sufficient
condition for absolute stability of a discrete time Lur’e system:

Theorem 4.21 (Spectral condition for absolute stability). The SiSo DT
Lur’e system consisting of the linear system [A,B,C,D] and a nonlinearity
belonging to [0, k] is absolutely stable
⇐=
The matrix product C(A) C

(
A− k

1+kD
BC
)

has no negative real eigenvalue.

Proof. By Theorem 4.7, a sufficient condition for absolute stability is, that
A and A− k

1+kD
BC have a CQLF. Theorem 4.20 completes the proof.
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Remark 4.6 ([0,∞)-version for D 6= 0). This again holds for k → ∞ if
D 6= 0.

Remark 4.7 ([0,∞)-version for D = 0). No strictly proper discrete time
system (i.e. D = 0) can be stable with any gain, so a condition like that
cannot exist. To see that, consider the root-locus of a strictly proper trans-
fer function: At every pole a branch originates, and in every zero one branch
terminates. As the system is strictly proper, at least one branch does not
have a zero to terminate in, so at least one branch goes to infinity and thus
leaves the unit circle.

4.6.3 Robust result for discrete time

Theorem 4.16 can also be extended to discrete time, but there is much more
work involved and the result is not straightforward to apply. Thus the results
of this Section are clearly to be called preliminary.

We will nevertheless show, that the question, whether a DT CQLF exists
for any two matrices out of two families of Schur companion matrices with
interval uncertainties can be translated into the question, whether a CT
CQLF exists for two families of Hurwitz companion matrices, which in turn
can be answered with Theorem 4.16.

To do that, we need the following Lemma:

Lemma 4.7 (Bilinear transforms of companion matrices are simultaneously

similar to companion matrices). Let A =
[
a0 a1 . . . an−1

][
be a Schur

stable matrix. Then there exists a nonsingular matrix T ∈ Rn×n that only
depends on the dimension n of A, such that T C(A)T−1 also is in companion
form.

One such matrix is given by

T =


mT

mTR
...

mTRn−1

 , (4.29)
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where

mT =
[
0 · · · 0 1

] [
β Rβ · · · Rn−1β

]−1
, (4.30)

R =


−1 2 −2 2 · · · 2(−1)n

0 −1 2 −2 · · · 2(−1)n+1

...
. . . . . .

...
0 · · · −1

 , (4.31)

rij =


0 if i > j
−1 if i = j

2(−1)i+j+1 if i < j


β = 2

[
(−1)n (−1)n+1 · · · 1 −1

]T
. (4.32)

We will derive this matrix in the course of the proof, which is a bit more
involved and makes use of the follwing two Lemmas, which are well-known
in linear algebra and control theory, respectively:

Lemma 4.8 (Sherman-Morrison-Woodbury formula). Let A ∈ Rn×n be in-
vertible and bT , cT ∈ Rm×n. If λ := −In − cTA−1b is invertible:

(A+ bcT )−1 = A−1 + A−1bλ−1cTA−1 (4.33)

Lemma 4.9 (Controllability). Let A ∈ Rn×n and B ∈ Rn×1 be two matrices.
The pair (A,B) is controllable if and only if one of the following conditions
is satisfied:

1. Kalman-Criterion: rank
[
B AB A2B · · · An−1B

]
= n

2. Popov-Belevitch-Hautus-Criterion: rank
[
λI − A B

]
= n ∀λ ∈ C.

Note that it is sufficient to check the rank for all eigenvalues of A
because otherwise the first block λI − A already has full rank.

If the pair is controllable there exists a nonsingular matrix T ∈ Rn×n, for

which TAT−1 is in companion form and TB =
[
0 · · · 0 1

]T
.

Proof of Lemma 4.7. Let cT =
[
−a0 −a1 · · · −an−1

]
, b =[

0 · · · 0 1
]T

and A0 =
[
0 0 · · · 0

][
. Then A = A0 + bcT . First we

will show, that C(A) = C(A0) + βγT (A), where β is a constant column
vector and γT (A) is a row vector which depends on a0, . . . , an−1. If the pair
(C(A0), β) is controllable, let T be the matrix from Lemma 4.9. Then

T
(
C(A0) + βγT (A)

)
T−1 = T C(A0)T

−1︸ ︷︷ ︸
companion matrix

+
[
0 · · · 0 1

]T
(γT (A)T−1)︸ ︷︷ ︸
row vector
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which again is a companion matrix, because the dyadic product results in a
matrix with non-zero entries only in the last row. So at this point, we only
will need to show that (C(A0), β) is controllable, which is a trivial task.

