
Constrained Optimal Control

An Application to Semiactive Suspension Systems

Preliminary Thesis

November 2005

Tina Paschedag

Course of Technical Cybernetics
Matriculation Nr.: 164120

O

T
T
O

-V
O

N
-G

U
E

R

IC
KE-UNIVERSIT

Ä
T

M
A

G
D

E
B

U
R

G

Otto-von-Guericke University Magdeburg
Institute of Automation Technology

Tutors: Prof. Alessandro Giua

Dr. Carla Seatzu

University of Cagliari
Department of Electrical and Electronical Engineering

Abstract

This thesis compares three different control design methods with regard to their applica-
tion to a quarter car semiactive suspension model. The design methods investigated are
called optimal gain switching, discontinuous variable structure control and explicit model
predictive control. All of the three divide the state space into several regions and assign
one linear/affine feedback subcontroller to each of these regions. The partition of the state
space is computed off-line. During the on-line phase, the controller switches between the
subcontrollers according to the current state.
The investigated methods aim to approximate optimal control laws and therefore can be
called suboptimal.

Contents

Abstract i

List of Figures v

Abbreviations vi

1 Introduction 1

2 Principles of Modeling and Control 3

2.1 Some Basic Concepts in Control . 3

2.2 Modeling of Mechanical Systems . 5

2.2.1 Introduction . 5

2.2.2 Describing Mechanical Systems . 5

2.3 Models of Dynamic Systems . 8

2.3.1 The Concept of State and State Space Models 8

2.3.2 Transfer Functions . 10

2.3.3 Stability . 11

2.3.4 Controllability and Observability . 14

2.4 Control Design Methods . 15

2.4.1 Pole placement . 15

2.4.2 Linear Quadratic Regulator . 16

3 The Quarter-Car Suspension Model 17

3.1 Introduction . 17

3.2 Dynamical Model of the Suspension System 18

3.2.1 The Two-Degrees of Freedom Model 18

3.2.2 The One-Degree of Freedom Model 21

3.2.3 Parameter Values . 22

4 Optimal Gain Switching 24

4.1 Introduction . 24

4.2 The controller design . 25

4.2.1 Theoretical Background . 25

4.2.2 Design algorithm . 27

ii

CONTENTS iii

4.3 OGS for the suspension system . 28

5 Discontinuous Variable Structure Control 30
5.1 Introduction . 30
5.2 Discontinuous VSC . 31
5.3 Soft VSC . 35

6 Explicit Model Predictive Control 38
6.1 Introduction . 38
6.2 Polytopes Theory . 38
6.3 Multi-Parametric Quadratic Programming 40

6.3.1 Geometric Algorithm for mp-QP . 41
6.3.2 Continuity and convexity properties 45
6.3.3 A summary of the mp-QP Algorithm 45

6.4 Constrained Finite Time Optimal Control 46
6.4.1 Problem formulation . 46
6.4.2 State Feedback Solution of CFTOC 48

6.5 MPC for the semiactive suspension system 50

7 OGS – VSC – MPC: A comparison 54
7.1 Introduction . 54
7.2 Partitioning the State Space . 54
7.3 The control performance . 59

7.3.1 The second-order model . 59
7.3.2 The fourth-order model . 59

8 Conclusions 65

Acknowledgements 67

A MATLAB Programs 68
A.1 The system’s data . 68
A.2 Partitioning the State Space . 69

A.2.1 Computation of the Yoshida Regions 69
A.2.2 Computation of the Lyapunov Regions 70
A.2.3 Computation of the Convex Polyhedral Regions 71

A.3 Simulation of the Semiactive Suspension System 72

List of Figures

2.1 A spring-mass-damper system with an applied force [6] 7

2.2 Newton’s second law applied using the FBD approach [6] 8

3.1 Model of the two-degrees of freedom model (a) active (b) semiactive sus-
pension . 19

3.2 Model of the one degree of freedom model (a) active suspension (b) semi-
active suspension . 22

4.1 Cut through the linear regions Γρ for the fourth-order suspension system
at x3 = x4 = 0 . 29

5.1 Family of nested Lyapunov regions (a) for the second-order suspension
model (b) cut through x3 = x4 = 0 for the fourth-order suspension model;
h = 1.5 . 34

6.1 Two dimensional example: partition of the rest of the space CRrest
△

= K \
CR0; (a) set of parameters K and initial region CR0; (b) partition of CRrest,
Step 1; (c) partition of CRrest, Step 2; (d) final partition of CRrest 44

6.2 Partition for the fourth-order suspension model, cut through x3 = x4 = 0:
(a) FTOC, no terminal set, N = 10, 557 regions; (b) FTOC, no terminal
set, N = 15, 1038 regions; (c) FTOC , terminal set automatically computed,
N = 10, 2195 regions; (c) FTOC , terminal set automatically computed,
N = 15, 3852 regions. 52

6.3 Projection of the partition into the x1-x2-plane for the fourth-order suspen-
sion system for the ITOC . 53

7.1 Sets of designated eigenvalues for the fourth-order suspension system (a) in
the z-plane and (b) in the s-plane. h = 1.5 55

7.2 Partition of the state space for the second-order model. (a) linear regions
of OGS Case A (b) linear regions of OGS Case B (c) elliptical Lyapunov
regions of discontinuous VSC (d) convex polyhedral regions of explicit MPC 57

7.3 Partition of the state space for the fourth-order suspension model: cut
through x3 = x4 = 0. (a) linear regions of OGS Case A (b) convex polyhe-
dral regions of explicit MPC . 58

iv

LIST OF FIGURES v

7.4 Evolution of the second-order suspension system comparing OGS Case A
and B, discontinuous VSC and eMPC. Initial state x0 = [0.01 0.1]T 60

7.5 Evolution of the fourth-order suspension system comparing OGS and ex-
plicit MPC. Initial state x0 = [0.015 0.1 0 0]T 61

7.6 Evolution for the fourth-order suspension system with an additive distur-
bance x0. 62

7.7 Evolution for the fourth-order semiactive suspension system with initial
state x0 = [0.015 0.1 0 0]. 63

7.8 Evolution for the fourth-order semiactive suspension system with an addi-
tive disturbance x0. 64

Abbreviations

(C)FTOC (constrained) finite time optimal control
(C)ITOC (constrained) infinite time optimal control
LP linear programming
LQ linear quadratic
LQR linear quadratic regulator
(e)MPC (explicit) model predictive control
MPT model predictive toolbox
OGS optimal gain switching
PWA piecewise affine
PPWA piecewise affine on polyhedra
QP quadratic programming
(d)VSC (discontinuous) variable structure control

vi

Chapter 1

Introduction

In this thesis we consider linear systems with constraints, which are probably the most
important class in practical control applications and, thus studied a lot in the past. It is
well accepted that for these systems, in general, stability and good performance can only
be achieved with a non-linear control law.
We investigated three different approaches to design a non-linear controller for these type
of systems, namely optimal gain switching (OGS), discontinuous variable structure control
(dVSC) and explicit model predictive control (eMPC). All of these three methods consist
of an off-line and an on-line phase. Their off-line phases divide the state space into several
regions and assign linear subcontrollers in the case of OGS and dVSC or affine subcon-
trollers in the case of eMPC to these regions. During the on-line phase the controller
switches between these subcontrollers according to the current state.
The methods presented in this thesis all intend to approximate time optimal control laws,
and therefore can be called suboptimal control methods.

In order to compare the three design methods we applied them to a quarter-car suspension
system. Therefore, we considered an active and a semiactive model of suspension systems.
The design of active suspensions for road vehicles aims to optimize the performance of
the vehicle with regard to comfort, road holding and rideability. In an active suspension
the interaction between vehicle body, the so-called sprung mass, and wheel (nonsprung
mass) is regulated by an actuator of variable length. The actuator is usually hydraulically
controlled and applies between body and wheel a force that represents the control action
generally determined with an optimization procedure.
In contrast to active suspensions, passive suspensions consist of dampers and springs and
therefore the interaction between body and wheel is determined by their elastic constants
and damping coefficients, thus is constant.
Active suspensions have a better performance than passive suspensions, but they are much
more complex and cost-intensive. As a viable alternative to a purely active suspension
system, the use of semiactive suspensions has been investigated a lot in the past. Such a
system consists of a spring whose stiffness is constant and of a damper whose characteristic
coefficient f is adjustable within an interval [fmin, fmax] controlling the opening of a valve.
The value f is determined such that an active control considered as target is approximated

1

2 CHAPTER 1. INTRODUCTION

as close as possible.

This thesis is structured in the following way: In Chapter 2 we recall some of the basic con-
cepts in control theory, which are necessary to understand the presented design techniques.
The quarter-car suspension model both for the active and the semiactive suspension is in-
troduced in Chapter 3. Afterwards, the concepts of optimal gain switching, discontinuous
variable structure control and explicit model predictive control are illustrated in Chapters
4, 5 and 6, respectively. Finally we present the simulation results comparing the different
control design concepts in Chapter 7.

Chapter 2

Principles of Modeling and

Control

This chapter presents some of the most important aspects of modeling and control theory
which are necessary to understand the given problem and the different approaches to
design a suitable controller.

2.1 Some Basic Concepts in Control

The control problem can in general terms be formulated as follows:

The Control Problem
Given a system S, with measured signals y, determine a feasible control
input u, so that a controlled variable z follows as closely as possible
a reference signal (or setpoint) r, despite influence of disturbances w,
measurement errors n, and variations in the system.

The problem is typically solved by letting u be automatically generated from y and r by
a controller (or regulator) (R).
The control problem as formulated leads to a number of issues. One is to describe the
properties of the system (S) and the disturbances (w). Another is to construct methods
to calculate the regulator (R) for wide classes of system descriptions. Mathematically, this
means that S is described by a linear or nonlinear differential equation or by a difference
equation in continuous and discrete time, respectively.

System

By a system we mean an object that is driven by a number of inputs (external signals)
u(t), −∞ < t < ∞ and as a response produces a number of outputs y(t), −∞ < t < ∞.
From a mathematical point of view, a system is a mapping (a function) from the input u
to the output y

u
S

−→ y

3

4 CHAPTER 2. PRINCIPLES OF MODELING AND CONTROL

or

y = S(u) (2.1)

Note that the mapping (2.1) is from the entire input u(t), −∞ < t < ∞ to the entire
output y(t), −∞ < t < ∞. The value of the output at time t1, i.e. y(t1), could thus very
well depend on the values of the signal u at all time points t, −∞ < t < ∞.1 Starting
from the general description (2.1) we shall define a number of useful concepts for systems.
The system S is

1. • causal if for every time point t1, y(t1) only depends on u(t), −∞ < t < t1;

• non-causal otherwise;

2. • static if for every time point t1, y(t1) only depends on u(t) for t = t1;

• dynamic otherwise;

3. • time discrete if u and y are defined only for a countable number of time points,
kept strictly apart by a smallest, positive time distance:

(y(t), u(t)) t = tk, k = 0,±1,±2, . . .

• time continuous if u and y are defined for all real t over an interval or the whole
of the time axis;

4. • SISO (single-input–single-output) if, for every time point t1, u(t1) and y(t1) are
scalars (real numbers);

• MIMO otherwise;

5. • time invariant if the mapping (2.1) does not depend on the absolute time (i.e.,
if u is shifted by τ time units, then the corresponding output will also be shifted
by τ time units);

• time variant otherwise;

6. • linear if S is a linear mapping, i.e.:

S(α1u1 + α2u2) = α1S(u1) + α2S(u2); (2.2)

• nonlinear otherwise.

Let us consider some typical systems that are part of the control problem.

• The Control Object (”the plant”) is the system to be controlled. It has

– Inputs: A control input (u) which is used by us to affect the system, and a
disturbance (w) that also affects the system.

1For a dynamical system one must normally define an initial state for the output to be uniquely defined.
Since the initial state in our formalism is defined at −∞, its influence will have ”died out” at any finite
time point for a wide class of systems.

2.2. MODELING OF MECHANICAL SYSTEMS 5

– Outputs: A controlled variable (z) which is the variable that should be con-
trolled to desired values, and a measured output (y) which contains all measured
signals from the plant. The signal y may include some disturbances as well.

• The Controller or Regulator is also a system with

– Inputs: The Reference signal or Setpoint (r), which is the desired value of the
controlled variable z. The measured output from the controlled object, y, is
also an input to the controller.

– Outputs: The controller output is the control signal u to the controlled object.

• The Closed Loop System is the system obtained when the control loop is closed. This
system has

– Inputs: Reference signal and disturbance signal.

– Outputs: The Control Error (e = r − z), the difference between the desired
and actual values of the controlled variable. Moreover, it is natural to consider
also the control signal u from the controller as an output from the closed loop
system, since it may be necessary to study its properties as a function of the
inputs.

In the following sections of this chapter we give an introduction on how to describe systems
like the plant and the controller. In a first step we illustrate modeling of damping systems,
which may be described by ordinary linear differential equations. Later on we recapitulate
some fundamentals of control theory such as the state space model, system properties like
stability, controllability, observability and at the end we present two fundamental methods
of the control unit design, namely pole placement and the linear quadratic regulator.

2.2 Modeling of Mechanical Systems

2.2.1 Introduction

By a mathematical model we mean a description of the system (here we concentrate on the
plant) where relationships between the model’s variables and the signals are expressed in
mathematical terms. Model building naturally leads to differential or difference equations
for continuous time and discrete time models respectively. In this section we will describe
how to derive the differential equations which describe mechanical systems, e.g. suspension
systems. Later on we will discuss the formal, mathematical aspects of such equations.

2.2.2 Describing Mechanical Systems

There are three elements that make up simple mechanical systems:

1. spring elements

2. damper elements

6 CHAPTER 2. PRINCIPLES OF MODELING AND CONTROL

3. mass or inertia elements

The word ”spring” may bring to mind a coil of a steel wire, but the notion of a spring
element is much more general in the modeling of mechanical systems. Anything the exhibits
significant ”stretch” or deformation under an applied load may be regarded as a spring.
Damper elements are used to represent frictional effects. In lumped-element models, mass
elements simply represent the mass of some portion of the physical system, centered at a
point.

Translational Springs

Formally the spring element is a mechanical element that links two endpoints in a physical
system and has some functional relationship between the relative displacement of the two
endpoints and the force transmitted through the element. For the general spring element,
we can say that the force is given by a function of the ”deformation”, the extension or
relative displacement of the two endpoints. Furthermore, we assume that the ideal spring
element is both massless and frictionless.
The force-deformation relation for a linear spring is known as Hooke’s law, often expressed
as

Fs = kx (2.3)

where Fs is the force transmitted through the spring, k is a constant describing the stiffness
of the spring and x is the extension of the one endpoint while the other one is fixed. Note
that the force is considered positive when directed opposite to the displacement. If the
assumption that one endpoint is fixed is not true any longer the relationship between the
force and the deformation can be generalized like this applying the relative extension:

Fs = k(xnear − xfar) (2.4)

where xnear represents the displacement of the endpoint at which the force is being deter-
mined and xfar represents the other endpoint.

Translational Dampers

Analog to the spring, the damper element links two points in a physical system and has
a functional relationship between the relative velocity of the two endpoints and the force
transmitted through the element. This damping force, that depends on the velocity of the
two endpoints, is given by

Fd = c
d

dt
(xnear − xfar) = c(ẋnear − ẋnear) (2.5)

where Fd is the force and c is the damping coefficient.

2.2. MODELING OF MECHANICAL SYSTEMS 7

Figure 2.1: A spring-mass-damper system with an applied force [6]

Mass Elements in Translational Motion

The force that is effective on the mass is related to the second time derivative of the
displacement of the mass with respect to a ”fixed” frame of reference (within the context
of the theory of relativity, we would refer to an unaccelerated or inertial frame of reference).
The relation between force and acceleration is known as Newton’s Second Law:

F = ma = m
d2x

dt2
= mẍ (2.6)

where F is the force which is effective on the mass m and a = d2x
dt2

is the acceleration of
the latter.

The Interrelationship between Forces in different Elements in a System

Let us consider a specific configuration of a spring, a mass and a damper, as shown in Fig.
2.1. Newton’s second law states that the sum of the forces acting on a body is equal to the
mass of the body times the body’s acceleration with respect to a fixed frame of reference.
A common technique for approaching mechanical problems and applying Newton’s second
law involves the use of free-body diagrams (FBD’s). A box is drawn around some portion
of the system which is then considered as ”free body”, and the forces acting on this body
are summed (vectorially). The resulting sum is then equated to the product of the mass
inside the drawn box, and the acceleration of this mass. This is illustrated in Fig. 2.2.
Drawing the box around the mass and applying Newton’s second law, we have

∑

F = ma (2.7)

Because the spring and the damper elements give rise to forces that oppose motion,
summing them vectorially yields

f(t) − Fs − Fd = ma (2.8)

or, in terms of their respective constitutive equations,

f(t) − k(x2 − x1) − c(ẋ2 − ẋ1) = mẍ2 (2.9)

8 CHAPTER 2. PRINCIPLES OF MODELING AND CONTROL

Figure 2.2: Newton’s second law applied using the FBD approach [6]

where f(t) is an external force acting on the system. Rearranging the above yields the
governing equation for the spring-mass-damper system of Fig. 2.2:

mẍ2 + cẋ2 + kx2 = cẋ1 + kx1 + f(t) (2.10)

Note that there is another method called d’Alembert’s principle which draws the ”box”
around a massless node. Because of this fact the sum of the forces acting on the node is
always zero.

