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Abstract: The control of microgrids at secondary hierarchical level offers multiple challenges.
When the entire microgrid is seen as a Multiple-Input-Multiple-Output (MIMO) system and
the Voltage Source Inverters (VSI) connected as control actuators, distributed controllers
have been proposed to independently achieve active power sharing, reactive power sharing,
frequency restoration, or voltage regulation around nominal values. Here we address these issues
simultaneously in generic single phase mesh-micro-grids with arbitrary non-linear loads, in order
to derive formal conditions that can be used to check if a given controller allows to reach all four
mentioned control objectives. The paper is complemented with a simulation example where the
main characteristics of the proposed methodology can be seen.
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1. INTRODUCTION

At the secondary level of the hierarchical control scheme
typically used for microgrids, see for example (Guerrero
et al., 2013; Palizban and Kauhaniemi, 2015; Bidram and
Davoudi, 2012), several control objectives are proposed.
For three phase AC microgrids, active and reactive power
sharing (Han et al., 2016) are the most relevant, and
several publication deal with the topic independently for
the active and reactive cases, e.g (Schiffer et al., 2014; Lu
and Chu, 2015; Parada Contzen and Raisch, 2016).
In order to achieve power sharing, the frequency and volt-
age amplitude of the controlled voltage source inverters
(VSI) need to be modified from its nominal value. There-
fore, nominal frequency restoration and voltage regulation
strategies are also considered as secondary level control
objectives. Some publications that deal with this aspects
are (Parada Contzen, 2019; Guo et al., 2015; Simpson-
Porco et al., 2013, 2015). More recently, these secondary
control issues have been addressed by books as (Zambroni
de Souza and Castilla, 2019; Guo et al., 2018).
Based on the quoted publications, in this paper we focus
on single phase AC microgrids and the simultaneous
achievement of the four described secondary level control
objectives. Exploding the similarities between single- and
three-phase power models, in the following Section we
propose a linearized model of the microgrid, valid when
it is desired to operate around a nominal point given by
RMS voltage and frequency. Based on this model, Section
3 formally define the four control objectives and propose
a distributed control strategy, whose performance can be
easily evaluated through standard control theoretical tools
and demand little communication requirements. As far as

the author knows, a formal stability analysis including
all four control objectives simultaneously has not been
addressed before, and the proposed procedure is general
enough to admit several variations on models or control
objectives. Finally, Section 4 illustrates the closed loop
analysis with help of a simulation example.
Through this paper, matrix AAA′ is the transpose of AAA.
The identity matrix and the null matrix are respectively
denoted by III and 000. A column vector of ones is denoted
as 111, and a vector with zeros in every position except in
the i-th row where its value is one, is denoted as sssi ∈ RN
so that

∑N
i=1 sssi = 111. If necessary, the dimensions of these

matrices will be stated as an index. An element in position
(i, j) of a matrix AAA is denoted [AAA]ij .

2. MICROGRID MODEL

2.1 Model and control of a voltage source inverter (VSI)

The model proposed in this section is based on the internal
control strategies described in, e.g., Peças Lopes et al.
(2006); Rocabert et al. (2012); Schiffer et al. (2016). As one
can consider that a multi-phase power electronic devices
is a collection of single-phase circuits, the models in this
section are fundamentally the same as the three-phase
models that can be found in Parada Contzen (2019);
Parada Contzen and Raisch (2016) and the references
within.
The single-phase voltage output of a Voltage Source In-
verter (VSI) can be described by its amplitude Vi(t) =
V (1 + νi(t)) > 0 and its electric angle ψi(t) := ωt+ δi(t),
where νi(t) ∈ R is the deviation in per unit of the RMS
value V ∈ R, ω = 2πf > 0 is a constant nominal angular
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frequency, with f > 0 the nominal frequency in Hertz,
and δi(t) ∈ R is the phase shift angle with respect to
a fixed arbitrary reference. The variation of the voltage
amplitude around its nominal value is normed according
to local and regional regulations with a realistic bound
|νi(t)| < 5.0%� 1.
The intern dynamics of the inverters can be considered
very fast, and therefore they are typically neglected. In
this case, the input/output relationships for the operation
(angular) frequency ωo,i := ψ̇i(t) and the voltage am-
plitude Vi(t) at node i ∈ V, considering internal control
loops, switching modulation and appropriate filtering, can
be modeled as in (Schiffer et al., 2014, 2016, etc.) with the
following equations:

ψ̇i(t) = dψi(t),
Vi(t) = dVi(t),

(1)

where dψi(t) ∈ R and dVi(t) ∈ R are, respectively,
the frequency and amplitude control inputs. This model
assumes that each inverter is equipped with some DC
storage unit, large enough to increase and decrease the
AC power output in a certain range.
When the inverter is operated around the nominal fre-
quency ω and RMS value V , the inputs can be modified
as dψi(t) = ω + κuψi (t) and dVi(t) = V (1 + uVi (t)), where
uψi (t) and uVi (t) are inputs that control small variations of
the original signals around the nominal values. The term
κ > 0 is a constant thought to limit the magnitude of the
frequency input after feedback.
With this, the intern dynamics of inverter i in (1) can be
written as:

δ̇i(t) = κuψi (t),
νi(t) = uVi (t).