Let A1 = A0 − I, A2 = A0 + I. Then:

C(A) = C(A0 + bcT ) = (A1 + bcT )(A2 + bcT )−1

(4.33)
= (A1 + bcT )(A−1

2 +
1

λ
A−1

2 bcTA−1
2 )

= A1A
−1
2 +

1

λ

λbcTA−1
2 + A1A

−1
2 bcTA−1

2 + b cTA−1
2 b︸ ︷︷ ︸

scalar!

cTA−1
2


= A1A

−1
2 +

1

λ

(
λI + A1A

−1
2 + cTA−1

2 bI
)
bcTA−1

2

= A1A
−1
2 +

1

λ

(
I(−1− cTA−1

2 b+ cTA−1
2 b) + A1A

−1
2

)
bcTA−1

2

= A1A
−1
2 +

1

λ
(A1A

−1
2 − I) = C(A0) + ((C(A0)− I)b)

cTA−1
2

λ
=: R + βγT (A)

where R and β are exactly like in Equations (4.31) and (4.32). As stated in
Lemma 4.8, we have to require that λ = −1 − cT (A0 + I)−1b 6= 0. This is
shown relatively easily given the following: As det(A2) = 1, A−1

2 = adj(A2).

A−1
2 = adj


1 1 0 · · · 0
0 1 1 · · · 0
...

. . .
...

0 · · · 0 1

 =


1 −1 1 · · · (−1)n+1

0 1 −1 (−1)n

...
. . .

...

0 · · · 1


Given the definitions of cT and b, it follows that

−λ = 1 + cT A−1
2

[
0 · · · 0 1

]T︸ ︷︷ ︸
last row of A−1

2

= 1 +
[
−a0 −a1 · · · −an−1

]


(−1)n+1

(−1)n

...
−1
1


= 1 +

n−1∑
i=0

(−1)n+iai = (−1)npA(−1)

where pA(s) = det(sI −A) denotes the characteristic polynomial of A. As A
was assumed to be Schur stable, pA(−1) 6= 0.
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Now it only remains to show that (R, β) is controllable for every n, then we
can start to construct the transformation matrix T . Therefore we employ
the Popov-Belevitch-Hautus-Criterion. As all eigenvalues of R are −1, this
leads to

rank
[
−I −R β

]
= rank


0 2 −2 · · · 2(−1)n+1 2(−1)n

0 0 2 · · · 2(−1)n 2(−1)n+1

...
. . . . . .

...
...

2
0 · · · 0 −2


!
= n

which obviously is satisfied for every n.

Let M =
[
β Rβ · · · Rn−1β

]
and let mT be the last row of M−1. In e.g.

[Lue79], it is shown that for the matrix T =


mT

mTR
...

mTRn−1

 it then holds that

TRT−1 is in companion form and TB =
[
0 · · · 0 1

]T
. As shown in the

beginning of the proof, the matrix T thus is the one we are looking for. This
completes the proof.

Theorem 4.22 (Robust stability for companion matrices with interval un-
certainties). Let

A =
{[
a0 a1 . . . an−1

][ | ai ∈ [ai, ai] ∀i = 0 . . . n− 1
}

and B in a similar matter denote two sets of Schur stable companion matrices
with uncertain entries.
Then there exist two sets Ã and B̃ of Hurwitz stable companion matrices with
interval uncertainties such that:
There exists a CQLF for any A ∈ A and any B ∈ B ⇔ There exists a CQLF
for any A ∈ Ã and any B ∈ B̃.