2.3 Models of Dynamic Systems

2.3.1 The Concept of State and State Space Models

The system’s state

As almost all controlled objects are dynamic systems, their output depends on all earlier
input values. This leads to the fact that it is not enough to know u(t) for t ≥ t0 in order
to be able to calculate the output y(t) for t ≥ t0. We need information about the system
and therefore we define the state of a system.

Definition 1. (The system’s state) With the state of a system we denote an amount
of information such that with this state and the knowledge of u(t), t ≥ t0, we can calculate
y(t), t ≥ t0.

This definition is well in line with the everyday meaning of the word ”state”.
It is also obvious from the definition of state that this concept plays a major role in the
simulation of dynamic systems. The state is exactly the information that has to be stored
and updated during the simulation in order to be able to calculate the output.

The State Space Model in general

In Section 2.2.2 we have shown how the physical modeling of a damping system yields a
differential equation. After the modeling it is advantageous to convert the system’s model

2.3. MODELS OF DYNAMIC SYSTEMS 9

into another form, called state space form, for which exist powerful tools for simulation
and controller design. Therefore we start from a general ordinary differential equation

g
(

x̃(n)(t), x̃(n−1)(t), . . . , x̃(t), u(m−1)(t), . . . , u(t)
)

= 0 (2.11)

where

x̃(k)(t) =
dk

dtk
x̃(t)

and g(· , · , . . . , ·) is an arbitrary, vector-valued, nonlinear function.
As we now want to obtain the state space model for the system, it is necessary to transform
the differential equation of order n into a system of n first order differential equations by
introducing a number of internal variables as follows

x1(t) = x̃(t), . . . , xn(t) = x̃(n−1)

Introducing a vector notation

x(t) =






x1(t)
...

xn(t)






we can write the system of first-order differential equations as

ẋ(t) = f(x(t), u(t)) (2.12)

With ẋ(t) we denote the first derivative with respect to time. In (2.12) f(x, u) is a vector
function with n components. The outputs of the model can then be calculated from the
internal variables xi(t) and the inputs ui(t):

y(t) = h(x(t), u(t)) (2.13)

For the system consisting of (2.12) and (2.13) the vector x(t) is the state vector of the
model and its components xi(t) are state variables. The dimension of x(t) n is called the
model order.
In conclusion the general state space model (continuous time) is

ẋ(t) = f(x(t), u(t)) (2.14a)

y(t) = h(x(t), u(t)) (2.14b)

where the state x(t) is an n-dimensional column vector, the input u(t) is an m-dimensional
column vector and the output y(t) is a p-dimensional column vector. In an analogous mode
the state space model in discrete time can be written as

x(tk+1) = f(x(tk), u(tk)) k = 0, 1, 2, . . . (2.15a)

y(tk) = h(x(tk), u(tk)) (2.15b)

where the state at time tk x(tk) is an n-dimensional column vector, the input at time tk
u(tk) is an m-dimensional column vector and the output at time tk y(tk) is a p-dimensional
column vector.

10 CHAPTER 2. PRINCIPLES OF MODELING AND CONTROL

Linear State Space Models

If the models (2.14) and (2.15) are linear the functions f(x, u) and h(x, u) are linear in x
and u, i.e.:

f(x, u) = Ax + Bu (2.16a)

h(x, u) = Cx + Du (2.16b)

Here the matrices have the following dimensions

A : n × n B : n × m

C : p × n D : p × m

Considering linear, time invariant models the state space model in continuous time is
represented by

ẋ(t) = Ax(t) + Bu(t) (2.17a)

y(t) = Cx(t) + Du(t) (2.17b)

with its corresponding discrete time linear model given by

x((k + 1)T) = Fx(kT) + Gu(kT) (2.18a)

y(kt) = Cx(kT) + Du(kT) (2.18b)

Here we assume that the signals are measured at equidistant times (0, T, 2T, . . .), separated
by the sampling interval T.
It is possible to compute a state space model in discrete time like (2.18) that is related
directly to the state space model in continuous time (2.17). If the input u is piecewise
constant according to

u(t) = u(kT), kT ≤ t < (k + 1)T

the matrices F and G in (2.18a) are given by

F = eAT , G =

∫ T

0
eAτB dτ (2.19)

In the next paragraph we will introduce transfer functions and their connection to state
space models.

2.3.2 Transfer Functions

Another concept to analyze the relationship of system inputs and outputs is to study the
transfer behavior. Applying Laplace transform to (2.15) assuming zero initial conditions
we get

sX(s) = AX(s) + BU(s) (2.20a)

Y (s) = CX(s) + DU(s) (2.20b)

2.3. MODELS OF DYNAMIC SYSTEMS 11

Eliminating the state X(s) from (2.20) yields

Y (s) = G(s)U(s) (2.21)

where G(s) is a p×m matrix called the transfer function. The system (2.17) corresponds
to a transfer function G(s)

G(s) = C(sI − A)−1B + D (2.22)

If u and y are scalars (p = m = 1), G(s) is a rational function:

G(s) =
b0s

n + b1s
n−1 + · · · + bn

sn + a1sn−1 + · · · + an
(2.23)

The values of s for which G(s) = 0 are called zeros, while values of s for which the
denominator of G(s) equals 0 are called poles.
Normally the poles of G are identical to the eigenvalues of the matrix A in (2.17). Some
eigenvalues may, however, correspond to dynamics that cannot be excited or observed
from the input-output behavior. Such eigenvalues are not poles of the transfer function of
the system because they are canceled during the computation of G(s).
The poles and zeros play an important role for the stability analysis of the system that
will be discussed later on.

If in the discrete time case u and y have the z transforms U(z) and Y (z), respectively, the
input-output behavior will be determined by

Y (z) = G(z)U(z) (2.24)

where G(z) is a p × m matrix called the (discrete time) transfer function. Given (2.18)
G(z) results from

G(z) = C(zI − A)−1B + D (2.25)

The definition of poles and zeros of the transfer function remains the same as in the
continuous time case. The complex variables z and s are related by the equation

z = eTs (2.26)

on the basis of which it is possible to map poles from the s-plane into the z-plane.

2.3.3 Stability

Stability is fundamental for control systems and there are a number of different stability
concepts, of which we will recall some in this section. We will focus on input-output
stability and Lyapunov stability. In a first step we will look at stability for linear systems,
later on in this section we will extend the stability concept to non-linear systems.

12 CHAPTER 2. PRINCIPLES OF MODELING AND CONTROL

Input-Output Stability

To give a definition of input-output stability we first define the concept of gain for a linear
mapping y = Ax. The norm of the mapping A is defined as how much larger the norm of
y can be, compared to the norm of x:

|A| = sup
x 6=0

|y|

|x|
= sup

x 6=0

|Ax|

|x|

We may interpret |A| as the ”gain” of the mapping.
With the input-output stability is meant that an input with bounded norm must lead to
an output with bounded norm. In terms of the general concept of gain the definition is
simply:

Definition 2. (Input-Output Stability) A system is input-output stable if it has a
finite gain.

As we already mentioned in Subsection 2.3.2 stability of the system depends on the location
of the poles of the transfer function in the complex plane. We repeat the following well
known theorem for continuous time systems without proving it.

Theorem 1. (Input-Output Stability of Linear Systems) A linear, time invariant
system is input-output stable if and only if its poles lie in the left half plane, not including
the imaginary axis.

With (2.26) the left half plane can be mapped into the unit circle, so that a discrete time
system is input-output stable if and only if its poles lie inside the unit circle.

Lyapunov stability

Lyapunov stability is the stability of the system’s solutions which are solutions to differ-
ential equations. It is defined in the following way

Definition 3. Let x∗(t) be a solution of ẋ(t) = f(x(t)) with the initial state x∗(0). This
solution is said to be stable if for each ε > 0 there is a δ such that |x∗(0) − x(0)| < δ
implies that |x∗(t)− x(t)| < ε for all t > 0. (x(t) is the solution that belongs to the initial
state x(0).) It is said to be asymptotically stable if it is stable and there exists a δ
such that |x∗(0) − x(0)| < δ implies that |x∗(t) − x(t)| → 0 as t → ∞. A solution that is
not stable is called unstable.

Assuming the initial time t0 = 0 the solution of (2.17) is

x(t) = eAtx(0) +

∫ t

0
eAtBu(τ)dτ (2.27)

Comparing two different solutions with the same input but different initial values it is easy
to find that stability does neither depend on the input nor on the initial value. The stability
is thus a system property of linear systems. We can therefore talk about asymptotically
stable systems instead of asymptotically stable solutions. The stability of linear systems
can be analysed with the following criterion:

2.3. MODELS OF DYNAMIC SYSTEMS 13

Theorem 2. A linear system in state space form (2.17) is asymptotically stable if and
only if all eigenvalues of the matrix A lie inside the left half plane. If the system is stable,
all the eigenvalues are inside the left half plane or on the imaginary axis.

If the system matrix A has an eigenvalue on the imaginary axis the system can be either
stable or unstable (but never asymptotically stable). It can be shown that the stability
then depends on the number of linearly independent eigenvectors to the corresponding
eigenvalue. If the number is equal to the multiplicity of the eigenvalue, the system is
stable, otherwise not.
Analogously to the input-output stability the criterion can be used for discrete time sys-
tems if one replaces ’left half plane’ by ’unit circle’.

Non-linear Systems

Considering non-linear systems it is often sufficient to consider an equilibrium instead of
explicit solutions to the system’s equations. For a system described by (2.14a) an equilib-
rium is given by constant vectors u0 and x0 such that

f(x0, u0) = 0 (2.28)

The equilibrium is also sometimes called singular point or stationary point. Nonlinear
systems can have several distinct equilibria.
Stability, instability and asymptotic stability were defined in Definition 3 which can be
easily applied to equilibria.
Suppose we study the system

ẋ = f(x(t), u0) (2.29a)

where f(x0, u0) = 0 (2.29b)

with the equilibrium (x0, u0). Further, assume that there is a function V with the properties

V (x0) = 0; V (x) > 0, x 6= x0; Vx(x)f(x) ≤ 0 (2.30)

(Here Vx is the row vector (∂V/∂x1, . . . , ∂V/∂xn).) V can be interpreted as a generalized
distance from x to the point x0. This generalized distance decreases for all solutions of
ẋ = f(x), since

d

dt
V (x(t)) = Vx(x(t))ẋ(t) = Vx(x(t))f(x(t)) ≤ 0

A function V satisfying (2.30) in some neighborhood of the equilibrium x0 is called a
(local) Lyapunov function.
By adding some requirements to the Lyapunov function properties we get the following
stability test.

Theorem 3. An equilibrium x0 of the system ẋ = f(x) is globally asymptotically stable if
there exists a function V, satisfying (2.30) for all values of x, and in addition satisfying

Vx(x)f(x) < 0, x 6= x0 (2.31a)

V (x) → ∞, |x| → ∞ (2.31b)

14 CHAPTER 2. PRINCIPLES OF MODELING AND CONTROL

In many cases it is not easy to verify the inequality in (2.31a), therefore exists an extension
of Theorem 3.

Theorem 4. An equilibrium x0 of the system ẋ = f(x) is globally asymptotically stable if
it is possible to find a function V , which

1. satisfies (2.30) for all values of x

2. satisfies (2.31b)

3. has the property that no solution of the differential equation (except x(t) = x0) lies
entirely in the set Vx(x)f(x) = 0

In the theorems we have looked at so far, the properties (2.30) have been valid in the whole
state space and we have been able to prove global asymptotic stability. The situation is
not often this favorable. Instead, V satisfies (2.30) only for the x-values belonging to
some subset N of the state space. In this case exists another theorem to decide wether an
equilibrium is stable or not.

Theorem 5. Assume that there exists a function V and a positive number d such that
(2.30) is satisfied for the system (2.29a) in the set

Md = x : V (x) ≤ d

Then a solution starting in the interior of Md remains there. If, in addition, no solutions
(except the equilibrium x0) remain in the subset of Md where Vx(x)f(x) = 0, then all
solutions starting in the interior of Md will converge to x0.

2.3.4 Controllability and Observability

The concepts of controllability and observability describe how state variables in the state
space are influenced by inputs and how they show up in the output. They are also im-
portant for the understanding of what happens when factors are canceled in the transfer
function as well as for the control synthesis with state feedback.

Definition 4. (Controllability) The state x∗ is said to be controllable if there is an
input that in finite time gives the state x∗ from the initial state x(0) = 0. The system is
said to be controllable if all states are controllable.

Definition 5. (Observability) The state x∗ 6= 0 is said to be unobservable if, when
u(t) = 0, t ≥ 0 and x(0) = x∗, the output is y(t) ≡ 0, t ≥ 0. The system is said to be
observable if it lacks unobservable states.

The criteria for controllability and observability can be seen in the literature. An impor-
tant usage of the controllability and the observability concepts is to describe when the
eigenvalues of the matrix A can be modified using feedback. We will look at this more in
detail in Section 2.4.

2.4. CONTROL DESIGN METHODS 15

Stabilizability and Detectability

It can be shown that if a system is not controllable, the controllable modes (eigenvalues)
can be modified, but the uncontrollable cannot. If a certain mode is unstable (the definition
will be given in Subsection 2.3.3) it is particularly interesting to know if it is controllable,
and thereby can be modified. The following concepts therefore are useful.

Definition 6. (Stabilizability, Detectability) A system (A,B,C) (see (2.16)) is said
to be stabilizable if there exists a matrix K, so that A − BK is stable. It is said to be
detectable if there exists a matrix L, so that A − LC is stable.

A controllable system is obviously always stabilizable, just as an observable system is
always detectable. These definitions are important for the concepts of state feedback.

2.4 Control Design Methods

In this section we introduce two design concepts for the controller which are fundamental
and play an important role for the different approaches we will compare later on. In this
section we assume that the state is completely measurable, the state space model we
consider is thus:

ẋ(t) = Ax(t) + Bu(t) (2.32a)

y(t) = x(t) (2.32b)

For such systems a constant state feedback is often a satisfying control design:

u(t) = −Kx(t) (2.33)

where K is a m × n-matrix. The two methods described below are two different ways to
determine the matrix K in (2.33).

2.4.1 Pole placement

Considering a system with constant state feedback, i.e. applying (2.33) to (2.32a) we get

ẋ(t) = (A − BK)x(t) (2.34)

Here the eigenvalues of the matrix A−BK are the poles of the closed loop system. Under
these conditions there exists an important theorem.

Theorem 6. If the pair (A,B) is controllable, the eigenvalues of the matrix A−BK can
be assigned arbitrarily by choosing an appropriate matrix K.

For system with a scalar input signal, K is thus a vector, its elements can be found by
comparing coefficients of the characteristic polynomial of the matrix A − BK and the
polynomial of the designated eigenvalues.
Even if the state is not entirely known, it is possible to construct a state estimate x̂ such
that u(t) = −Kx̂ retains similar pole assignment and closed-loop properties. One can
achieve this by designing a state estimator (or observer).
This technique can be applied both to continuous and discrete time models.

16 CHAPTER 2. PRINCIPLES OF MODELING AND CONTROL

2.4.2 Linear Quadratic Regulator

A linear quadratic regulator (LQR) is called optimal because the control vector uopt is
chosen in such a way that it minimizes or maximizes a function called the performance
index. We consider again the system (2.32), for which we choose the following quadratic
performance index

J =

∫ ∞

0
(x(t)T Qx(t) + u(t)T Ru(t)) dt (2.35)

where

xT Qx ≥ 0 ∀ x ǫRn Q positive semidefinite

xT Rx > 0 ∀ x ǫRn R positive definite

It can be seen in the literature that the optimal control law u∗ corresponding to the given
performance index can be computed by solving a Riccati-Equation.

Theorem 7. If the pair (A,B) of (2.32a) is stabilizable, the optimal control law for the
performance index (2.35) is

u∗ = −R−1BTP x(t) (2.36)

where the n × n matrix P solves the algebraic Riccati-Equation

PA + AP − PBR7−1BTP + Q = 0 (2.37)

The closed loop system is then determined by

ẋ(t) = (A − BR−1BT P
︸ ︷︷ ︸

Acl

)x(t) (2.38)

In the following we want to analyze the closed loop stability of the optimal control system.
Therefore we recall a property of positive semidefinite matrices:

Remark 1. Every symmetric positive semidefinite matrix Q ǫRn×n can be factorized

Q = EET

The following theorem is a criterion for the stability of an LQR-system.