(2)

Additionally, we are interested on the frequency deviation
with respect to nominal frequency υi(t) := ψ̇i(t) − ω =
δ̇i(t). Deriving equation (2), we can model the dynamics
of the frequency deviation by the following expression

υ̇i(t) = κu̇i(t). (3)
We assume that υi(t) cannot be directly measured and
used for feedback.
From here, a the set of inverters can be characterized as
a network of agents with two control inputs described by
the following compact equations:

υυυ := δ̇δδ = κuuuψ,
ννν := uuuV ,

(4)

where δδδ = col {δi(t)}i∈V , ννν = col {νi(t)}i∈V , uuuV :=
col
{
uVi (t)

}
i∈V , and uuu

ψ := col
{
uψi (t)

}
i∈V

. Note that υ̇υυ =
κu̇uu and the mean value of the amplitude deviation is given
by ν̄ = 1

N 111′ννν.

2.2 Circuital model of the grid

An electric grid can be described as an undirected graph
C = (V, E), where the vertices are a collection of N
electric nodes i ∈ V where the single-phase generation
units studied in Subsection 2.1 are connected. These
sources can be considered control actuators for the electric
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Fig. 1. Voltage and current at node i ∈ V of a Single phase
AC microgrid with Ni = {j, ..., k, ..., l}.

transmission process. The undirected edges of the graph
are transmission lines between the nodes, denoted (i, j) ∈
E . Any passive circuit can be equivalently represented
by this structure through a Kron reduction procedure
as described in (Dörfler and Bullo, 2013; Grainger and
Stevenson, 1994).
At every active node i ∈ V, we will consider a load
described by an arbitrary time variant sinusoidal current
source. A transmission line (i, j) ∈ E between nodes i
and j 6= i will be assumed as an impedance composed
by a resistance Rij in series with an inductance Lij . It is
assumed that these line parameters are constant and can
be estimated with reasonable accuracy.
Consider the circuit depicted in Figure 1, where the i-th
node is shown. The voltage induced by the voltage source
can be denoted as vi(t) =

√
2Vi(t) sin(ψi(t)), ∀i ∈ V.

The load is described by a current source consuming a
sinusoidal current ii0(t) and the resulting current injected
by the source is denoted as ii(t). An expression for this
current can be obtained from a circuital analysis of the
grid. From here, when ψi(t) = ωt + δi(t), neglecting the
transient behavior of the line dynamics, the active and
reactive power injected by each source can be modeled
by expressions that, for all generation units i ∈ V, are
quadratic in the voltage RMS value, Vi(t), and trigono-
metric in the phase angle, δi(t), with respect to a fixed
reference. For simplicity, from here on we will drop the
explicit time dependence of the variables.
When the voltage amplitudes are bounded around its
nominal value, i.e. when Vi(t) = V (1 + νi(t)) ≈ V ⇐⇒
νi(t) ≈ 0, and the phase angles of the different voltages are
small, i.e. δi(t) ≈ δj(t) ⇐⇒ θij(t) := δi(t) − δj(t) ≈ 0,
then a linearized model can be stated around the described
operation point. Indeed, defining

Pij = Rij
R2
ij + ω2L2

ij

V 2, Qij = ωLij
R2
ij + ω2L2

ij

V 2,

the expressions for active and reactive power can be
simplified by a Taylor linearization in the following way:
Pi(t) = Pi0 +

∑
j∈Ni

Pij(1 + νi)2

−
∑
j∈Ni

Pij(1 + νi)(1 + νj) cos(θij)

+
∑
j∈Ni

Qij(1 + νi)(1 + νj) sin(θij)

≈ Pi0 +
∑
j∈Ni

Pij(νi − νj) +
∑
j∈Ni

Qijθij .
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Qi(t) = Qi0 +
∑
j∈Ni

Qij(1 + νi)2

−
∑
j∈Ni

Qij(1 + νi)(1 + νj) cos(θij)

−
∑
j∈Ni

Pij(1 + νi)(1 + νj) sin(θij)

≈ Qi0 +
∑
j∈Ni

Qij(νi − νj)−
∑
j∈Ni

Pijθij .