Proof. A CQLF for any A and B exists ⇔ A CQLF for any F ∈ {C(A) |A ∈
A} and any G ∈ {C(B) |B ∈ B} exists ⇔ For any nonsingular matrix T ,
there exists a CQLF for any TFT−1 and TGT−1. Now choose T to be the
matrix from Lemma 4.7 and apply it to all F ∈ {C(A) |A ∈ A} and all
G ∈ {C(B) |B ∈ B}. That yields two sets Ã and B̃ of companion matrices.
As similarity transforms preserve the eigenvalues and the Bilinear Transform
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maps Schur matrices to Hurwitz matrices, all matrices in Ã and B̃ are Hur-
witz. So it only remains to show, that they are sets of matrices with interval
uncertainties.
Therefore consider how Ã is obtained: The Bilinear Transform involves the
inverse of (I − A), which is exists for any A ∈ A, otherwise one A would
have an eigenvalue 1, which contradicts the assumption, that all A in A are
Schur. Thus every entry of C(A) consists of some polynomial in the en-
tries of A divided by det(I − A), which is nonzero. The following similarity
transforms just “mixes things up” a little, but in the end every entry of any
F ∈ Ã consists of the same rational function in the entries of “its” A. As the
denominators are still det(I − A) 6= 0, the functions are continuous on the
closed convex set [a0, a0]× [a1, a1]× · · · × [an−1, an−1] and thus have a global
minimum and maximum and can take every value between them. In other
words: their values are constrained to intervals. The same applies of course
for B̃. That completes the proof.

This Theorem is preliminary in that it leaves the question, how to decide
whether A and B consist only of Schur matrices, open. If that is clear, the
following algorithm can be applied:

1. Compute the Bilinear Transform for a general companion matrix of
dimension n

2. Compute the transformation T

3. Minimize and maximize the entries over the sets [a0, a0] × [a1, a1] ×
· · ·× [an−1, an−1] and [b0, b0]× [b1, b1]×· · ·× [bn−1, bn−1]. This gives you
the new upper and lower bounds αi, αi, βi and βi, respectively, for the

matrices in Ã and B̃.

4. Apply condition 2 of Theorem 4.16 to Ã and B̃.
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Chapter 5

Connecting the parts: Stability
analysis as a Lur’e problem

5.1 Overview

As our proposal includes the closing of a feedback loop, a natural question
is, whether this feedback loop could introduce instability. In this Chapter,
we will therefore investigate the stability properties of the loss rate control
and thereby make use of the results of the last Chapter.

In the next Section, we will show, how the control loop can be treated in the
theoretical framework of Lur’e systems. Therefore we will assume a nearly
static relation between queue capacity and loss rate in an uncongested link
and will identify this relation with the nonlinearity in the feedback path.
As there can be no assumptions made but the negative gain, the sector will
be (0,∞). As the Lur’e framework is only useful in connection with linear
systems, this only includes the linear controller of Section 3.5.2, the MIMD
and MIAD algorithms of Sections 3.5.3 and 3.5.4 will not be treated in this
Chapter.

In the following Sections, we then will apply our theoretical results to filters
of varying degrees. We will give bounds for the filter coefficients ρi to ensure
stability with arbitrary gain for a first (Section 5.3), second (Section 5.4) and
a special Nth (Section 5.5) order filter.
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q

λ

λ − λ*

q−q*

Figure 5.1: An example for the relation between queue capacity and loss rate

5.2 Formulation as a Lur’e problem

We have the linear filter F (z) and the linear controller K(z). They will
constitute the linear system in the forward path. For the nonlinearity in the
feedback path, some more work is needed.

In [AKM04] a static relation between queue capacity and utilization in a
congested link was shown, which in [SSK06] was used to propose a closed
loop algorithm which adapts the queue capacity to the external conditions.
See Section 3.3 for details. We now assume, that there is a similar relationship
between queue capacity and loss rate in an uncongested link. Since the only
further assumption we can make is, that a bigger queue capacity can not
result in a bigger loss rate, the line shown in Figure 5.1 is just an example.

As in the Lur’e framework only sector nonlinearities can be treated, we now
have to transform the line into one. Therefore we assume, that there exists
an equilibrium queue capacity q∗ to each target loss rate λ∗ and “move” the
origin in Figure 5.1 by considering the new variables q− q∗ and λ−λ∗. Then
we define g with

λ− λ∗ = g(q − q∗, t) (5.1)

and observe:−g(·) is a sector nonlinearity belonging to the sector (0,∞).