Theorem 8. If the pair (ET , A) is detectable the solution P of (2.37) is unique and all
eigenvalues of Acl are located in the left half plane.

Thus, if the pair (ET , A) is detectable, the stability of the closed loop system is assured.

Chapter 3

The Quarter-Car Suspension

Model

In this chapter we introduce the idea of semiactive suspension systems and describe the
dynamical models of suspension systems on the basis of which we compare the three
different control approaches later on.

3.1 Introduction

The design of active suspensions for road vehicles aims to optimize the performance of the
vehicle with regard to comfort, road holding and rideability.

In an active suspension there are no passive elements, such as dampers and springs. The
interaction between vehicle body and wheel is regulated by an actuator of variable length.
The actuator is usually hydraulically controlled and applies between the body and the
wheel a force that represents the control action generally determined with an optimization
procedure.

Active suspension systems have better performance than passive suspensions. However,
active suspensions are rather complex, since they require several components such as
actuators, servovalves, high-pressure tanks for the control fluid, sensors for detecting the
system’s state, etc. The associated power, that must be provided by the vehicle engine,
may reach several 10 kW depending on the required performance. Furthermore, these
suspension systems have a high cost.

As a variable alternative to a purely active suspension system, the use of semiactive sus-
pensions has been considered by many researchers. Semiactive suspension systems consist
of a spring whose stiffness is constant and of a damper whose characteristic coefficient f
can be changed within an interval [fmin, fmax] controlling the opening of a valve. The time
required to update f is less than 10−2 s.

A semiactive suspension is a valid engineering solution when it can reasonably approximate
the performance of the control law of an active suspension. In fact, a semiactive suspension
requires a low power controller that can be easily realized at a lower cost than that of a
fully active one. In general, a semiactive suspension design consists of two phases:

17

18 CHAPTER 3. THE QUARTER-CAR SUSPENSION MODEL

• Determine a suitable active law uact to be considered as a target.

• Design the semiactive suspension so that its control law usem approximates the target
law as close as possible.

In the following chapters we will present different algorithms to obtain the target control
law uact. At each sampling instant k the controller should select the damper coefficient f
in the set of [fmin, fmax] so as to minimize (uact(k) − usem(k))2.

3.2 Dynamical Model of the Suspension System

We consider two different dynamical models of a quarter-car suspension system. The first
one is a two-degrees of freedom fourth-order model as in [11]. The second-model that is
taken under consideration is a one-degree of freedom second order model that neglects the
dynamics of the tire [7].
Since the reduced model does not describe the interaction of the tire with the suspended
mass and the ground, it cannot be used to evaluate features like road holding and ride-
ability. But it is possible to give a geometrical representation of the computed regions of
the two-dimensional system in the state space, which is an important aspect in terms of
the comparability of the different design techniques. This is the main reason why we deal
with two different models.
In general the state space model of the considered systems are represented by the following
linear system:

ẋ(t) = Ax(t) + B u(t) + Lx0(t) (3.1a)

y(t) = C x(t) (3.1b)

where x(t) = [x1(t) x2(t) x3(t) x4(t)]
T is the state, x0(t) is a disturbance and u(t) is the

control force. Since in physical systems all variables are bounded the control force that
has to be found in the following chapters is subject to the constraint:

|u(t)| ≤ umax (3.2)

The physical meaning of the states and the structure of the constant matrices A, B, C
and L will be specified below.

3.2.1 The Two-Degrees of Freedom Model

For the two-degrees of freedom model, which is depicted in Figure 3.1, we utilize the
following notation:

Mw is the nonsprung mass consisting of the wheel and its moving parts;

Ms is the sprung mass, i.e. the part of the whole body mass and the load mass pertaining
to only one wheel;

x1(t) is the nonsprung mass displacement at time t with respect to a fixed reference;

3.2. DYNAMICAL MODEL OF THE SUSPENSION SYSTEM 19

0:

X
[�

λW

�D� �E�

[�

[�

[�

λW

λ6 f

0:

06 06

[�

[�

Figure 3.1: Model of the two-degrees of freedom model (a) active (b) semiactive suspension

x2(t) is the sprung mass displacement at time t with respect to a fixed reference;

x3(t) = ẋ1(t) is the velocity of the nonsprung mass at time t;

x4(t) = ẋ2(t) is the velocity of the sprung mass at time t;

uact(t) is the active control force at time t;

x0(t) is the function representing the disturbance, which simulates the longitudinal profile
of the road;

λt is the elastic constant of the tire, whose damping characteristics have been neglected.
This is in line with almost all researchers who have investigated synthesis of active
suspensions for motor vehicles as the tire damping is minimal;

λs is the elastic constant of the spring of the semiactive suspension;

f(t) is the adjustable damper coefficient of the semiactive suspension at time t.

In the linear equation (3.1a) the constant matrices A, B and L of the fourth-order model
have the following structure:

A =







0 0 1 0
0 0 0 1

− λt

Mw
0 0 0

0 0 0 0







B =







0
0

− 1
Mw
1

Ms







L =







0
0
λt

Mw

0







The disturbance x0(t) representing the longitudinal road profile, which also depends on the
vehicle speed, is assumed to be stochastic and may be characterized by its power spectral
density (PSD) distribution function. In our case the road roughness characteristics are
expressed by a signal whose PSD distribution function is

Φ(ω) =
cV

ω2 + α2V 2
(3.3)

20 CHAPTER 3. THE QUARTER-CAR SUSPENSION MODEL

where c = (σ2/π)α. Here σ2 denotes the road roughness variance and V the vehicle speed,
whereas the coefficients c and α depend on the type of the road’s surface.
The signal x0(t), whose PSD is given by (3.3), may be obtained as the output of a linear
filter expressed by the differential equation

ẋ0(t) = −αV x0(t) + w(t). (3.4)

The control law we will design in the following chapters requires the knowledge of the
system’s state x. Since not every component of x(t) is directly measurable, we reconstruct
the state through an appropriate state observer. To do this, we choose a suitable matrix
C for the output equation (3.1b). If we assume

C =

[
1 −1 0 0
0 0 0 1

]

(3.5)

which corresponds to measuring the suspension deformation and the sprung mass velocity,
the system (3.1) is completely observable and completely controllable.
Since both the concepts of OGS and explicit MPT make use of a discrete time state space
model, we choose a sampling interval T and discretize the model (3.1)

x(k + 1) = Gx(k) + Hu(k) + Ww(k) (3.6)

where

G = eAT , H =

(∫ T

0
eAτdτ

)

B, W =

(∫ T

0
eAτdτ

)

L.

It is well known [20] that a system that is observable and controllable in the absence of
sampling maintains these properties after the introduction of sampling if and only if, for
every eigenvalue of A for the continuous time control system, the relationship

Re{λi} = Re{λj} (3.7)

implies

Im{λi − λj} 6=
2nπ

T
, n = ±1,±2, . . . (3.8)

The problem at hand results in the following set of eigenvalues:

{

0, 0,

√

−
λt

Mw
,−

√

−
λt

Mw

}

.

Under these conditions it is necessary to choose a sampling period T , such that:

T 6= nπ

√

Mw

λt
. (3.9)

3.2. DYNAMICAL MODEL OF THE SUSPENSION SYSTEM 21

As we now want to show how to obtain the semiactive control law usem once determined
the active target law uact, we consider the sampled model.
The effect of the semiactive suspension which is composed of a spring and a damper with
an adjustable damper coefficient (refer to Fig. 3.1(b)) leads to the following semiactive
control law:

usem(k) = − [−λs λs − f(k) f(k)]
︸ ︷︷ ︸

K

x(k) (3.10)

Note that, as f may vary, usem(k) is both a function of f and of x(k).

In general, f can only take values in a real set [fmin, fmax]. We propose to choose at each
step k the value of f(k) to minimize the difference

F [f, x(k)] = (uact(k) − usem(k))2. (3.11)

Let us first assume x3(k) 6= x4(k), then the value f∗(k) such that F [f∗(k), x(k)] = 0 is

f∗(k) = −
uact(k) + λs ∆ x(k)

∆ v(k)
(3.12)

where ∆x(k) = x2(k)−x1(k) is the suspension deformation and ∆v(k) = x4(k)−x3(k) is
its rate of change.

As the admissible values of f lie in the interval [fmin, fmax] the adjusted damper coefficient
becomes

f(k) = min arg
f∈[fmin,fmax]

F [f, x(k)] =







fmax if f∗(k) > fmax

f∗(k) if f∗(k) ∈ [fmin, fmax]

fmin if f∗(k) < fmin

(3.13)

When x3(k) = x4(k), regardless to the values of f , the damper does not give any contri-
bution to usem(k). Thus, in this case we assume f(k) = fmax, which we choose also as the
initial value for the damper coefficient f(0) = fmax.

3.2.2 The One-Degree of Freedom Model

For the one-degree of freedom model of the suspension system, which is schematized in
Figure 3.2, we introduce the following notation according to the previous model:

Ms is the sprung mass;

x1(t) is the sprung mass displacement at time t with respect to a fixed reference;

x2(t) = ẋ1(t) is the velocity of the sprung mass at time t;

uact(t) is the active control force at time t;

λs is the elastic constant of the spring of the semiactive suspension;

22 CHAPTER 3. THE QUARTER-CAR SUSPENSION MODEL

X
[�

�D� �E�

[�

[�
λ6 f

06 06

[�

Figure 3.2: Model of the one degree of freedom model (a) active suspension (b) semiactive
suspension

f(t) is the adjustable damper coefficient of the semiactive suspension at time t.

The matrices A and B of the state space model (3.1a) have the following structure:

A =

[
0 1
0 0

]

B =

[
0

1/Ms

]

We will simulate disturbances caused by the road profile only with the two-degrees of
freedom model, therefore we do not specify the matrix L here. Like for the four dimensional
model we sample the system (3.1)

x(k + 1) = Gx(k) + Hu(k). (3.14)

Analogously to the fourth order model, the effect of the suspension depicted in Fig. 3.2(b)
is equivalent to that of a control force

usem(k) = −[λs f(k)]x(k) (3.15)

Minimizing (uact(k) − usem(k))2 under the assumption x2(k) 6= 0, in this case results in a
damper coefficient

f∗(k) = −
uact − λs x1(k)

x2(k)
(3.16)

As the damper coefficient has to be chosen out of the set [fmin, fmax], f(k) is determined
considering (3.13).

3.2.3 Parameter Values

In this section we explain the choices we made for the various parameters of the suspension
system for the simulations we will present later on. Since we want to reproduce some of
the simulation results shown in [11], we choose the same parameters.
The masses and elastic constants are assumed: Mw = 28.58 Kg, Ms=288.90 Kg, λt =
155900 N/m, λs = 14345 N/m.

3.2. DYNAMICAL MODEL OF THE SUSPENSION SYSTEM 23

With the disturbance x0 we want to describe an asphalt road profile and therefore we
assume α = 0.15 m−1, V = 30 m/s and σ2 = 9 mm2.
As already mentioned above the choice of the sampling interval T needs some warrant. We
have assumed T = 0.01 s, that is to say a sampling frequency equal to ωs = 2π/T ≃ 6 · 102

rad/s. This is essentially due to the following reasons:

• The bandwidth of the passive suspension system described by (3.1a) is ωb < 2 · 102

rad/s. A sampling frequency of ωs ≃ 6 · 102 rad/s is in good agreement with Shan-
non’s theorem [20] that requires ωs > 2ωb.

• This choice of sampling interval is consistent with eq. (3.9). In fact, 2π
(

Ms

λt

)0.5
≃

8.5 · 102 s and thus we can be sure that the system will maintain the properties of
stabilizability and observability.

• To change f the controller must change the opening of the damper valve. Present
technologies impose a limit of about 102 Hz on the updating frequency of the damper
coefficient.

We have taken umax = 3000 N that is slightly less than the total weight resting on one
wheel. A control force of higher magnitude may cause loss of contact between wheel and
road. Furthermore, this constraint also limits the acceleration of the sprung mass and this
is a necessary condition for the comfort of passengers. Finally we have assumed f(k) ∈
[800, 3000] Ns/m.
The performance of the semiactive suspension design will be presented and discussed in
Chapter 7.

Chapter 4

Optimal Gain Switching

4.1 Introduction

The approach to design a controller for linear sampled-data systems with bounded control
variables we present in this chapter was first introduced by Yoshida [22] and applied
to semiactive suspension systems in [11]. For this kind of problems it makes use of a
Linear-Quadratic (LQ) optimal controller which minimizes a quadratic cost function of
the system’s state and control under no constraint, thus the optimal control law is a linear
state feedback and hence, relatively simple in its analysis and realization. The trade-off
between the optimal control law and the control constraint can be made by suitably
selecting the weighting factors in the quadratic cost function. Because of the linearity of
the system, the control variable becomes small as the state approximates its equilibrium
point (usually the origin). To achieve a more effective control, that means a fast controller,
it is necessary to keep the control variable close to its maximal allowable value. Use of a
variable feedback gain enables us to design such a controller.

Therefore the design method that was developed by Yoshida yields a controller having a
variable feedback gain using the performance index represented by a quadratic function
of the state. The idea can be briefly outlined considering two phases:

off-line: choose a set of LQ optimal feedback gains corresponding to a sequence of increas-
ing weights on the state in the usual quadratic cost function and, for each gain, find
a linear region, i.e. a set of initial conditions such that the control law is satisfactory
subject to the control constraint

on-line: at each sampling instant, apply the highest gain whose linear region includes the
current state.

Since this procedure implies that the state penalty becomes progressively higher as the
state approaches the origin, a lower-gain linear control is used far from the origin, while a
higher-gain control near the origin does not violate the constraint on the control variable.
As at every sampling instant the optimal feedback gain according to the present state is
selected we also call this procedure optimal gain switching (OGS).

24

4.2. THE CONTROLLER DESIGN 25

4.2 The controller design

In this section in a first step we will provide the theoretical background on which the
OGS approach is based. In a second step we will present an algorithm to use the variable
feedback gain method to determine a control law for a linear sampled-data system.

4.2.1 Theoretical Background

For the following system

x(k + 1) = Gx(k) + Hu(k) (4.1)

we aim at determining a suitable control law. We consider as target the control law u∗(·)
that minimizes a performance index of the form:

J =
∞∑

k=0

x(k)Qx(k), (4.2)

(with Q positive semidefinite) under the constraint

|u(k)| ≤ umax (k ≥ 0) (4.3)

It can be seen in the literature that the optimal solution u∗(·) does not correspond in
general to a feedback control law and furthermore its computation is quite burdensome.
The procedure proposed by Yoshida therefore approximates the optimal control law u∗(·)
by switching among feedback control laws whose gains can be computed as solution of a
family of LQR problems.
To determine the OGS control law uOGS in a first step we consider a family of performance
indexes

Jρ =
∞∑

k=0

[ρ xT (k)Qx(k) + ru2(k)], ρ > 0, r > 0 (4.4)

The resulting linear quadratic control law is the state feedback expressed by

uρ(k) = −Kρ x(k) (4.5)

where the gain matrix Kρ is obtained by solving an algebraic Riccati equation. The closed
loop system is then represented by

x(k + 1) = Ĝρ x(k) (4.6)

where Ĝρ = G − HKρ.
For a given value of ρ it is possible to compute a linear region Γρ in the state space such
that for any point x0 within this region the following equation holds:

|uρ(k)| ≡ |KρĜ
k
ρ x0| ≤ umax, (k ≥ 0) (4.7)

26 CHAPTER 4. OPTIMAL GAIN SWITCHING

Thus, considering the system (4.1) without disturbances, feedback law uρ and an initial
state x0 ∈ Γρ we can be sure that in its future evolution the value of the control input will
always satisfy the constraint (4.3).
To construct the linear regions Γρ we define the following vectors

z(k) = (ĜT
ρ)kKT

ρ , k = 0, 1, . . . (4.8)

and the sets

L(k) =
{

x0

∣
∣ | u(k) | = | zT (k) x0 | ≤ umax

}

(4.9)

S(j) =

j
⋂

k=0

L(k) (4.10)

It is evident that S(j) is a monotonically nonincreasing set and its limit is Γρ. Since L(k)
is a set bounded by two parallel hypersurfaces, Γρ is a polyhedral convex set. Let S̃(j) be
the convex combination of ± z(k) (k = 0 ∼ j), i.e.

S̃(j) = C{z(k), k = 0, . . . , j}

=
{

z
∣
∣ z =

j
∑

k=0

α(k) z(k),

j
∑

k=0

|α(k)| ≤ umax

} (4.11)

Since

S(j) =
{

x
∣
∣ |zT x| ≤ umax, z ∈ S̃(j)

}

S̃(j) =
{

z
∣
∣ |xT z| ≤ umax, x ∈ S(j)

}

S̃(j) and S(j) are called the dual region of S(j) and S̃(j), respectively. The region S̃(j) is
also a monotonically noninceasing set and the dual region of its limit is Γρ. The following
theorem is proven in [22]:

Theorem 9. The linear region Γρ can be described by

Γρ = S(j0) (4.12)

where

j0 = min
{
j
∣
∣z(j + 1) ∈ S̃(j)

}
(4.13)

To decide wether an initial point lies in the linear region or not it is sufficient to verify
(4.7) for the first j0 + 1 sampling instants. The value of j0 is a function of ρ and can be
computed by solving a linear programming problem.
To check wether a point belongs to the linear region or not we introduce the following
matrix-notation

Zρ =








Kρ

KρĜρ

...

KρĜ
j0
ρ








Thus an initial point x0 ∈ Γρ if and only if −umax ≤ Zρx0 ≤ umax.

4.2. THE CONTROLLER DESIGN 27

4.2.2 Design algorithm

As we already outlined in the Introduction the design procedure consists of an off-line and
an on-line phase, which will be specified below.

Algorithm 1

off-line

Step 1: Choose a finite set of m values for ρ, namely {ρ1, . . . , ρm}. Determine the
corresponding gain matrices Kρ for each ρ by solving an algebraic Riccati equa-
tion.

Step 2: Construct the linear region Γρ, therefore calculate the matrices

Zρ =








Kρ

KρĜρ

...

KρĜ
j0
ρ








(4.14)

where j0 satisfies (4.13).

on-line

Step 1: Assume v = 0 and k = 0.

Step 2: Sample the state x(k).

Step 3: Determine the largest number v such that

v = max{ i | x(k) ∈ Γρi
, i = 0, . . . ,m}. (4.15)

and set ρ(k) = ρv. The condition x(k) ∈ Γρ is true, if and only if the following
inequalities hold:

−umax ≤ Zρx0 ≤ umax (4.16)

Step 4: Apply the control force according to

uOGS(k) = −Kρv , (4.17)

set k = k + 1, and return to on-line step 2.

It has been shown by Yoshida that if no disturbance is acting on the system, ρ(k) is a
nondecreasing function of k. In this case at a sampling instant k it is sufficient in on-line
step 3 to replace (4.15) by

v = max{ i | x(k) ∈ Γρi
, i = v, . . . ,m} (4.18)

The selection of the weighting coefficients needs some further comments. A good choice of
the values ρi in the off-line step 1 may influence the performance of the OGS law. As m

28 CHAPTER 4. OPTIMAL GAIN SWITCHING

i 1 2 3 4 5 6 7 8 9 10

ρi 0.01 0.1 0.5 1 4 20 50 100 1000 105

j0i
46 28 19 19 17 16 16 15 15 15

Table 4.1: Weight coefficients ρ and relative indices jρ

increases, the performance index Jρ decreases, but the procedure becomes computationally
more intensive.
The weighting coefficient ρ1 should be determined such that the linear region Γρ1

contains
all the initial conditions of interest. The weighting coefficient ρm should be selected such
that the region Γρm covers small disturbances or very small system noises. The coefficients
ρ2, . . . , ρm−1 should be chosen taking into account the size of the linear region Γi. Once
ρ1, ρm and m are determined, there are ρi such that the ratios of the norm between two
adjacent gains are constant, i.e.,

‖Kρi
‖

‖Kρi−1
‖

=

(
‖Kρm‖

‖Kρ1
‖

) 1

m

(4.19)

Further, we want to comment on the computational complexity of the OGS control law.
The most burdensome part of this procedure is the off-line phase, where the vectors zi are
computed. During the on-line phase, it is necessary at each sampling instant k to compute
at most m matrix products Zρx(k). It has been shown in [11] that an appropriate choice
of the sampling time T ensures that the time needed for on-line computations does not
exceed T itself.

4.3 OGS for the suspension system

We have applied the OGS design procedure to the suspension system which was introduced
in chapter 3. In chapter 7 we will reproduce some of the simulation results presented in
[11] considering the fourth order model schematized in Fig. 3.1. Therefore we assume Q
and r in eq. (4.4) like this

Q =







11 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0







; r = 0.8 · 10−9

These weights lead to a good performance in terms of road holding and passenger’s comfort.

Another important aspect of the design procedure is the choice of the weighting coefficients
{ρ1, ρ2, . . . , ρm}. We assumed m = 10 as it seems a good trade-off between computational
efficiency and performance. The chosen values are shown in Table 4.1. It can be noted
that in this case j0 is a nonincreasing function.

4.3. OGS FOR THE SUSPENSION SYSTEM 29

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Figure 4.1: Cut through the linear regions Γρ for the fourth-order suspension system at
x3 = x4 = 0

The Linear Regions Γρ

The linear regions Γρi
, which we will also call ”Yoshida regions” in the following, are deter-

mined during the off-line phase of the design procedure. Choosing the set {ρ1, ρ2, . . . , ρm}
as presented beforehand, the linear regions will always be nested. The linear regions ac-
cording to the ρi in Table 4.1 are illustrated in Figure 4.1, which shows a cut through
x3 = x4 = 0 of the linear regions for the fourth-order two-degrees of freedom model of the
suspension system.

Chapter 5

Discontinuous Variable Structure

Control

5.1 Introduction

Variable Structure Control (VSC) Systems are characterized by a suite of feedback control
laws and a decision rule (the switching function or selection strategy) and can be regarded
as a combination of subsystems where each subsystem has a fixed control structure and is
valid for specified regions of system behavior. The advantage is its ability to combine useful
properties of each of the composite structures of the system. Furthermore, the system may
be designed to possess new properties not present in any of the composite structures alone.
The initial ideas for discontinuous VSC, which will be considered here, were proposed by
Kiendl and Schneider [14] and a suitable design method was presented by Adamy [1]. The
only contribution to these concepts in English is a survey written by Adamy [2].
Similar to the OGS method the variable structure controller depending on the system’s
state either switches between a finite number of linear subcontrollers (discontinuous VSC)
or changes the controller parameters continuously (soft VSC) with the objective to obtain
a better performance in terms of shorter settling times avoiding violation of control signal
constraints.
The discontinuous VSC method makes use of a set of nested, positively invariant sets each
with a dedicated linear controller. During the regulation cycle, the trajectory runs from
a positively invariant region in the state space into the next smaller one simultaneously
activating the assigned controller.
Here we briefly outline the general structure of the dVSC we have implemented to the
semiactive suspension model. Later on we will also comment on the extension to soft
VSC.
Consider the linear plant in continuous time

ẋ = Ax + Bu (5.1)

under the control signal constraint

|u| ≤ umax. (5.2)

30

5.2. DISCONTINUOUS VSC 31

The controller

u = F (x, p) (5.3)

where F is a general operator, depends on the system’s state x and a selection parameter
p, that is computed by a selection strategy or supervisor, i.e.,

p = S(x), (5.4)

defined by a discontinuous function S. The selection strategy switches between a finite
number k of different subcontrollers.

As already mentioned, the objectives of such dVSC are often improved settling times, in
the case of VSC lacking sliding modes1 or robustness in the case of sliding mode controls.
However, their disadvantages are the discontinuities occurring in their control signals u
and the high-frequency switching, that often reduces actuator lives.

Soft VSC have a continuous set of subcontrollers and thus guarantee a smooth control
signal. In this case, we can generalize the selection strategy of (5.4)

S(x, p(n), . . . , p) = 0, (5.5)

which also includes dynamic behavior and implicit equations. Soft VSC allows achieving
settling times close to those of time-optimal controls, but in contrast to these soft VSC
requires much less effort for the design process and can be implemented more easily.

In the next section we illustrate the design process of dVSC according to [2].

5.2 Discontinuous VSC employing nested Lyapunov func-

tions

Since the direct method of Lyapunov’s stability theory is essential to this control approach
we recall some principles from chapter 2, (see page 13). We repeat the following theorem.

Theorem 10. Let the differential equation ẋ = f(x) with a continuous function f having
an equilibrium state x = 0. If exists a function v(x) having continuous partial derivatives
and if

v(0) = 0, (5.6a)

v(x) > 0, x 6= 0, (5.6b)

v̇(x) < 0, x 6= 0, (5.6c)

then the equilibrium x = 0 will be asymptotically stable and v(x) will be called a Lyapunov
function.

1The purpose of a sliding mode controller is to drive the plant’s state trajectory onto a predetermined
surface in the state space (sliding surface) and to maintain it on this surface subsequently. Ideally, once it
has reached the sliding surface the state trajectory ”slides” along this surface into the origin.

32 CHAPTER 5. DISCONTINUOUS VARIABLE STRUCTURE CONTROL

For stable linear systems ẋ = Ax it will always be possible to compute a quadratic Lya-
punov function

v(x) = xT R x (5.7)

where R is a positive-definite matrix solving the so-called Lyapunov equation:

AT R + RA = −Q (5.8)

for an arbitrary positive-definite matrix Q. If there is a Lyapunov function v(x) for a
system ẋ = f(x) and

G = {x | v(x) < c} (5.9)

is bounded, then G is a positively invariant set that is also called Lyapunov region, i.e.
trajectories that start therein will never leave it.

We will illustrate the idea of dVSC below and therefore consider again system (5.1) un-
der the constraint (5.2) and the selection strategy (5.4). Furthermore, we consider only
bounded sets X0 ⊂ Rn of possible initial vectors x(t = 0), since X0 = Rn is usually not
of practical interest. The three major elements of the dVSC design procedure are:

(D1) Choose a family of k linear state controllers u = −Kp x leading to stable control
loops

ẋ = (A − BKp)x = Âp x, p = 1, . . . , k (5.10)

whose response times decrease with increasing index p.

(D2) According to each control loop (5.10) construct a Lyapunov region

Gp = {x | vp(x) < cp} (5.11)

where cp determines the size of Gp. Moreover, Gp should be such that all x ∈ Gp

satisfy the constraint |u| = |Kp x| ≤ umax.

(D3) The Lyapunov regions should be nested one inside the other in accordance with

Gp+1 ⊂ Gp, p = 1, . . . , k − 1 (5.12)

with an increasing index p.

Analogously to the OGS design process the VSC method consists of an off-line and an on-
line phase. The three steps that were mentioned above and will be explained more precisely
below represent the off-line phase. During the on-line phase the controller determines
the smallest Lyapunov region that contains the current system’s state and activates the
subcontroller belonging to this region. Upon the trajectory’s entry into a smaller region,
the controller switches to the next assigned subcontroller.

5.2. DISCONTINUOUS VSC 33

In the first step the subcontrollers’ matrices Kp are determined utilizing pole placement
(refer to section 2.4.1, see page 15), such that the n eigenvalues λp,j of Âp conform to

λp+1,j = hλp,j, h > 1 (5.13)

and lead to a stable closed loop, i.e. Re{λp} < 0. These controllers thus accelerate the
control system’s behavior, while simultaneously causing a similar behavior, since the eigen-
value configuration remains the same.

In a second step the Lyapunov regions are constructed employing quadratic Lyapunov
functions vp(x) = xT Rp x. The matrix Rp is the solution of the Lyapunov equation

ÂT
p Rp + Rp Âp = −Qp (5.14)

The matrices Qp have to be positive-definite, Qp+1 = Qp is frequently a reasonable choice.
Thus, the Lyapunov regions will be ellipses determined by the matrices Rp. Since the
condition |Kp x| ≤ umax has to be satisfied for all x ∈ Gp and should be exploited as good
as possible, the cp in (5.11) are chosen such that the hyperplanes

±Kp x = umax (5.15)

are tangent to the elliptical Lyapunov regions. In order to determine these cp we solve the
optimization problem

max
Rp

xT Rp x

subj. to ± Kp x = umax

(5.16)

whose solution yields

cp =
u2

max

Kp R−1
p KT

p

(5.17)

The largest Lyapunov region G1 has to be determined such that X0 ⊆ G1, i.e. the first
region includes all possible initial states.

Finally, in a third step we verify that all k regions Gp are nested. If all points of interest
satisfy

xT Rp x

cp
<

xT Rp+1 x

cp+1
< 1 (5.18)

then Gp+1 ⊂ Gp is ensured. To check wether (5.18) is true or not it is sufficient to make
sure that the matrices

Rp+1

cp+1
−

Rp

cp
(5.19)

are positive definite for p = 1, . . . , k − 1.

34 CHAPTER 5. DISCONTINUOUS VARIABLE STRUCTURE CONTROL

x
1

x 2

(a)

−0.05 0 0.05
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

(b)

−0.02 −0.01 0 0.01 0.02
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure 5.1: Family of nested Lyapunov regions (a) for the second-order suspension model
(b) cut through x3 = x4 = 0 for the fourth-order suspension model; h = 1.5

The Lyapunov regions (5.11) for the second-order and the fourth-order suspension system
are depicted in Figure 5.1 (a) and (b), respectively. The first set of eigenvalues in (5.13)
was chosen according to the closed loop eigenvalues of the OGS for the fourth largest
region.
Note that in Fig. 5.1 the axis scales are different, i.e. the Lyapunov regions for the fourth-
order model are very small compared to those of the OGS in Figure 4.1. We were not
able to enlarge the Lyapunov regions by varying the Qp in (5.14), moreover the size of
the Lyapunov regions seems to be independent from the Qp. Therefore we illustrate the
general idea of soft VSC in the next section, in order to find out wether it could be useful
to enlarge the Lyapunov regions.

In addition to the presented concepts Kiendl, Stelzner and Adamy introduced paral-
lelepipeds as an alternative to ellipsoidal Lyapunov regions [15]. Therefore they considered
v(x) = ‖Wx‖∞ as an alternative to the quadratic Lyapunov function (5.7), where ‖ · ‖∞
is the maximum vector norm. We did not implement these concepts as they did not seem
to be useful to enlarge the Lyapunov regions significantly.

5.3. SOFT VSC 35

5.3 Soft VSC employing implicit Lyapunov functions

The concept of soft VSC was introduced by Kiendl and Schneider [14] applying a contin-
uously changing control law by nesting the Lyapunov regions infinitely dense. The control
concept consists of three major elements analogue to those of dVSC:

(S1) A continuous family of linear state controllers u = −K(p)x, which lead to stable
control loops

ẋ = (A − BK(p))x (5.20)

(S2) According to each control loop (5.20) determine a Lyapunov region G(p) that guar-
antees |u| = |K(p)x| ≤ umax for all x ∈ G(p).

(S3) The Lyapunov regions G(p) should be nested infinitely dense, i.e. G(p + ε) ⊂ G(p)
should be satisfied for every small ε > 0, which implies that the size of G(p) will
decrease with increasing p.

A suitable design method was developed in [1] and we will present the basic ideas here.
The Lyapunov regions G(p) involved may be defined by

G(p) = {x | g(p, x) < 0} (5.21)

together with a suitable function g(p, x). The control vector k(p) associated with a Lya-
punov region G(p) will be activated upon the trajectory’s entry into G(p) which will occur
whenever x(t) lies on the border

∂G(p) = {x | g(p, x) = 0} (5.22)

of G(p). The parameter p and thus the control law u(p, x) are determined for each x(t)
during regulation cycles by the implicit equation

g(p, x) = 0. (5.23)

With regard to the control g must satisfy the following two conditions:

(S4) There must be a unique solution to (5.23) with respect to p.

(S5) The function g should be chosen such that stability is ensured for the closed loop
system.

Satisfying condition (S4) is necessary in order to be able to assign one and only one value
p to each state vector x. If this condition is not met either (5.23) has no solution or several
solutions can be found. In these irregular cases the control approach cannot be realized.
However, (S4) holds true if it is possible to express (5.23) like this: p = p (x).
Without loss of generality, (S1),(S2) and (S3) can be reformulated such that the size of
G(p) decreases as the parameter p decreases and p = 0 for x = 0. Since p decreases along
the system’s trajectories, equals 0 in the origin and is always positive

v(x) = p (5.24)

36 CHAPTER 5. DISCONTINUOUS VARIABLE STRUCTURE CONTROL

is a Lyapunov function for the system. Thus we can rewrite (5.20) and (5.23) in the
following way:

ẋ = (A − BK(v))x = Â(v)x (5.25)

0 = g(v, x) (5.26)

Introducing implicit Lyapunov functions like (5.26) leads to the question which are the
conditions for g to define an implicit Lyapunov function. This theoretical background can
be found in [1, 2]. Below we will briefly outline how to obtain the subcontrollers and the
selection strategy.

To design a particular control we first assume, without loss of generality, that the linear
system (5.1) is in controllable standard form, where

A =










0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 1
−a0 −a1 −a2 · · · −an−1










,










0
0
...
0
1










or have been transformed into the above.

We now choose K(v) in (5.25) such that the closed loop eigenvalues λi will be shifted
onto rays λi(v) = λi(1)v

−1, which start at λi(1) and run towards negative infinity with
decreasing v. The above choice of K(v) leads to faster linear control subsystems (5.25),
since v decreases during regulation cycles, which is the main aim of the soft VSC approach.