As q∗ is an exogenous input, it does not influence stability, so we completely
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K(z)

−g(·)λ− λ∗

q

q∗

F (z)

Figure 5.2: Loss rate control as a Lur’e system

fitted the proposal in the Lur’e framework like depicted in Figure 5.2.

Recall from Section 3.5, that the controller is given by K(z) = γz
z−1

like in
(3.8) and the filter of n-th order has the transfer function

F (z) =
ρNF

zNF

zNF −
∑NF−1

i=0 ρizi
(5.2)

As the sector under consideration is (0,∞) and we are only interested in
stability, we can move the gains ρNF

and γ into the nonlinearity without
changing the result.
So let G(z) be the “gain free” linear part

G(z) =
zNF

zNF −
∑NF−1

i=0 ρizi
z

z − 1

=
zNF +1

zNF +1 − (1 + ρNF−1)zNF +
∑NF−1

i=1 (ρi − ρi−1)zi + ρ0

(5.3)

Then we can pose the question under consideration:

Consider the Lur’e system with linear part G(z) and feedback
nonlinearity belonging to (0,∞). For which choices of NF and
ρi is the system absolutely stable?

Remark 5.1 (Marginally stable open loop). Note, that G(z) has one pole
zi = 1 and thus is no stable transfer function. In other words, the system
matrix in any realization of G(z) has an eigenvalue 1 and therefore is not
Schur stable, so the Bilinear Transform does not exist.
On the other hand, closing the loop with a gain of at least ε > 0 moves
that eigenvalue inside the unit circle. For this reason we consider the sector
(0,∞) instead of [0,∞).
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5.3 First order filter

In this section we consider NF = 1, thus G(z) = z2

z2−(1+ρ)z+ρ
. A realization

[A,B,C,D] of G is given by

A =

[
0 1
−ρ ρ+ 1

]
(5.4a)

B =

[
0
1

]
(5.4b)

C =
[
−ρ ρ+ 1

]
(5.4c)

D = 1. (5.4d)

Now consider the sector [ε,∞) with ε > 0 arbitrarily small (we later will
send it to zero anyway). By remark 4.1, we can look at the sector [0,∞) and
the linear system [Ã, B̃, C̃, D̃] with

Ã =

[
0 1
−ρ
1+ε

ρ+1
1+ε

]
(5.5a)

B̃ =

[
0
1

1+ε

]
(5.5b)

C̃ =
[ −ρ

1+ε
ρ+1
1+ε

]
(5.5c)

D̃ =
1

1 + ε
(5.5d)

instead .

By the remark to Theorem 4.21, we now have to check the matrix prod-

uct C(Ã) C
(
Ã− (1 + ε)B̃C̃

)
=: Wε for negative, real eigenvalues to gain a

sufficient condition for absolute stability.

C(Ã) =

[
ε−2

2ρ+2+ε
2+2ε

2ρ+2+ε
−2ρ

2ρ+2+ε
2ρ−ε

2ρ+2+ε

]
(5.6)

C
(
Ã− (1 + ε)B̃C̃

)
=

[
−1 2
0 −1

]
(5.7)

Wε =

[
ε+2

2ρ+2+ε
−2 3+2ε

2ρ+2+ε
2ρ

2ρ+2+ε
−6ρ+ε
2ρ+2+ε

]
(5.8)
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Now we get rid of ε by sending it back to zero and obtain an expression for
the eigenvalues of W0. One of them is always zero (which corresponds to the
fixed eigenvalue 1 in the discrete time system), the other one is λ(ρ) := 1−3ρ

ρ+1
.

Obviously, λ(ρ) ∈ R ∀ρ ∈ [0, 1], so we need to require λ(ρ) > 0 to satisfy the
conditions of Theorem 4.21. A simple calculation yields

λ(ρ) > 0 ⇐⇒ ρ <
1

3
(5.9)

Recall that
∑
ρi = 1 for any filter, then the system remains stable with the

filter F (z) = (1−ρ)z
z−ρ and the controller K(z) = γz

z−1
for any gain γ > 0 as long

as 0 < ρ < 1
3
.