In order to achieve these ray-like eigenvalue paths λi(v), we need to formulate the control
matrix K(v) as follows:

KT (v) =








â0v
−n − a0

â1v
−(n−1) − a1

...
ân−1v

−1 − an−1








(5.27)

where the âi are the coefficients of the characteristic polynomial determined by the closed
loop matrix Â(v = 1). Arranging the plant’s coefficients of the characteristic polynomial
ai, that are determined by the matrix A, in a vector

aT =
(

a0 a1 . . . ai . . . an−1

)
(5.28)

and analogously integrate the coefficients âi in a vector

âT =
(

â0 â1 . . . âi . . . ân−1

)
(5.29)

yields a vector notation of the control matrix K(v)

KT (v) = D−1(v) â − a (5.30)

5.3. SOFT VSC 37

where D is the diagonal matrix

D(v) = diag(vn, . . . , v2, v). (5.31)

Combining (5.30) and (5.25), the closed loop matrix can be rewritten in the form

Â(v) =
1

v
D(v) Â1D

−1(v), Â1 = Â(1). (5.32)

In the second design step, we need to choose suitable Lyapunov regions G(v) = {x | g(v, x) <
0} to fulfill condition (S2). We will choose elliptical Lyapunov regions G(v) = {x |xT R(v)x−
1 < 0} according to the dVSC concept. We multiply the quadratic form by an additional
function e(v), where e(v) > 0, in order to ensure that the pair of hyperplanes given by
|K(v)x| = umax will be tangent to the elliptic Lyapunov region, and obtain

G(v) = {x | g(v, x) = e(v)xT R(v)x − 1 < 0}. (5.33)

Similarly to the discontinuous case (5.17) the solution to this optimization problem yields

e(v) =
K(v)R−1(v)K(v)T

u2
max

. (5.34)

Analogously to the dVSC, we have to verify that X0 ⊆ G(1), to make sure that all initial
points of interest are covered by the largest Lyapunov region.
It has been shown by Adamy [2] that the soft VSC approach consists of the control loop
(5.25), the control matrix (5.30) and the selection strategy

g(v, x) = e(v)xT R(v)x − 1 = 0, (5.35)

where

e(v) =
1

u2
max

[aT D(v)R−1
1 D(v)a − 2âT R−1

1 D(v)a + âR−1
1 â] (5.36)

R(v) = D−1(v)R1D
−1(v) (5.37)

and e(v) is a polynomial of order 2n or less. Computing the parameters of this control
involves choosing a suitable vector â, a matrix R1 and verifying X0 ⊆ G(1). The matrix
R1 will be chosen solving the constrained optimization problem

max
R1

1
√

en(1) det R1

subj. to ÂT
1 R1 + R1Â1 = −Q1,

NR1 + R1N = −S1,

max
v∈[0,1]

e′(v) ≤ 0

(5.38)

where Q1 and S1 are arbitrary positive-definite matrices. For further explanation concern-
ing the theoretical background of soft VSC refer to [1, 2].
We did not implement the soft VSC, because comparing (5.34) to (5.17) we supposed that
the problem which we met for the discontinuous VSC, i.e. that the Lyapunov regions were
to small, would occur also for the continuously changing Lyapunov regions of the soft
VSC.

Chapter 6

Explicit Model Predictive Control

6.1 Introduction

In this chapter we present the general ideas of explicit model predictive control (eMPC).It
has been an extension to model predictive control that has become an accepted standard
for complex constrained multivariable control problems for discrete time systems. Applying
the MPC approach, at each sampling time, starting at the current state, an open-loop
optimal control problem is solved over a finite time horizon. At the next time step, the
computation is repeated starting from the new state and over a shifted horizon, leading to
a moving horizon policy. The solution relies on a linear dynamic model, respects all input
and output constraints and optimizes a quadratic or linear performance index.

When the MPC concept appeared the computations were executed on-line, so that the
MPC was only applicable to relatively slow and/or small problems. The explicit MPC
approach presented here, moves all the burdensome computations off-line and partitions
the state space into polytopic regions, so that during the on-line phase of the control
procedure according to the current state the actual subcontroller can be found out of a
table. The on-line phase of the eMPC is similar to that one of the other concepts presented
above. By introducing the partitioning of the state space, the eMPC can also be applied
to problems with faster dynamics like the suspension system.

In this chapter we will illustrate some fundamentals of polytopes theory, multi-parametric
programming and its application to constrained finite time optimal control (CFTOC).
At the end of this chapter we present several partitions we obtained with the free model
predictive toolbox for MATLAB.

6.2 Polytopes Theory

Polytopic (or, more general, polyhedral) sets are an integral part of multi-parametric
programming. For this reason we give some of the definitions of polytopes [17]. For more
details we refer to the literature [9, 23].

38

6.2. POLYTOPES THEORY 39

Definition 7. (polyhedron) A convex set Q ⊆ Rn given as an intersection of a finite
number of closed half-spaces

Q = {x ∈ Rn |Qxx ≤ Qc} (6.1)

is called polyhedron.

Definition 8. (polytope) A bounded polyhedron P ⊂ Rn

P = {x ∈ Rn |P xx ≤ P c}, (6.2)

is called polytope.

It is obvious from the above definitions that every polytope represents a convex, compact1

set. We say that a polytope P ⊂ Rn |P xx ≤ P c is full dimensional if ∃x ∈ Rn : P xx < P c.
Furthermore, if ‖(P x)i‖ = 1, where (P x)i denotes the i-th row of a matrix P x, we say that
the polytope P is normalized. One of the fundamental properties of a polytope is that it
can also be described by its vertices

P = {x ∈ Rn |x =

vp∑

i=1

αiV
(i)
p , 0 ≤ αi ≤ 1,

vp∑

i=1

αi = 1} (6.3)

where V
(i)
p denotes the i-th vertex of P, and vp is the total number of vertices of P. The

half-space representation (6.2) is often referred to as H as well as the vertex representation
(6.3) is denoted by V.

Definition 9. (face) Linear inequality a′x ≤ b is called valid for a polyhedron P if it
holds for all x ∈ P. A subset of a polyhedron is called a face of P if it is represented as

F = P ∩ {x ∈ Rn | a′x = b}, (6.4)

for some valid inequality a′x ≤ b. The faces of a polyhedron P of dimension 0, 1, (n-2)
and (n-1) are called vertices, edges, ridges and facets respectively.

We say that a polytope P ⊂ Rn, P = {x ∈ Rn |P xx ≤ P c} is in a minimal representation
if a removal of any of the rows in P xx ≤ P c would change it (i.e. there are no redundant
halfspaces). It is straightforward to see that a normalized, full dimensional polytope P
has a unique minimal representation. This fact is very useful in practice. Normalized, full
dimensional polytopes in a minimal representation allow us to avoid any ambiguity when
comparing them and very often speed up other polytope manipulations.
The following definition is useful when we specify the state space partition of the CFTOC
later on.

Definition 10. A collection of sets R1, . . . , RN is a partition in the broad sense of a set
Θ if

1A compact set is bounded and closed.

40 CHAPTER 6. EXPLICIT MODEL PREDICTIVE CONTROL

(i)
⋃N

i=1 Ri = Θ,

(ii) (Ri \ ∂Ri) ∩ (Rj \ ∂Rj) = ∅, ∀ i 6= j

where ∂ denotes the boundary. Moreover R1, . . . , RN is a polyhedral partition in the broad
sense of a polyhedral set Θ if R1, . . . , RN is a partition in the broad sense of Θ and the
Ri’s are polyhedral sets.

6.3 Multi-Parametric Quadratic Programming

In this section we investigate multi-parametric quadratic programs (mp-QP) of the form

J∗(x) = min
z

{J(z, x) = 1
2zT Hz}

subj. to Gz ≤ W + Sx,
(6.5)

where z ∈ Rs are the optimization variables, x ∈ Rn is the vector of parameters, H ∈ Rs×s,
H ≻ 02, W ∈ Rm and S ∈ Rm×n. The solution to problems of the form (6.5) has been
examined a lot recently and here we refer to [4, 5].
Note that the general problem with J(z, x) = zT Hz + xT Fz can always be transformed

in the mp-QP (6.5) by using the variable substitution z̃
△

= z + H−1F T x.
Given a close polyhedral set K ⊂ Rn of parameters,

K
△

= {x ∈ Rn | Tx ≤ Z}, (6.6)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that the QP (6.5) is feasible
and the optimum J∗(x) is finite. For any given x̄ ∈ K∗, J∗(x̄) denotes the minimum value
of the objective function in problem (6.5) for x = x̄.
The function J∗ : K∗ → R will denote the function which expresses the dependence
on x of the minimum value of the objective function over K∗; J∗(·) will be called value
function.
The single-valued function z∗ : K∗ → Rs will describe for any fixed x ∈ K∗ the optimizer
z∗(x) related to J∗(x).
We aim at determining the feasible region of parameters K∗ ⊆ K and at finding the
expression of the valued function J∗(·) and the optimizer function z∗(·). Denote with Gj ,
Sj, Wj, Tj and Zj the j-th tow of G, S, W , T and Z respectively. We give the following
definition of active and weakly active constraints:

Definition 11. The i-th constraint is active at x if Gi z∗(x)−Wi−Si x = 0, it is inactive
if Gi z∗(x) − Wi − Si x < 0. We also define the i-th constraint as weakly active if it is
active and its corresponding Lagrange multiplier3 λi is zero.

2H ≻ 0 if and only if xT Qx > 0 ∀x ∈ Rn.
3Lagrange multipliers are a method for dealing with constraints in mathematical optimization prob-

lems. Suppose the question as given is to find local extremal values of a function of several variables
subject to one or more constraints given by setting further functions of the variables to given values. The
method introduces a new unknown scalar variable, the Lagrange multiplier, for each constraint; and forms
a linear combination involving the multipliers as coefficients. This reduces the constrained problem to an
unconstrained problem. It may then be solved, for example by the usual gradient method.

6.3. MULTI-PARAMETRIC QUADRATIC PROGRAMMING 41

Let J
△

= {1, . . . ,m} be the set of constraint indices. For any A ⊆ J , let GA and SA be the
submatrices of G and S, respectively, consisting of the rows indexed by A.

Definition 12. The optimal partition of J associated with x is the partition (A(x), NA(x))

A(x)
△

= {j ∈ J | Gj z∗(x) − Sj x = Wj}

NA(x)
△

= {j ∈ J | Gj z∗(x) − Sj x < Wj}
(6.7)

where A(x) is the optimal active set and will be simply referred to as the set of active
constraints at x.

The multi-parametric analysis uses the concept of Critical Regions (CR). For a given

x∗ ∈ K∗ let (A,NA)
△

= (A(x∗), NA(x∗)), and let

CRA
△

= {x ∈ K | A(x) = A}. (6.8)

The set CRA is the critical region related to the set of active constraints A, i.e., the set
of all parameters x such that the constraints indexed by A are active at the optimum of
problem (6.5).

Definition 13. For a given set of active constraints A we say that the Linear Indepen-
dence Constraint Qualification (LICQ) holds if the rows of GA are linearly indepen-
dent.

In the following the set CRi denotes the critical region related to the set of active con-
straints Ai.

6.3.1 Geometric Algorithm for mp-QP

The algorithm to solve the mp-QP (6.5) off-line, that will also be applied to partition
the state space off-line in the control problem, consists of two main steps, which can be
characterized as follows:

1. Determine the dimension n′ ≤ n of the smallest affine subspace K that contains K∗.
If n′ < n, find the equations in x which define K.

2. Determine the partition of K∗ into the critical regions CRi, and find the expression
of the functions J∗(·) and z∗(·) for each critical region.

Below we give the details of the two steps. The first step is a preliminary one whose goal
is to reduce the number of parameters in order to obtain a full-dimensional feasible region
of parameters. This eases the second step, which computes the multi-parametric solution
and represents the core of the mp-QP algorithm.

42 CHAPTER 6. EXPLICIT MODEL PREDICTIVE CONTROL

Determining the Affine Subspace K

In order to work with a minimal dimension of the parameter vector, the first step aims at
finding the affine subspace K ⊆ Rn containing the parameters which render (6.5) feasible.

A first but simple consideration concerns the column rank rS of S. Clearly, if rS < n, n−rs

parameters can be eliminated by a simple coordinate transformation in Rn.
Besides this obvious preliminary reduction of the parameter space, there is another case
where the number of parameters can be further reduced. Even if the matrix S has full
column rank, it is possible that the polyhedron K∗ is contained in a subspace of dimension
n′ < n.

Therefore, before solving the mp–QP problem, we need e test for checking the dimension
n′ of the smallest affine subspace K that contains K∗. Moreover, when n′ < n, we need
the equations describing K in Rn. The equations are then used for a change of coordinates
in order to reduce the number of parameters from n to n′ and to obtain a polyhedron K∗

that has full dimension in Rn′

. For computational details of this step refer to [5].

Determining the Critical Regions

In order to start solving the mp–QP, we need an initial vector x0 inside the polyhedral
set K of parameters over which we want to solve the problem, such that the QP (6.5) is
feasible for x = x0. A good choice for x0 is the center of the largest ball contained in K
for which a feasible z exists, determined by solving the LP

max
x,z,ε

ε

subj. to Tix + ε‖Ti‖ ≤ Zi, i = 1, . . . , nT

Gz − Sx ≤ W

(6.9)

where nT is the number of rows Ti of the matrix T . If ε ≤ 0, then the QP problem (6.5) is
infeasible for all x in the interior of K. Otherwise, we fix x = x0 and solve the QP problem
(6.5), in order to obtain the corresponding optimal solution z0. Such a solution is unique,
because H ≻ 0, and therefore uniquely determines a set of active constraints A0 out of
the constraints in (6.5). In [4, 5] the following theorem is proved:

Theorem 11. Let H ≻ 0. Consider a combination of active constraints A0 and assume
that LICQ holds. Then, the optimal z∗ and the associated vector of Lagrange multipliers
λ∗ are uniquely defined functions of x over the critical region CR0.

Theorem 11 characterizes the solution only in the neighborhood of a specific x0, but it
does not provide the construction of the set CR0 where this characterization remains
valid. In [4] it is shown that CR0 is a polyheron in the x-space, and it represents the
largest set of x ∈ K such that the combination of active constraints at the minimizer
remains unchanged. Once the critical region CR0 has been defined, the rest of the space
CRrest = K − CR0 has to be explored and new critical regions generated. The following
theorem justifies such a procedure to characterize the rest of the region CRrest.

6.3. MULTI-PARAMETRIC QUADRATIC PROGRAMMING 43

Region Inequalities

R1 C1 ≥ 0, x1 ≥ x−
1 , x−

2 ≤ x2 ≤ x+
2

R2 C1 ≥ 0, C2 ≤ 0, x2 ≤ x+
2

R3 C2 ≤ 0, , C3 ≥ 0 x1 ≤ x+
1 , x2 ≤ x+

2

R4 C1 ≤ 0, C3 ≤ 0, C4 ≥ 0, x1 ≤ x+
1 , x2 ≥ x−

2

R5 C1 ≤ 0, C4 ≤ 0, C5 ≥ 0

Table 6.1: Definition of the partition CRrest
△

= K \ CR0

Theorem 12. Let Y ⊆ Rn be a polyhedron, and let CR0
△

= {x ∈ Y | Ax ≤ b} be a
polyhedral subset of Y , CR0 6= ∅. Also let

Ri =

{

x ∈ Y :
Aix > bi

Ajx ≤ bj,∀j < i

}

, i = 1, . . . ,m

where m = dim(b), and let CRrest

△

=
⋃m

i=1 Ri. Then

(i) CRrest ∪ CR0 = Y

(ii) CR0 ∩ Ri = ∅, Ri ∩ Rj = ∅,∀ i 6= j

i.e. {CR0, R1, . . . , Rm} is a partition of Y .

In order to exemplify the procedure proposed in Theorem 12 for partitioning the set of
parameters K, consider the case when only two parameters x1 and x2 are present. As
shown in Figure 6.1, K is defined by the inequalities

{x−
1 ≤ x1 ≤ x+

1 , x−
2 ≤ x2 ≤ x+

2 }

and CR0 by the inequalities

{C1 ≤ 0, . . . , C5 ≤ 0}

are affine functions of x. The procedure consists of considering, one by one, the inequalities
which define CR0. Considering, for example, the inequality C1 ≤ 0, the first set of the
rest of the region

CRrest
△

= K \ CR0

is given by

R1 = {C1 ≥ 0, x1 ≥ x−
1 , x−

2 ≤ x2 ≤ x+
2 },

which is obtained by reversing the sign of the inequality C1 ≤ 0 and removing redundant
constraints, which is visualized in Figure 6.1(b).

44 CHAPTER 6. EXPLICIT MODEL PREDICTIVE CONTROL

•

;�

&5�

;��;��

;��

;��

.

;�

&5�

;��;��

;��

;��

.

5�

&����&���

&���

;� ;�

;�

;�

&5�

;��;��

;��

;��

.

5�

;�

5�

;�

&5�

;��;��

;��

;��

.