5.4 Second order filter

Now let NF = 2. Then G(z) = z3

z3−(1+ρ1)z2+(ρ1−ρ0)z+ρ0
and a realization

[A,B,C,D] is

A =

 0 1 0
0 0 1
−ρ0 ρ0 − ρ1 ρ+ 1

 (5.10a)

B =

0
0
1

 (5.10b)

C =
[
−ρ0 ρ0 − ρ1 ρ+ 1

]
(5.10c)

D = 1. (5.10d)

We again assume a sector [ε,∞), use remark 4.1, calculate the matrix product
Wε and send ε back to zero. Then we arrive at the matrix W0 with

W0 =


1+ρ1

1+ρ1−ρ0 − 4+3 ρ1
1+ρ1−ρ0

7+4 ρ1
1+ρ1−ρ0

− ρ0
1+ρ1−ρ0

3 ρ0+1
1+ρ1−ρ0 − 4 ρ0+3

1+ρ1−ρ0
ρ0

1+ρ1−ρ0
−4 ρ0+ρ1
1+ρ1−ρ0 −−7 ρ0+3 ρ1

1+ρ1−ρ0

 (5.11)

which again has one fixed eigenvalue at 0, the other two are given by

λ+/−(ρ0, ρ1) =
5 ρ0 + 1− ρ1 ± 2

√
ρ1

2 − 2 ρ1 ρ0 + 5 ρ0
2 + 4 ρ0

1 + ρ1 − ρ0

. (5.12)
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Again, λ+/−(ρ0, ρ1) ∈ R and λ− < λ+, so we have to require

λ−(ρ0, ρ1) =
5 ρ0 + 1− ρ1 − 2

√
ρ1

2 − 2 ρ1 ρ0 + 5 ρ0
2 + 4 ρ0

1 + ρ1 − ρ0

> 0 (5.13)

which holds for ρ0 <
1
5
− 3

5
ρ1. Still

∑
ρi = 1, so an algorithm of finding

suitable ρi can be to first choose a pair (ρ0, ρ1), for which the inequality
holds, and then ρ2 = 1 − ρ0 − ρ1. Observe, that ρ0 + ρ1 <

1
3
, so for any

ρ2 >
2
3
, a suitable pair (ρ0, ρ1) can be found.

5.5 N-th order filter

As could be seen in the last sections, checking stability for a given filter
order NF involves calculating the eigenvalues for a (NF + 1) × (NF + 1)-
matrix. Although this is still possible for NF = 3, the conditions for the
filter coefficients ρi can be expected to be quite unwieldy. Additionally, from
a practical point of view, it is desirable to have not too many parameters to
choose. Therefore we propose here a choice of the ρi which allows high filter
orders and easily checkable stability conditions.

The two parameters to choose are the filter order NF and a decaying rate
q ∈ (0, 1) which is the ratio of two consecutive ρi: ρi/ρi+1 = q. Then define:

ρNF
=

1− q

1− qNF +1
(5.14)

ρNF−i = ρNF
qi i = 1, . . . , NF . (5.15)

If one recognizes the geometric series, it is easily checked, that

NF∑
i=0

ρi = ρNF

NF∑
i=0

qi =
1− q

1− qNF +1

1− qNF +1

1− q
= 1. (5.16)
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Figure 5.3: Regions for stable pairs of NF and q

Inserting the ρi in (5.3) and computing a realization yields

A =


0 1 · · · 0 0
0 0 · · · 0 0
...

. . .
...

0 0 · · · 0 1
−ρNF

qNF ρNF
(q − 1)qNF−1 · · · ρNF

(q − 1)q 1 + ρNF
q

 ∈ R(NF +1)×(NF +1)

(5.17)

B =
[
0 0 · · · 0 1

]T ∈ R(NF +1)×1 (5.18)

C =
[
−ρNF

qNF ρNF
(q − 1)qNF−1 · · · ρNF

(q − 1)q 1 + ρNF
q
]
∈ R1×(NF +1)

(5.19)

D = 1. (5.20)

Note, that ρNF
also depends only on q and NF .

Now it is possible to calculate the matrix products W0 like in the preceding
sections for every NF . They only depend on q, so after choosing a finite set
Q ⊂ (0, 1) of values for q, the eigenvalues can be checked numerically and
pairs (NF , q) for stable loops can be identified. The results for NF = 1, . . . , 15
are shown in Figure 5.3.

Of course that is just one way of choosing filter coefficients which ensure
stability; many more could be developed. A reduction of the parameters
however seems advisable in any case.

We also stress, that our stability analysis is probably very conservative, be-
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Figure 5.4: A root locus for NF = 6 and q ∈ (0, 1)

cause the maximum feedback gain can be expected to be well below ∞.
However, here we derived conditions for guaranteed stability under minimal
assumptions.
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Chapter 6

Conclusions and future work

In the course of this thesis, we identified over-provisioning as a way to ensure
a certain performance level. We introduced the term Quality of Service
(QoS), which has been coined to describe this performance level and defined
core link provisioning as the process of finding the minimum necessary
bandwidth to ensure Quality of Service (Chapter 1).

In Chapter 2, representatively for all model-based approaches, the recent
work of van de Meent [vdM06] was reviewed. Additionally, we gave a
short outline of DiffServ and IntServ, which are technologies to ensure QoS
by treating different flows with different requirements differently. The review
also included shortcomings of the existing solutions: Model-based link
provisioning heavily relies on the applicability of the models, which in general
can not be assumed due to the time invariant behaviour of network traffic.
DiffServ and IntServ suffer from scalability and complexity issues.

We then presented our proposal for a practicable way of link provisioning
with minimal additional effort in Chapter 3. A control loop is introduced:
The capacity q of the buffer in front of the link in question is used to maintain
a certain low loss rate λ∗. We then argued, that the consideration of the buffer
capacity q yields additional information on the fluctuations and variance of
the traffic arrival process. Some basic simulation results to further illustrate
the proposal are also given.

In Chapter 4, theoretical tools to assess the stability of the control loop
are summarized and developed further. Namely, we give conditions on the
existence of a common quadratic Lyapunov function (CQLF) for two linear
time invariant systems in continuous as well as in discrete time. This results
are linked to the absolute stability of Lur’e systems. The main contri-
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bution in terms of the later application to our problem is Theorem 4.21, we
restate it here for completeness:

Theorem 4.21 (Spectral condition for absolute stability). The SiSo DT
Lur’e system consisting of the linear system [A,B,C,D] and a nonlinearity
belonging to [0, k] is absolutely stable
⇐=
The matrix product C(A) C

(
A− k

1+kD
BC
)

has no negative real eigenvalue.

The application of the theoretical results to our proposal is then carried
out in Chapter 5. The control loop is transformed into a discrete time Lur’e
problem and with the help of Theorem 4.21, constraints on the control
parameters which guarantee stability are derived.

Clearly, future work is needed: Good reasoning and a sound stability theo-
retical basis for our novel approach is provided here. The next step should be
to evaluate the approach with further simulations and experiments on real
networks. At the same time, guidelines on the actual tuning of the control
parameters to reach good controller performance need to be developed. We
also still owe an experimental evaluation of the assumption in Section 5.2.
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Appendix

A Matlab source codes

A.1 Nth Order.m

This file takes the order NF of the filter as an argument and puts out the
eigenvalues of the matrix product W0 for different values of q as well as the
values of q, for which real negative eigenvalues occur.

function [PLT,S] = Nth Order(N)

%%%
% This function takes one argument − the order N of a filter.
% It then calculates the matrix product W and puts out:
% PLT : each row contains the value of q in the first and the
% eigenvalues of W in the remaining columns
% S : Contains the values of q for which W has a real negative eigenvalue

if (round(N) 6=N)
disp('Please... the order has to be a whole number');
return;

end

syms q e

% this is rho NF
r = (1−q)/(1−qˆ(N+1));

% setting up the system matrix A
H = [ zeros(N,1) eye(N)];
h = sym(zeros(1,N+1));
h(1) = −r*qˆN;
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h(N+1) = 1+r*q;

for i = 2:N
h(i) = r*(q − 1)*qˆ(N+1−i);

end

A = [H;h];
B = sym([zeros(N,1);1]);
C = h;
D = 1;

% closing the feedback loop over a gain eps
AE = A − e/(1+e)*B*C;
BE = B/(1+e);
CE = C/(1+e);
DE = D/(1+e);

% bilinear transform
CA = cayley(AE);
CAC = cayley(AE−BE*CE/DE);

% matrix product
WE = CA*CAC;

% sending eps −> 0
W0 = simplify(subs(WE,e,0));