5�

;�

5�
&��� ��&���

5�

5�

5�

�G��F�

�E��D�

Figure 6.1: Two dimensional example: partition of the rest of the space CRrest
△

= K \CR0;
(a) set of parameters K and initial region CR0; (b) partition of CRrest, Step 1; (c) partition
of CRrest, Step 2; (d) final partition of CRrest

Thus, by considering the rest of the inequalities, the complete rest of the region is

CRrest =

5⋃

i=1

Ri

where R1, . . . , R5 are given in Table 6.1 and are graphically reported in Figure 6.1(d).
Note that the partition strategy suggested in Theorem 12 can also be applied when K is
unbounded.
Theorem 12 provides a way of partitioning the non-convex set K \ CR0 into polyhedral
subsets Ri. For each Ri a new vector xi is determined by solving the LP (6.9), and,
correspondingly, an optimum z∗i , a set of active constraints Ai, and a critical region CRi.
Theorem 12 is then applied to partition Ri\CRi into polyhedral subsets, and the algorithm
proceeds iteratively.

6.3. MULTI-PARAMETRIC QUADRATIC PROGRAMMING 45

Note that theorem 12 introduces cuts in the x-space which might spilt critical regions into
subsets. Therefore, after the whole x-space has been covered, those polyhedral regions CRi

are determined where the function z∗(x) is the same. If their union is a convex set, it is
computed to permit a more compact description of the solution [3].

6.3.2 Continuity and convexity properties

Convexity of the value function J∗(x) and continuity of the solution z∗(x) can be shown
as corollaries of the linearity result of theorem 11. This fact together with the convexity
of the set of feasible parameters K∗ ⊆ K and the piecewise linearity of the solution z∗(x)
is proved in the next theorem.

Theorem 13. Consider the multi-parametric program (6.5) and let H ≻ 0. Then, the set
of feasible parameters K∗ ⊆ K is convex. The optimizer z∗(x) : K∗ → Rs is continuous
and piecewise affine on polyhedra (PPWA), in particular it is affine in each critical region,
and the optimal solution J∗(x) : K∗ → R is continuous, convex and piecewise quadratic
on polyhedra.

Theorem 13 is proven in [4, 5]. Below we will summarize the off-line algorithm for mp–QP.

6.3.3 A summary of the mp-QP Algorithm

Based on the above discussion and results, the main steps of the off-line mp-QP solver are
outlined in the following algorithm.

Algorithm 2
Input: Matrices H, G, W, S of problem (6.5) and set K in (6.6)
Output: Multi-parametric solution to (6.5)

1 Let K ⊆ Rn be the set of parameters (states);

2 execute partition(K);

3 end.

procedure partition(Y)

4 let x0 ∈ Y and ε the solution to the LP (6.9);

5 if ε ≤ 0 then exit; (no full dimensional) CR is in Y

6 for x = x0, compute the optimal solution (z∗0 , λ∗
0) of the QP (6.5);

7 determine the set of active constraints A0 when z = z∗0 , x = x0, and build GA0
, WA0

, SA0
;

8 if r = rank(GA0
) is less than the number l of rows of GA0

, then take a subset of r
linearly independent rows, and redefine GA0

, WA0
, SA0

accordingly;

9 determine λ∗
A0

(x), z∗(x)

46 CHAPTER 6. EXPLICIT MODEL PREDICTIVE CONTROL

10 Characterize the CR

11 Define and partition the rest of the region as in theorem 12;

12 for each new subregion Ri, partition(Ri); end procedure.

Note that the variables in steps 9 and 10 occur in equations we have not presented in
this thesis. For further explanation to these variables refer to the proof of Theorem 11 in
[4, 5].
The algorithm explores the set K of parameters recursively: Partition the rest of the region
as in Theorem 12 into polyhedral sets Ri, use the same method to partition each set Ri

further, and so on. This can be represented as a search tree with a maximum depth equal
to the number of combinations of active constraints.

6.4 Constrained Finite Time Optimal Control

For discrete time linear systems it can be proven that the solution to constrained finite
time optimal control (CFTOC) problems is a time varying affine feedback control law.
We describe how the optimal control law can be efficiently computed by means of multi-
parametric quadratic programming for quadratic performance criteria.

6.4.1 Problem formulation

Consider the linear time-invariant system

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)
(6.10)

subject to the constraints

Ex(t) + Lu(t) ≤ M (6.11)

at all time instants t ≥ 0.4

In (6.10)–(6.11), x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are the state, input and output
vector respectively.
Define the following cost function

J(UN , x(0))
△

= ‖PxN‖p +
N−1∑

k=0

‖Qxk‖p + ‖Ruk‖p (6.12)

where xk denotes the state vector at time k obtained by starting from the state x0 = x(0)
and applying to system (6.10) the input sequence u0, . . . , uk−1. Consider the CFTOC

4The results presented here also hold for more general forms of linear constraints, arising, e.g. from
constraints on the input rate.

6.4. CONSTRAINED FINITE TIME OPTIMAL CONTROL 47

problem

J∗(x(0)) = min
UN

J(UN , x(0))

subj. to Exk + Luk ≤ M, k = 0, . . . , N − 1

xN ∈ Xf

xk+1 = Axk + Buk, k ≥ 0

x0 = x(0)

(6.13)

where N is the time horizon and Xf ⊆ Rn is a terminal polyhedral region. In (6.12)–(6.13)
we denote with

UN
△

= [uT
0 , . . . , uT

N−1]
T ∈ Rs,

s
△

= mN the optimization vector, with ‖Qxk‖p the p-norm of the vector xk weighted with
the matrix Q; p = 1, 2,∞ are possible choices. We denote with Xj the set of states xj at
time j for which (6.12)–(6.13) is feasible, i.e.

Xj = {x ∈ Rn ‖ ∃u(Ex + Lu ≤ M and Ax + Bu ∈ Xj+1)}, j = 0, . . . , N − 1 (6.14)

XN = Xf (6.15)

In the following we will assume that Q = QT � 0, R = RT ≻ 0, P � 0, for p = 2. We
will also denote with X0 ⊆ Rn the set of initial states x(0) for which the optimal control
problem (6.13) is feasible.
Note that we distinguish between the current state x(k) of system (6.10) at time k and
the variable xk in the optimization problem (6.13), which is the predicted state of system
(6.10) at time k obtained by starting from x0 = x(0) and applying to system (6.10) the
input sequence u0, . . . , uk−1. Analogously, u(k) is the input applied to (6.10) at time k
while uk is the k-th optimization variable of the optimization problem (6.13).
If we set

p = 2, {(x, u) ∈ Rn+m | Ex + Lu ≤ M} = Rn+m, Xf = Rn (6.16)

problem (6.13) becomes the standard unconstrained finite optimal control problem whose
solution can be expressed through the time varying state feedback control law

u∗(k) = Kkx(k), k = 0, . . . , N − 1 (6.17)

where the gain matrices Kk are given by the equation

Kk = −(BT Pk + 1B + R)−1BT Pk+1A, (6.18)

and where the symmetric positive-semidefinite matrices Pk are given recursively by the
algorithm

PN = P (6.19)

Pk = AT (Pk+1 − Pk+1B(BTPk+1B + R)−1BPk+1)A + Q. (6.20)

48 CHAPTER 6. EXPLICIT MODEL PREDICTIVE CONTROL

The optimal cost is given by

J∗(k) = xT (0)P0 x(0). (6.21)

If in addition to (6.16) we set N = +∞ and assume that the pair (A,B) is stabilizable
and the pair (C,A) is detectable, then problem (6.13)–(6.16) becomes the standard infinite
time linear quadratic regulator (LQR) problem whose solution can be expressed as the
state feedback control law

u∗(k) = Kx(k), k = 0, . . . ,+∞ (6.22)

where the gain matrix K is given by

K = −(BT PB + R)−1BT P∞A (6.23)

and where P∞ is the unique solution of the algebraic matrix equation

P∞ = AT (P∞ − P∞B(BTP∞B + R)−1BP∞)A + Q (6.24)

within the class of symmetric positive-semidefinite matrices.
In the following we show that the solution to problem (6.13) can again be expressed in
feedback form where u∗(k) is a continuous piecewise affine function on polyhedra of the
state x(k).

6.4.2 State Feedback Solution of CFTOC

By substituting

xk = Akx0 +
k−1∑

j=0

AjBuk−1−j (6.25)

the optimization problem (6.13) can be rewritten in the form

J∗(x(0)) = 1
2 xT (0)Y x(0) + min

UN

1
2 UT

NHUN + xT (0)FUN

subj. to GUN ≤ W + Ex(0)
(6.26)

where H = HT ≻ 0, H, F, Y, G, W, E are obtained from P, Q, R, (6.13) and (6.25),
and it follows from the previous assumptions that

[
Y F T

F H

]

� 0.

Note that the optimizer UN is independent of the term involving Y in (6.26).
We view x(0) as a vector of parameters and our goal is to solve (6.26) for all values of
interest, and to make this dependence explicit. Note that the set X0 is a polyhedron and
can be computed by projecting the polyhedron

P0 = {(UN , x(0)) ∈ Rs+n | GUN ≤ W + Ex(0)}

6.4. CONSTRAINED FINITE TIME OPTIMAL CONTROL 49

on the x(0)-space.
Before proceeding further, it is convenient to define

z
△

= UN + H−1F T x(0), (6.27)

z ∈ Rs, and to transform (6.26) by completing squares to obtain the equivalent problem

J∗
z (x(0)) = min

z

1
2 zT Hz

subj. to Gz ≤ W + Sx(0)
(6.28)

where S
△

= E + GH−1F T , and J∗
z (x(0)) = J∗(x(0)) − 1

2 xT (0)(Y − FH−1F T)x(0). In the
transformed problem the parameter vector x(0) appears only in the right hand side of the
constraints.
Problem (6.28) is a multi-parametric quadratic program that can be solved using Algo-
rithm 2 described in section 6.3.3. Once the multi-parametric problem (6.28) has been
solved for a polyhedral set X ⊂ Rn, the solution U∗

N = U∗
N of CFTOC (6.13) and therefore

u∗(0) = u∗(x(0)) is available explicitly as a function of the initial state x(0).
Theorem 13 states that the solution z∗(x(0)) of the mp-QP problem (6.28) is a continuous
and piecewise affine function on polyhedra of x. Clearly the same properties are inher-
ited by the controller. The following Corollaries of Theorem 13 establish the analytical
properties of the optimal control law and of the value function.

Corollary 1. The control law u∗(0) = f0(x0), f0 : Rn → Rm, obtained as solution to the
optimization problem (6.13) is continuous and piecewise affine on polyhedra

f0(x) = F i
0x + gi

0 if x ∈ CRi
0, i = 1, . . . , N r

0 (6.29)

where the polyhedral sets CRi
0 = {x ∈ Rn | H i

0x ≤ Ki
0, i = 1, . . . , N r

0} are a partition in
the broad sense of the feasible polyhedron X0.

Corollary 2. The value function J∗(x(0)) obtained as solution to (6.13) is convex and
piecewise quadratic on polyhedra.

The solution to the multi-parametric problem (6.28) provides the state feedback solution
u∗(k) = fk(x(k)) of CFTOC (6.13) for k = 0 and it also provides the open loop optimal
control laws u∗(k) as function of the initial state, i.e., u∗(k) = u∗(k)(x(0)). The state
feedback PPWA optimal controllers fk : x(k) 7→ u∗(k) for k = 1, . . . , N are computed in
the following way. Consider the same CFTOC (6.13) over the shortened horizon [i,N]

min
UN−i

‖PxN‖p +

N−1∑

k=i

‖Qxk‖p + ‖Ruk‖p

subj. to Exk + Luk ≤ M, k = i, . . . ,N − 1

xN ∈ Xf

xk+1 = Axk + Buk, k ≥ 0

xi = x(i)

(6.30)

50 CHAPTER 6. EXPLICIT MODEL PREDICTIVE CONTROL

where UN−i
△

= [uT
i , . . . , uT

N−1]
T . We will denote with Xi ⊆ Rn the set of initial states

x(i) for which the optimal control problem (6.30) is feasible and with U∗
N−i its optimizer.

Problem (6.30) can be translated into the mp-QP

min
UN−i

1
2 UT

N−iHUN−i + xT (i)FUN−i

subj. to GUN−i ≤ W + Ex(i).
(6.31)

The first component of the multi-parametric solution to (6.31) has the form

u∗(i) = fi(x(i)), ∀x(i) ∈ Xi, (6.32)

where the control law fi : Rn → Rm, is continuous and PWA

fi(x) = F j
i x + gj

i if x ∈ CRj
i , j = 1, . . . , N r

i (6.33)

and where the polyhedral sets CRj
i = {x ∈ Rn | Hj

i x ≤ Kj
i }, j = 1, . . . , N r

i are a
partition in the broad sense of the feasible polyhedron Xi. Therefore, the feedback solution
u∗(k) = fk(x(k)), k = 0, . . . , N −1 to the CFTOC (6.13) is obtained by solving N mp-QP
problems.

6.5 MPC for the semiactive suspension system

In this section we present the partition of the state space for the semiactive suspension
system applying the explicit MPC desing method. The simulations were done with MAT-
LAB, for which exists a free toolbox called MPT [16].
Computing explicit state feedback controllers via multi-parametric programming may eas-
ily lead to controllers with prohibitive complexity, both in runtime and solution. There
are three aspects which are important in this respect: performance, closed-loop stability
and constraint satisfaction. The MPT toolbox provides several possibilities to compute
the controller and the partition of the state space, which are specified below:

Finite Time Optimal Control (FTOC) This method yields the finite time optimal
controller (FTOC), i.e. the performance will be N -step optimal but may not be
infinite horizon optimal. The complexity of the controller depends strongly on the
prediction horizon N , the larger N the more complex the controller. Furthermore,
within this method, the MPT toolbox provides three different modes:

• probstruct:Tconstraint=0:No terminal set constraint. The controller will be
defined over a superset of the maximum controllable set (i.e. all states, which
are controllable), but no guarantees on stability or closed-loop constraint sat-
isfaction can be given. As the prediction horizon N is increased the feasible set
of states will converge to the maximum controllable set from ”the outside-in”,
i.e. the controlled set will shrink as N increases.
Even though closed loop stability and constraint satisfaction are not guaran-
teed, MPT provides a function to extract the set of states which satisfy the
constraints for all time and another fuuction to analyze these states for stability.

6.5. MPC FOR THE SEMIACTIVE SUSPENSION SYSTEM 51

• probstruct:Tconstraint=1: Stabilizing terminal set is automatically com-
puted. The resulting controller will guarantee stability and constraint satisfac-
tion for all time, but will only cover a subset of the maximum controllable set
of states. By increasing the prediction horizon, the controllable set of states
will converge to the maximum controllable set from ”the inside-out”, i.e. the
controlled set will grow larger as N increases.

• probstruct:Tconstraint=P: User defined terminal set. Depending on the
properties of the set P , any combination of the two cases previously described
may occur.

Infinite Time Optimal Control (ITOC) This method yields the infinite time optimal
controller, i.e. the best possible performance for the control problem. Asymptotic
stability and constraint satisfaction are guaranteed and the maximum controllable
set will be covered by the resulting controller. However, the controller’s complexity
may be prohibitive and the computation may take a very long time.

Minimum Time Control This method yields the minimal time controller with respect
to a target set around the origin, i.e. the controller will drive the state into this set in
minimal time. In general, the complexity of minimum time controllers is significantly
lower than that of their 1/2/∞-norm cost optimal counterparts. The controller is
guaranteed to cover all controllable sets and asymptotic stability and constraint
satisfaction are also assured.

Low Complexity Control This method yields a controller for a prediction horizon N =
1 with additional constraints that guarantees asymptotic stability and constraint
satisfaction for the closed loop system. The controller covers all controllable states.
The complexity of this 1-step controller is generally significantly lower than all other
control schemes in MPT which cover the maximal controllable set, but also in this
case the computation requires a long time.

Applying the MPC to the suspension system, we were only able to obtain partitions for
the finite time optimal control and the infinite time optimal control. For the suspension
system it was not possible to compute the partitions using the time optimal control and
the low complexity control, because the computation did not finish in an adequate time.
The partitions for the FTOC and the ITOC will be shown below.
In order to limit the computational complexity we chose the following bounded polyhedron

K = {x ∈ R4 | | xi | ≤ 1, i = 1, . . . , 4}

as the set of states, that are of interest for the fourth-order suspension model.
Furthermore, the weight matrices Q and R we have chosen are

Q =







11 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0







, R = 0.8 · 10−9

52 CHAPTER 6. EXPLICIT MODEL PREDICTIVE CONTROL

Figure 6.2: Partition for the fourth-order suspension model, cut through x3 = x4 = 0:
(a) FTOC, no terminal set, N = 10, 557 regions; (b) FTOC, no terminal set, N = 15,
1038 regions; (c) FTOC , terminal set automatically computed, N = 10, 2195 regions; (c)
FTOC , terminal set automatically computed, N = 15, 3852 regions.

and we assumed the sampling interval T = 0.01 s.
The resulting partitions, more precisely a cut through the partitions at x3 = x4 = 0,
are depicted in Figure 6.2. The FTOC setting probStruct. Tconstraint=0 does not
guarantee stability and closed loop constraint satisfaction and as it can be seen in Figure
6.2 (a) and (b) increasing the prediction horizon N from 10 to 15 shrinks the controlled
set, so that it converges towards the maximum controllable set from the outside inwards.
The projections of the partitions for the FTOC employing probStruct.Tconstraint=1

are illustrated in Figure 6.2 (c) and (d) for the prediction horizon N = 10 and N = 15,
respectively. As mentioned above, by increasing the prediction horizon N the controllable
set should converge to the maximum controllable set from the inside outwards. Obviously,
this does not hold true for the partition of the suspension system, because parts of the
state space, that has been covered by the partition with N = 10 are not covered anymore

6.5. MPC FOR THE SEMIACTIVE SUSPENSION SYSTEM 53

Figure 6.3: Projection of the partition into the x1-x2-plane for the fourth-order suspension
system for the ITOC

considering N = 15, as visualized in Figure 6.2(d). In theory, employing this mode of
partitioning the state space, it is not possible, that a state is controllable under a given
prediction horizon, but does not maintain this property after increasing the latter.
These results are probably due to numerically problems of the algorithm.
We also applied the ITOC to the suspension system, where the problems, that occured

above became even more obvious. Figure 6.3 illustrates the resulting partition for the
infinite horizon problem for the fourth-order suspension model. Only very few parts of the
state space that were identified to be controllable, (refer to Figure 6.2 (c)), are covered by
the partition computed under the infinite prediction horizon, although this method should
yield a controller that covers all controllable states.

Chapter 7

Applying OGS, discontinuous

VSC and explicit MPC to the

suspension system: A comparison

7.1 Introduction

In this chapter we compare the three different control design methods we presented in
chapters 4, 5 and 6 applying them to the suspension system illustrated in Chapter 3. All
of the three methods (OGS, dVSC and eMPC) are based on off-line partitioning of the
state space, assign subcontrollers to these regions – linear subcontrollers for the OGS and
the dVSC, affine subcontrollers for the MPC – and switch between these subcontrollers
during the on-line regulation cycles according to the current state.
For the OGS approach we will consider two different strategies:

OGS Case A: We will recall some of the simulation results presented in [11] and therefore
chose the parameters as described in Section 4.3.

OGS Case B: We considered the same set of closed loop matrices for the OGS and
the dVSC approach in order to obtain a more immediate and more meaningful
comparison. Therefore we determined the feedback gain matrices such that the closed
loop eigenvalues are equal to the eigenvalue distribution shown in Figure 7.1.

This chapter is structured as follows: First we illustrate the differences of the results of
partitioning the state space for the suspension system. In a second step we will compare
simulation results with respect to the control system’s performance both for the active
and the semiactive application to the suspension system.

7.2 Partitioning the State Space

In this section we will compare the partitions of the state space, that are the results of the
off-line phase of the three design methods OGS, dVSC and eMPC. First, we will compare

54

7.2. PARTITIONING THE STATE SPACE 55

−1 0 1
−1

−0.5

0

0.5

1

Real Axis

Im
ag

in
ar

y
A

xi
s

(a)

−140 −120 −100 −80 −60 −40 −20 0
−400

−200

0

200

400

Real Axis

Im
ag

in
ar

y
A

xi
s

(b)

Figure 7.1: Sets of designated eigenvalues for the fourth-order suspension system (a) in
the z-plane and (b) in the s-plane. h = 1.5

the partitions considering the second-order one-degree of freedom model of the suspension
system. Since the state space here is only two-dimensional it is possible to depict the par-
titions completely. Further, we will proceed illustrating a cut at x3 = x4 = 0 through the
partitions of the fourth-order two-degrees of freedom suspension model, since simulation
results for the fourth-order model are our main interest.
In order to obtain a comparison as meaningful as possible, we made the following as-

sumptions:

• For the OGS and for the MPC design method we considered the discretized model of
the suspension system as it has been presented in Chapter 3 assuming the sampling
interval T = 0.01 s.

• For the dVSC we considered the continuous time model (see Chapter 3), as the
theory presented in Chapter 5 requires the latter.

• We have chosen the same sequence of closed loop eigenvalues (refer to (5.13)) for
the OGS Case B and the dVSC in the z-plane and in the s-plane respectively. Ac-
cording to these sets of eigenvalues we determined the closed loop matrices via pole
placement. Note that the closed loop matrices obtained in this manner do not guar-
antee, that the Yoshida regions are nested for the OGS Case B. Figure 7.1 shows
the sequence of the designated sets of eigenvalues for the fourth-order model of the
suspension system in the s-plane and in the z-plane respectively.

• In order to limit the run times of the computation of the convex polyhedral regions
employing explicit MPC we considered the following bounded polyhedron for the

56 CHAPTER 7. OGS – VSC – MPC: A COMPARISON

second-order suspension model

X = {x ∈ R2 | |xi| ≤ 1, i = 1, 2}. (7.1)

Analogously, we determined the partition of the state space for the fourth-order
suspension model considering the bounded polyhedron

X = {x ∈ R4 | |xi| ≤ 1, i = 1, . . . , 4} (7.2)

as the state space of interest. Furthermore, we considered the FTOC with a predic-
tion horizon N = 10 and we set probStruct.Tconstraint=1 to obtain a controller
that guarantees closed loop stability and constraint satisfaction for all times.

• For the OGS Case A and the explicit MPC we considered the same weight matrix
on the states Q and we chose the weight on the input for the eMPC equal to the
weight on the input for the OGS Case A divided by ρmax

QMPC = QOGS, RMPC =
ROGS

ρmax

This guarantees for both approaches the same level of optimality.

Below we will present and comment the partitions, which we computed with MATLAB.
The results for the second-order model and for the fourth-order model of the suspension
system are depicted in Figure 7.2 and Figure 7.3 respectively.
Figure 7.2 shows the partitions for the second-order suspension model of the four con-

sidered cases with the same scale. The Yoshida regions for the OGS Case A and B are
depicted in Figure 7.2 (a) and (b), respectively, whereas (c) and (d) illustrate the elliptic
Lyapunov regions resulting from discontinuous VSC and the convex polyhedral partitions
computed with explicit MPC.
Comparing Figure 7.2 (b) and (c) it can be seen, that the Yoshida regions of the OGS Case
B are much larger, i.e. cover much more of the state space, than the Lyapunov regions of
the discontinuous VSC. Here, for the OGS Case B the linear regions are nested and there-
fore we can compare the simulations of the resulting controllers. Figure 7.2 (d) depicts
the partition of the convex polyhedral regions of the eMPC, which are in the x2-direction
constrained by the assumptions we made (compare (7.1)), but in the x1-direction cover
less of the state space compared to the OGS Case A and Case B. The size of the resulting
partitions is important with regard to robustness towards varying initial conditions and
disturbances, e.g. caused by the road profile.
Figure 7.3 depicts a cut through x3 = x4 = 0 of the partitions for the fourth-order sus-

pension model resulting from the OGS Case A and the explicit MPC. Regarding Figure
7.3 the difference of the size of the partitions becomes even more obvious than in the
second-order case, the Yoshida regions cover a much larger subset of the state space of
interest than the partition of the explicit MPC.
For the fourth-order model we take into account only these two approaches, because the
Lyapunov regions obtained by the discontinuous VSC were too small to cover the state

7.2. PARTITIONING THE STATE SPACE 57

−0.2 −0.1 0 0.1 0.2 0.3
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

(a)

−0.2 −0.1 0 0.1 0.2 0.3
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

(b)

x
1

x 2

(c)

−0.2 −0.1 0 0.1 0.2 0.3
−1.5

−1

−0.5

0

0.5

1

1.5

−0.2 −0.1 0 0.1 0.2 0.3
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

(d)

Figure 7.2: Partition of the state space for the second-order model. (a) linear regions of
OGS Case A (b) linear regions of OGS Case B (c) elliptical Lyapunov regions of discon-
tinuous VSC (d) convex polyhedral regions of explicit MPC

space of interest. Since we considered the OGS Case B only with respect to a meaningful
comparison with the discontinuous VSC we do not look at this case for the fourth-order
model. Furthermore, the Yoshida regions for the OGS Case B were not nested for the
fourth-order model and therefore this way of computing the partition of the state space
does not lead to an applicable controller.
The differences of the size of the partitions are due to the following reasons:

• The size of the Yoshida regions depends on the sequences of closed loop matrices,
that determine the linear regions.

• For the dVSC the size of the linear regions depends on the Rp and therefore on the
choice of the Qp in the Lyapunov equation (5.8). Because the cp, that determines the
Lyapunov regions, is a function of R−1

p , the regions seem to be nearly independent of

58 CHAPTER 7. OGS – VSC – MPC: A COMPARISON

Figure 7.3: Partition of the state space for the fourth-order suspension model: cut through
x3 = x4 = 0. (a) linear regions of OGS Case A (b) convex polyhedral regions of explicit
MPC

the choice of Qp. We have not been able to enlarge the Lyapunov regions significantly
by varying Qp (see Figure 7.3 (c)).

• For the explicit MPC the size of the feasible set depends on the constraints on the
states, which are defined by the polyhedron K in (7.1) and (7.2), on the mode chosen
to compute the controller and in the case of the FTOC mode also on the prediction
horizon N .

Comparing the different approaches we can summarize the following results:

• The Lyapunov regions obtained by the discontinuous VSC cover only a small subset
of the state space of interest, but the computational effort is very low.

• The Yoshida regions obtained by the OGS Case B are significantly larger than the
linear regions obtained by the discontinuous VSC for the same sequence of closed
loop eigenvalues, but the nesting condition is not necessarily fulfilled.

• The partition obtained by the explicit MPC covers a larger set of states than the
discontinuous VSC, but the resulting partitions are still significantly smaller than
those of the OGS Case A and meanwhile the computational effort is significantly
higher.

7.3. THE CONTROL PERFORMANCE 59

• The OGS Case A seems to lead to the best results both with respect to the set of
states covered by the linear regions and the computational effort.

In the next section we compare the simulation results applying the different design ap-
proaches to the suspension model both the active and the semiactive performance.

7.3 The control performance

In this section we compare the performance of the active controller obtained with the
OGS Case A and B, the discontinuous VSC and the explicit MPC for the second-order
suspension model. Later on we will present simulation results for the OGS Case A and the
explicit MPC applying both the active and the semiactive controller to the fourth-order
suspension model.

7.3.1 The second-order model

For the second-order suspension model we computed the system’s evolution for the initial
state x0 = [0.01 0.1]T with MATLAB.

Active suspension

The simulation results for the active suspension system are illustrated in Figure 7.4, where
the blue line and the red line represent the OGS Case A and Case B, respectively, the
discontinuous VSC is depicted with the green line and the magenta line shows the evolution
of the explicit MPC.
It is visualized in Figure 7.4 that under the assumptions we made the OGS Case A and
the explicit MPC obtain almost exactly the same evolution of the states and the input.
The results for the discontinuous VSC are not satisfying compared to the other approaches;
this is due to the fact that it does not yield a good exploitation of the allowed maximal
control input.
The controller obtained by the OGS Case B yields even a better exploitation of the range
of the allowed control input than the OGS Case A and the explicit MPC and therefore
regulates the state faster to the origin, but it cannot be compared directly to the other
approaches as the controller in this case is not determined minimizing a performance index.
Figure 7.4 indicates the regions, which the current state belongs to for the OGS Case A
and B and the discontinuous VSC. Here 1 denotes the largest and 5 the smallest region,
compare Figure 7.2.

7.3.2 The fourth-order model

For the fourth-order model we simulated the system’s evolution considering initial condi-
tions different from zero and also the performance for disturbances which may be caused
by the road profile. Here we concentrate on the OGS Case A and the explicit MPC and,
therefore, we leave out the ”Case A”.

60 CHAPTER 7. OGS – VSC – MPC: A COMPARISON

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−2

0

2

4

6

8

10

12

14
x 10

−3

Time [s]

x
1
 [m]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time [s]

x
2
 [ms−1]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−3000

−2000

−1000

0

1000

2000

Time [s]

u [N]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.5

2

2.5

3

3.5

4

4.5

5

Time [s]

region

OGS Case A

OGS Case B

dVSC

eMPC

OGS Case A

OGS Case B

dVSC

Figure 7.4: Evolution of the second-order suspension system comparing OGS Case A and
B, discontinuous VSC and eMPC. Initial state x0 = [0.01 0.1]T .

Active suspension

The simulation results for the fourth-order suspension model with regard to the initial
state x0 = [0.015 0.1 0 0]T are depicted in Figure 7.5. The evolution for the OGS is vi-
sualized with blue, whereas magenta shows the evolution for the explicit MPC. Since our
main attention is directed towards the passenger’s comfort, we depicted only the evolu-
tion for the sprung mass here. The maximum amplitude of the sprung mass velocity is
relatively high. This is due to the fact that we did not impose weights on the velocities in
the optimal control problem, what should be done in a further step as a high velocity up-
or downwards is in conflict with a pleasant ride.
Like for the second-order model we obtain almost exactly the same performance applying
the OGS and the explicit MPC to the suspension system. As it can be seen in Figure 7.5
the resulting active control force u is very similar for the OGS and the explicit MPC.

In addition to these shock test simulations, we ran simulations assuming zero initial con-
ditions but adding a disturbance that may represent the road profile. In order to simulate

7.3. THE CONTROL PERFORMANCE 61

0 0.2 0.4 0.6 0.8
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

x
2
 [m]

OGS
eMPC

0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

Time [s]

x
4
 [ms−1]

0 0.2 0.4 0.6 0.8
−4000

−3000

−2000

−1000

0

1000

2000

Time [s]

u [N]

0 0.2 0.4 0.6 0.8
4

5

6

7

8

9

10

Time [s]

region

Figure 7.5: Evolution of the fourth-order suspension system comparing OGS and explicit
MPC. Initial state x0 = [0.015 0.1 0 0]T .

the disturbance, we chose the same parameters as presented in [11].
The evolution is shown in Figure 7.6, where the green line represents the added distur-
bance. Like in the previous cases the performance of the OGS and the explicit MPC
are similar. The simulation results show that the suspension filters the high frequencies
smoothing the movement of x2, i.e. the evolution of the sprung mass.

Semiactive suspension

In this section we compare the simulation results for the semiactive fourth-order suspension
model, that was introduced in Chapter 3. Recall that the feedback control law in this case

usem(k) = − [−λs λs − f(k) f(k)]
︸ ︷︷ ︸

K

x(k) (7.3)

is determined by approximating the active control law according to

f(k) = min arg
f∈[fmin,fmax]

F [f, x(k)] =







fmax if f∗(k) > fmax

f∗(k) if f∗(k) ∈ [fmin, fmax]

fmin if f∗(k) < fmin

(7.4)

62 CHAPTER 7. OGS – VSC – MPC: A COMPARISON

0 0.2 0.4 0.6 0.8 1
−12

−10

−8

−6

−4

−2

0

2

4
x 10

−3

Time [s]

x
1
 [m]

0 0.2 0.4 0.6 0.8 1
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

Time [s]

x
2
 [m]

0 0.2 0.4 0.6 0.8 1
−3000

−2000

−1000

0

1000

2000

Time [s]

u [N]

0 0.2 0.4 0.6 0.8 1
8

8.5

9

9.5

10

Time [s]

region

OGS

eMPC

x
0

Figure 7.6: Evolution for the fourth-order suspension system with an additive disturbance
x0.

where the f∗(k) is chosen that the squared difference of the active and semiactive control
law is minimized.

In a first step we compare the present simulation results for the semiactive suspension
system considering the shock test with the initial state x0 = [0.015 0.1 0 0]. Like for
the active suspension model, we only present the evolution of the sprung mass as we are
mostly interested in the passenger’s comfort property of the suspension.
Figure 7.7 shows the evolution of the semiactive suspension system compared to those

of the active suspensions. Again the OGS and the explicit MPC performances are very
similar as the states at each time instant only differ in the order of magnitude of |xi,OGS−
xi,eMPC| ≈ 10−10.
In Figure 7.7 down to the left the evolution of the target control laws computed with the
OGS and the explicit MPC are compared to those control laws that are ”really” applied
to the system by the semiactive suspension adjusting the damping coefficient f according
to (7.3) and (7.4), whose evolution is visualized in Figure 7.7 down to the right.

7.3. THE CONTROL PERFORMANCE 63

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

x
2
 [m]

0 0.2 0.4 0.6 0.8 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time [s]

x
4
 [ms−1]

0 0.2 0.4 0.6 0.8 1
−4000

−3000

−2000

−1000

0

1000

2000

3000

Time [s]

u [N]

0 0.2 0.4 0.6 0.8 1
500

1000

1500

2000

2500

3000

Time [s]

f [Nsm−1]

OGS applied u
eMPC target u
OGS target u
eMPC applied u

OGS semiactive
OGS active
eMPC semiactive
eMPC active

Figure 7.7: Evolution for the fourth-order semiactive suspension system with initial state
x0 = [0.015 0.1 0 0].