PLT = [];
for qq = 0.02:0.01:0.98

% inserting values for q
WQ = subs(W0,q,qq);
EV = eig(WQ);
PLT = [PLT;qq EV'];

end

% tolerance for negative eigenvalues
% (recall that one of them is always 0. numerical errors can make
% make that one appear negative.)
eps = 1e−12;

% finding the indices of negative real eigenvalues and
% storing the according q's in S.
ind1 = find( (imag(PLT)==0)&(real(PLT)<−eps));
[rs,cs] = ind2sub(size(PLT),ind1);
S = PLT(rs,1);
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A.2 Nth order plot.m

This script calls Nth order.m with various values for NF and creates the plot
shown in Figure 5.3.

% Filter orders to check
N = [1:15];

figure;
axis([0 1 N(1) N(end)]);
hold on;

PLTotal = {};
SS = {};
P = zeros(1,length(N));

% calling Nth Order with the values for N
for i=N

[PLT,S] = Nth Order(i);
% saving the minimum q for every N
P(i−N(1)+1) = min(S)
% plotting the "forbidden" values for q
plot(S,i*ones(size(S)),'−v')

PLTotal{end+1} = PLT;
SS{end+1} = S;

end
grid
hold off;

figure;

% plotting the area of guaranteed stability
patch([0 0 P],[N(end) N(1) N],10);
set(gca,'XLim',[0 1],'Color','r')

% plotting the grid − otherwise it's behind the patch
for i=N

line([0 1],[i i],'Color','k','LineStyle',':');
end

for i=0.05:0.05:0.95
line([i i],[N(1) N(end)],'Color','k','LineStyle',':');

end
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B Network technology basics

B.1 A short overview of TCP

Protocol

TCP is an abbreviation for Transmission Control Protocol and is a

. transport layer

. connection-oriented

. reliable delivery

Protocol. For a networks expert this might say it all, for all the others we
will now give a short explanation, which is not meant to be comprehensive,
will not even cover all basic facts, but will just consist of the facts about
TCP that are interesting in some way concerning this thesis.
For comprehensive information about TCP, see e.g. [Pos81].

Transport layer This description originates from the so-called OSI Seven-
Layer-Model [Zim80] and means, that TCP is passed packets of data
by the top layer and has to make sure, that these packets arrive at
their destinations. So TCP passes them to the layer below it (the so-
called Network layer) which then is responsible for the transport to the
destination.
The important fact for us is: By doing so, the TCP implementation
of the sending machine is responsible for the rate at which the packets
are released into the network.

Connection-oriented This states that, before any real data packets are
sent, a connection has to be established between the source and the des-
tination. After successful transmission, the connection will be closed.

Reliable delivery Unlike TCP, UDP (User Datagram Protocol B.2) is a
connectionless transport-layer-protocol and thus does not enable the
source to notice, if a packet gets lost on its way to the destination.
A TCP source on the other hand expects an acknowledgement from the
destination for each packet it has sent. If there is no acknowledgement
during a certain time interval, the TCP source sends it once more. This
is called a retransmit and guarantees, that each packet arrives at the
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destination.
Important here: Using TCP enables the source to sense data losses and
to react accordingly.

Working modes

Each TCP source maintains a transmission window. The size of this window
specifies, how many packages may be sent without having received the ac-
knowledgement for the first one.
Furthermore, each TCP source is trying to exploit the available bandwidth.
To do so the transmission window is resized: As long as there are “no prob-
lems”, i.e. no packets are lost, the window is enlarged. When the first packet
loss is noticed, it’s been “too much” and the window size is decreased.
How this de- and increase is done, will be described now. A very good and
much more detailed description can be found in the excellent paper [Jac88].

Slow Start When a TCP connection is established, the source starts off
with a very small window. But it seems wise, to decrease it very fast in
the beginning to get a rough idea of the network conditions quickly. So the
window size is doubled each time a full window of data packets gets acknowl-
edged.
When the first packetloss is noticed, the source backs off by halving its trans-
mission window. In other words it is reset to the last known working config-
uration.
This kind of algorithm is called MIMD (Multiplicative Increase, Multiplica-
tive Decrease) algorithm. When the Slow Start has provoked the first pack-
etloss and by that probed the available bandwidth, the source goes into the
so-called Congestion Avoidance mode.

Congestion Avoidance Now the source starts increasing its window more
carefully by just adding a fixed number α of packets to its transmission
window each time a full window of data packets gets acknowledged. The
standard is α = 1.
When, again, a packetloss occurs, the window is again decreased, this time
by a factor β. Here, a common choice is β = 0.5.
Nevertheless, each TCP implementation can have other values α and β.
This kind of algorithm is called AIMD (Additive Increase, Multiplicative
Decrease) algorithm.
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So each TCP source steadily increases the number of packets in the network,
then backs off if a packet gets lost by decreasing this fixed number and starts
to increase it again.
The details of this “increasing” and “backing off” can be different for each
TCP source and are impossible to know from a network operator point-of-
view.

TCP data transfer constitutes the major part of common network traffic
[Nat].

B.2 One line about UDP

UDP stands for User Datagram Protocol and is a very simple transport layer
protocol, in the sense that it just sends data and expects no acknowledge-
ments. So it is not able to sense lost packets or to control the sending rate.
For details see [Pos80].

B.3 A very short overview of SNMP

SNMP stands for Simple Network Management Protocol. Like for TCP,
only information that is interesting regarding this thesis will be provided, for
comprehensive information see [CFS90].

SNMP enables a network manager to gather information about each net-
work element where SNMP is implemented. It is novadays available on most
routers, switches, printers and so on.
It is an application layer protocol (which is the top layer of the transport
layer) and of course, each time the monitoring application on the manager
machine calls for information, additional network traffic is caused. To be
exact, SNMP uses UDP.

Important for us: From modern routers, information about traffic conditions
like queuesize, number of packet arrivals, number of lost packets etc. can be
gathered by a central machine via SNMP. Because each measurement causes
network traffic itself, the frequency of measurements has to be coarse relative
to the other traffic. A common choice is to take one measurement every 5
minutes.
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B.4 Some other terms

The time which passes when a packet is sent until the acknowledgement
reaches the sender is called Round Trip Time (RTT). Each flow has an
average or mean RTT which is used, for instance, to calculate the time-out
of a TCP implementation.

A DropTail Queue is a queue in a network entity, e.g. a router, where
data packets line up waiting to be sent. If the queue is full, all new arriving
packets are dropped.

The Lossrate is the ratio of the dropped packets to the arrived packets in a
certain time interval. Thus λ =

#dropped

#arrived
.
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List of symbols and
abbreviations

QoS Quality of Service
IP Internet Protocol - A network layer protocol
TCP Transmission Control Protocol – See Section B.1
UDP User Datagram Protocl – See Section B.1
SNMP Simple Network Management Protocol – See Section

B.1
Mbit/s Megabits per second
CBR Constant BitRate

P (X > x) The Probability, that the random variableX is greater
than x

E(X) The Expectation of the random variable X
σ2 The Variance of a probability distribution
mgf The Moment Generating Function

CT, DT, LTI Continuous Time, Discrete Time, Linear Time Invari-
ant

LF, QLF, CLF,
CQLF

Lyapunov Function, Quadratic Lyapunov Function,
Common Lyapunov Function, Common Quadratic
Lyapunov Function

I/O, SISO Input-Output, Single Input Single Output
[A,B,C,D] State space model:

ẋ = Ax+Bu, y = Cx+Du in continuous time and
x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k) in
discrete time
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N, N+, R, R+

and C
The sets of the natural, positive natural, real, non-
negative real and complex numbers

Rn The set of n-dimensional vectors with real entries
Rm×n The set of the m× n matrices with real entries
Rn×n
H , Rn×n

S The sets of Hurwitz and Schur stable n × n matrices
with real entries

P > 0 (P ≥ 0) The quadratic matrix P is positive (semi-)definite
‖ · ‖ Some norm
ẋ The derivative of x with respect to the time t
∂V
∂x

If x, V (·) ∈ R: The partial derivative of V with re-
spect to x
If V (·) ∈ R, x ∈ Rn: The gradient of V
If V (·), x ∈ Rn: The Jacobian of V

AT The transpose of the matrix A
⇐, ⇒, ⇔ “if”, “only if”, “if and only if”

List of symbols and abbreviations
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