The last simulations we present here were run considering the fourth-order semiactive
suspension model with regard to zero initial conditions, but considering an additive dis-
turbance x0.
Figure 7.8 depicts the evolution of the wheel displacement, the sprung mass displacement
and the control input both for the active and the semiactive suspension model. As it can
be seen from these simulations substituting the actuator by an semiactive suspension leads
to a reasonable performance, especially when considering disturbance models.

64 CHAPTER 7. OGS – VSC – MPC: A COMPARISON

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5
x 10

−4

Time [s]

x
1
 [m]

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3

Time [s]

x
2
 [m]

0 0.2 0.4 0.6 0.8 1
−300

−200

−100

0

100

200

300

Time [s]

u [N]

x
0

OGS active

eMPC active

eMPC semiactive

OGS semiactive

Figure 7.8: Evolution for the fourth-order semiactive suspension system with an additive
disturbance x0.

Chapter 8

Conclusions

In this thesis we aimed at comparing three different control design methods applying them
to a semiactive suspension system. After summarizing some principles of control theory in
Chapter 2, we introduced the quarter-car suspension model in Chapter 3.
The following chapters were dedicated to the theory of the three different methods, opti-
mal gain switching, discontinuous variable structure control and explicit model predictive
control. Common to all of these methods is the division into an off-line and an on-line
phase of the design process. The off-line phases partition the state space into convex re-
gions and assign linear or affine subcontrollers to each region. The investigated approaches
all intend to approximate time optimal control laws, and thus we call them suboptimal.
During the on-line phase the controller switches between these subcontrollers according
to the current state.
The simulation results of the application of these concepts to the semiactive suspension
model were compared in Chapter 7.

Here we briefly summarize the comparison of the OGS, discontinuous VSC and the explicit
MPC.

off-line phase The best results from the partitioning phase of the design process were
obtained by the optimal gain switching method as it lead to the largest subset of
controllable states for the state space of interest and the computational time was
relatively low.
For the discontinuous variable structure control the computational effort is also very
low, but we were not able to compute Lyapunov regions, which covered the set of
states of interest.
The explicit model predictive control provided a partition that was sufficiently large
but still did not reach the size of the Yoshida regions of the OGS. The main drawback
of eMPC was that its computational times were exhaustive under distinct assump-
tions, like guaranteed closed loop stability and large prediction horizons.

on-line phase Comparing the performance of the three methods we obtained almost
exactly the same evolution for the OGS and the explicit MPC. To underline this
fact we computed a performance index for the OGS and the eMPC, whose results

65

66 CHAPTER 8. CONCLUSIONS

OGS eMPC

cost 6.2138 6.3057

computational time 6 s 1 h 45 min

Table 8.1: Comparison of the OGS and the explicit MPC for the fourth-order suspension
system.

are given in Table 8.1.
The simulation results for the discontinuous VSC were not satisfying, because the
controller did not lead to settling times that were as short as those of the other
approaches.

Finally, we conclude that the optimal gain switching and the explicit model predictive
approaches provide controllers are equivalent in terms of their performance, but the effort
to compute the controller for the explicit MPC is way higher than for the OGS. Regarding
the robustness of the controllers, the OGS method seems to be advantageous.

A number of challenges remain and appear from these investigations. For the suspension
system it may lead to interesting results to run further simulations imposing also weights
on the velocities of the sprung and the nonsprung mass. Moreover, it is an interesting
challenge to prove the equivalence of the OGS and the explicit MPC more formally.

Acknowledgements

There are many people I would like to thank for their help and assistance they gave me
during the work for this thesis.
Firstly, I would like to thank Dr. Carla Seatzu for being so patient during the semester I
spend at the University of Cagliari. It has been a pleasure for me to have the opportunity
to work with her as a tutor and friend.
Secondly, I would like to thank Prof. Alessandro Giua for offering me the possibility to
work with him and for his ideas and support he gave me.
Without one person, I would never have thought about spending one semester on the won-
derful island Sardinia. Therefore, I want to thank Prof. Raisch for arranging the contact
with the University of Cagliari and especially with Prof. Giua.
Furthermore, I would like to thank Michal Kvasnica for his immediate and very helpful
support concerning the model predictive toolbox for MATLAB.
Finally, I want to thank all my friends and my family for supporting me during the writ-
ing process of my first thesis. Especially, I would like to thank Thomas, Angela, Barbara,
Daniele, Eleonora, Federica, Ines, Jasmina, Kamila, Laura, and all the other friends, who
were close to me during my period in Cagliari.

67

Appendix A

MATLAB Programs

A.1 The system’s data

1 % data file for the fourth-order suspension system

2

3 % parameters of the suspension system

4

5 l=155900;

6 lambdas=14345;

7 M1=28.58;

8 M2=288.9;

9 umax =3000;

10 fmin=800;

11 fmax =3000;

12

13 % matrices of the state space representation

14

15 A=[0 0 1 0; 0 0 0 1; -l/M1 0 0 0; 0 0 0 0];

16 B=[0 0; 0 0; -1/M1 l/M1; 1/M2 0]; %B’=[B|L]

17 C =[1 0 0 0; 0 1 0 0];

18

19 % weight matrices

20

21 Q=[11 -1 0 0; -1 1 0 0; zeros (2 ,4)];

22 R=.8*10^(-9);

23 RO =[.01 .1 .5 1

24 4 20 50 100 1000 10^5];

25

26 % discretization of the system

27

28 Ts=0.01;

29 [G,H1 ,Cd ,Dd]=c2dm(A,B,C,zeros(2,2),Ts ,’zoh’);

30 H=H1(1:4,1);

31 Ltilde=H1(1:4,2);

68

A.2. PARTITIONING THE STATE SPACE 69

A.2 Partitioning the State Space

A.2.1 Computation of the Yoshida Regions

1 % loading the data file

2 Dati;

3

4 % initialisation

5 [dim ,col]=size(G); Jzi=[1]; fine=0;

6

7 % construction of the linear regions

8

9 for r=1:nr

10 % determine the feedback gain matrices

11 K(r,:)= place(G,H,eigvals_vsc_discrete(r ,:));

12 Gcloop=G-H*K(r ,:);

13 % define GG containing the closed loop matrices

14 GG(:,(r -1)*dim+1:r*dim)=Gcloop;

15 Z(: ,1)=K(r,:)’;

16 j=0;

17 how=’ok’;

18 D = [];

19 % determine the value j_0 by solving a LP

20 while how >0

21 j=j+1;

22 Z(:,j+1)=((Gcloop ’)^j)*Z(: ,1);

23 for i=1:j

24 D(:,i)=Z(:,i)-Z(:,j+1);

25 D(:,i+j)=-Z(:,i)-Z(:,j+1);

26 end

27 [m,n]=size(D);

28 b=zeros(m ,1);

29 c=-ones(n ,1);

30 [x,fval ,how]= linprog(c,[],[],D,b,zeros(n,1) ,[]);

31 end

32 % determine the matrix Z_rho

33 J(r)=j;

34 Z=Z(:,1:j);

35 if r~=1,

36 Jzi(r)=Jzi(r-1)+J(r-1);

37 end

38 Jzf(r)=j+fine;

39 fine=Jzf(r);

40 % define ZG containing all Z_rho

41 ZG(:,Jzi(r):Jzf(r))=Z;

42 end

70 APPENDIX A. MATLAB PROGRAMS

A.2.2 Computation of the Lyapunov Regions

1 % loading the data file

2 dati;

3

4 % initialisation

5 [dim ,col]=size(G);

6

7 %define the Q_p for the Lyapunov equation

8 Q_p =[10 0 0 0; 0 10 0 0; 0 0 .1 0;0 0 0 .1];

9

10 for r=1:nr

11 % determine the feedback gain matrices

12 K(r,:)= place(A,B(:,1),eigvals_vsc(r ,:));

13 Gcloop=A-B(: ,1)*K(r,:);

14 GG(:,(r-1)*dim+1:r*dim)=Gcloop;

15 Qp=Q_p;

16 % compute Rp from the Lyapunovequation

17 Rp=lyap(Gcloop ’,Qp);

18 R_p(:,(r -1)*dim+1:r*dim)=Rp;

19 % compute the cp to determine the regions

20 cp=umax^2/(K(r,:)*inv(Rp)*K(r,:) ’);

21 c_p(r)=cp;

22 % define a varialbe to test the nesting condition

23 Rp_cp(:,(r-1)*dim+1:r*dim)=Rp/cp;

24 % define auxiliary variables to plot the regions

25 a(r)=Rp(1 ,1);

26 b(r)=Rp(2 ,2);

27 c(r)=Rp(1 ,2)+Rp(2 ,1);

28 d(r)=-cp;

29 end

30

31 % verifying the nesting condition

32 for ind=1:nr -1

33 nest_test=Rp_cp (:,(ind)*dim+1:(ind+1)*dim)-

34 Rp_cp(:,(ind -1)*dim+1:ind*dim);

35 if eig(nest_test)>=0

36 test(ind)=1;

37 else

38 test(ind)=-1;

39 end

40 end

41

42 if test >=0

43 disp(’Lyapunov regions are one inside the other’)

44 else

45 disp(’Lyapunov regions are not nested!’)

46 end

A.2. PARTITIONING THE STATE SPACE 71

A.2.3 Computation of the Convex Polyhedral Regions

1 % loading the data file

2 dati;

3

4 % define a structure containing the systems information

5 sysStruct.A=G;

6 sysStruct.B=H;

7 sysStruct.C=Cd;

8 sysStruct.D=Dd(: ,1);

9 sysStruct.xmax =[1;1;1;1];

10 sysStruct.xmin=[-1; -1; -1; -1];

11 sysStruct.ymax =[1;1];

12 sysStruct.ymin=[-1; -1];

13 sysStruct.umin=-umax;

14 sysStruct.umax=umax;

15

16 % introduce a polytope limiting the

17 % feasible state -space of interest

18 sysStruct.Pbnd = unitbox(4 ,1);

19

20 % define the prediction horizon

21 probStruct.N=10;

22

23 % consider a quadratic performance index

24 probStruct.norm= 2;

25

26 % define weights on the states

27 probStruct.Q=Q;

28 % define weights on the inputs

29 probStruct.R=R;

30

31 % choose level of optimality

32 probStruct.subopt_lev =0;

33 % terminal set constraint

34 probStruct.Tconstraint=1;

35

36 % compute the partition and the assigned control matrices

37 [ctrlStruct] = mpt_control(sysStruct , probStruct);

72 APPENDIX A. MATLAB PROGRAMS

A.3 Simulation of the Semiactive Suspension System

1 % load the data file

2 dati;

3

4 % define parameters to model the disturbances

5 alfa=.2;

6 vel=20;

7 sigmaquadro=.1^2;

8 w=rumbian(alfa ,sigmaquadro ,vel);

9 rumore;

10 xo=xo*0;

11

12 % define the initital vector

13 Xcgo (: ,1)=[.015; .1; 0; 0];

14

15 % simulate the semiactive suspension closed loop system

16 t=1; T(1)=0; f(1)=fmax; while (t <200)

17 v=0;

18 r=1;

19 cont=1;

20 while (r<=nr & cont ==1)

21 S=abs(ZG(:,Jzi(r):Jzf(r))’*Xcgo(:,t));

22 max(S);

23 if max(S)<=umax

24 v=r;

25 else

26 cont=0;

27 end

28 r=r+1;

29 end % search the smallest region , which contains x(t)

30 if v==0

31 disp(’x(t) does not belong to the largest region ’);

32 end

33 Va(t)=v;

34 % determine the value of f that has to be adjusted

35 if (t>=2)

36 if (Xcgo(4,t)~=Xcgo(3,t))

37 f_star(t)= -1*((K(v ,:)*Xcgo(:,t)+

38 lambdas*(Xcgo(2,t)-Xcgo(1,t)))/

39 (Xcgo(4,t)-Xcgo(3,t)));

40 if f_star(t)>=fmax

41 f(t)=fmax;

42 elseif f_star(t)<=fmin

43 f(t)=fmin;

44 else

45 f(t)=f_star(t);

46 end

47 else

A.3. SIMULATION OF THE SEMIACTIVE SUSPENSION SYSTEM 73

48 f(t)=fmax;

49 end

50 end

51 % compute the evolution of the system

52 Kcgo(:,t)=-[lambdas -lambdas f(t) -f(t)]’;

53 Ua(t)=-Kcgo(:,t)’*Xcgo(:,t);

54 Xcgo(:,t+1)=(G-H*Kcgo(:,t)’)*Xcgo(:,t)+ Ltilde*xo(t);

55 t=t+1;

56 end;

Bibliography

[1] Adamy, J.: Strukturvariable Regelungen mittels impliziter Ljapunov-Funktionen.
Ph.D dissertation (1991), University of Dortmund

[2] Adamy, J. and Flemming, A.: Soft variable-structure controls: a survey. Automatica
40 (2004), pp 1821–1844

[3] Bemporad, A., Fukuda, K. and Torrisi, F.D.: Convexity recognition of the union
polyhedra. Computational Geometry 18(2001), pp 141-154

[4] Bemporad, A., Morari, M., Dua, V. and Pistikopoulos, E.N.: The explicit linear
quadratic regulator for constrained systems. Automatica 38 (2002), pp 3-20

[5] Borrelli, F.: Discrete time constrained optimal Control. Ph.D dissertation (2002),
ETH Zurich

[6] Cha, P.D., Rosenberg, J.J. and Dym, C.L.: Fundamentals of Modeling and Analyzing
Engineering Systems. University Press, Cambridge (2000)

[7] Corona, D., Giua, A. and Seatzu, C.: Optimal control of hybrid automata: design of
a semiactive suspension. Control Engineering Practice 12 (2004), pp 1305–1318

[8] Corriga, G., Sanna, S. and Usai, G.: An optimal tandem active-passive suspension for
road vehicles with minimum power consumption. IEEE Transactions on Industrial
Electronics, 38(3) (1991)

[9] Fukuda, K.: FAQ in polyhedral computation. On line document (2004) available from
http://www.ifor.math.ethz.ch/staff/fukuda

[10] Giorgetti, N., Bemporad, A., Tseng, H. E. and Hrovat, D.: Hybrid model predictive
control application towards optimal semi-active suspension. Proc. IEEE Int. Symp.
on Industrial Electronics, Dubrovnik, Croatia (2005)

[11] Giua, A., Seatzu, C. and Usai, G.: Semiactive Suspension Design with an Optimal
Gain Switching Target. Vehicle Systems Dynamics, 31(1999), pp 213–232

[12] Glad, T. and Ljung, L.: Control Theory: multivariable and nonlinear methods. Taylor
& Francis (2000)

74

BIBLIOGRAPHY 75

[13] Hung, J. Y., Gao, W. and Hung, J.C.: Variable structure control: A survey. IEEE
Transactions on Industrial Electronics, 40(1) (1993), 2-22

[14] Kiendl, H., and Schneider, G.: Synthese nichtlinearer Regler fuer die Regekstrecke
const/s2 aufgrund ineinandergeschalchtelter abgeschlossener Gebiete beschraenkter
Stellgroesse. Regelungstechnik und Prozess-Datenverarbeitung, 20(7) (1972)

[15] Kiendl, H., Adamy, J. and Stelzner, P.: Vector norms as Lyapunov functions for linear
systems. IEEE Transactions on Automatic Control, 37(6) (1992), pp 839–842

[16] Kvasnica, M., Grieder, P. and Baotic, M.: Multi-Parametric Toolbox (MPT),
http://control.ee.ethz.ch/ mpt/, (2004)

[17] Kvasnica, M., Grieder, P., Baotic, M. and Christophersen, F.J.: Multi-Parametric
Toolbox Manual (2004)

[18] Ljung, L. and Glad, T.: Modeling of Dynamic Systems. Prentice Hall (1994)

[19] Loskot, K., Polánski, A. and Rudnicki, R.: Further comments on ”Vector norms as
Lyapunov functions for linear systems”. IEEE Transactions on Automatic Control,
43(2) (1998)

[20] Ogata, K.: Discrete-Time Control Systems, Second Edition. Prentice Hall (1995)

[21] Savastano, A.: Synthesis of a optimal gain switching controller for linear discrete time
systems with constrained input: application to an active suspension system for cars.
Laurea Thesis, Department of Electrical and Electronical Engineering, University of
Cagliari (Italy) (1997) (in Italian)

[22] Yoshida, K., Nishimura, Y. and Yonezawa, Y.: Variable gain feedback control for
linear sampled-data systems with bounded control. Control Theory and Advanced
Technology, 2(2) (1986)

[23] Ziegler, G. M.: Lectures on Polytopes. Springer (1994)