This approximation can be generalized to all nodes i ∈ V
of the microgrid as in the following equation:[

ppp
qqq

]
=
[
ppp0
qqq0

]
+
[
CCCQ CCCP
−CCCP CCCQ

] [
δδδ
ννν

]
, (5)

where the power injected by at the nodes is given by
ppp = col {Pi(t)}i∈V and qqq = col {Qi(t)}i∈V , the power
consumed by the loads is given by ppp0 = col {Pi0(t)}i∈V
and qqq0 = col {Qi0(t)}i∈V , and the matrices that describe
the distribution circuit are such that

[CCCQ]ij =


∑
k∈Ni

Qik , if i = j

−Qij , if i 6= j ∈ Ni
0 , in other case

and

[CCCP ]ij =


∑
k∈Ni

Pik , if i = j

−Pij , if i 6= j ∈ Ni
0 , in other case

Note that with these definitions, matrices CCCp = L̂(Cp)
and CCCq = L̂(Cq) coincide with the Laplacian matrices of
weighted graphs with the same edges that the microgrid
and weights given by respectively Pij and Qij .
Equation (5) represents a linearized model of the grid. For
a discussion on the influence of the non-linearities see,
for example, Parada Contzen (2019), where very similar
models are used separately for the case of active power
in three-phase grids. Note however, that any Lyapunov
stability related condition obtained from approximation
(5) is a necessary condition for global stability of the non-
linear model.
In the quoted publications, when active and reactive power
are studied independently, the model used is a special case
of (5) that considers either ννν = 000 for active power or δδδ = 000
for reactive power. Therefore, matrix CCCP is not presented
in the models already analyzed. Here, however, this matrix
describe the crossed influence of the independent variables
δδδ and ννν over reactive and active powers.
Instead of dealing directly with the injected powers at node
i ∈ V measured in [kW ] or [kV A], it is usual to treat power
as a dimensionless quantity P̄i = Pi/χi or Q̄i = Qi/χi
measured in per unit [p.u.]. That is, relative to a base
quantity χi > 0. A practical choice of the proportional
constants would be the nominal power rating Si of the
respective generation unit. Also, different bases could be
considered for Active and Reactive power, although we use
the same one for simplicity. By defining FFF = diag {χi}i∈V ,
we can define p̄pp = FFFppp and q̄qq = FFFqqq. It is also useful to
define the per unit change rate of the loads as w̄wwp = ˙̄ppp and
w̄wwq = ˙̄qqq.

3. CLOSED LOOP ANALYSIS

3.1 Control Objectives

We are interested in four different control objective. First,
Active and Reactive power sharing can be treated as con-
sensus problems like in the quoted publications. Beside
these two objectives, we are also interested in synchro-
nization of the grid at nominal frequency and voltage
amplitude regulation, i.e. in limiting the deviation of the
amplitudes with respect to the nominal value.
For power sharing, we will define the following linear
transformation:

TTT = D′(T o) = [111N−1 −IIIN−1] ,
where T o = (V, E) is a directed tree with |E| = N − 1
edges that go from every node j 6= 1 to the first node.
Any other strictly directed tree can be used as in Parada
Contzen (2017), but we restrict the analysis to this one for
simplicity. With help of this transformation we can define
error vectors,

eeep := TTTp̄pp = TTTFFFppp ∈ RN−1

eeeq := TTTq̄qq = TTTFFFqqq ∈ RN−1,
that describes the per unit difference between the power
injected at the first node with the power injected in all
the other nodes. Note that the error vectors are a reduc-
tion of order and therefore there is no inverse function
between the normalized powers and their respective errors.
However, the following relationship can be stated when
considering the properties of the transformation TTT and its
pseudo-inverse TTT+ = TTT ′(TTTTTT ′)−1:

eeep = TTTp̄pp ⇐⇒ p̄pp = TTT+eeep + 1
N

111111′p̄pp

eeeq = TTTq̄qq ⇐⇒ q̄qq = TTT+eeeq + 1
N

111111′q̄qq.

From here, Active Power Sharing can be defined for every
i 6= j ∈ V as

lim
t→+∞

Pi/χi = lim
t→+∞

Pj/χj ⇐⇒ lim
t→+∞

eeep = 000,

and Reactive Power Sharing as
lim

t→+∞
Qi/χi = lim

t→+∞
Qj/χj ⇐⇒ lim

t→+∞
eeeq = 000.

That is, power sharing is a consensus problem on the
elements of the vectors p̄pp and q̄qq. This is equivalent to a
Lyapunov stability problem of the error vectors eeep and eeeq
as shown in Parada Contzen (2017).
The typical approach to achieve active power sharing is
to feedback, through a droop controller or a distributed
consensus algorithm, the per unit active power injected by
the inverters, in order to modify the operation frequency
of the grid. The idea is to temporary delay some voltages
to modify the electric angle between them and in that way
regulate active power. However, the traditional approach
implies that the frequencies at each node vary from its
nominal value in stationary state.
Similarly, to achieve reactive power sharing, the feedback
of per unit reactive power measurements is done over
the amplitude inputs of the inverters, resulting in small
variations of the RMS values around the nominal power.
Therefore, the synchronization and voltage regulation ad-
ditional objectives must be considered.
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For synchronization, we are interested in the operation
frequency of the different inverters connected to the grid
to be identical to the nominal value. That is, ∀i ∈ V,
Synchronization is defined as

lim
t→+∞

ωo,i = ω ⇐⇒ lim
t→+∞

υi = δ̇i = 0 ⇐⇒ lim
t→+∞

υυυ = 000.

This is more restrictive than a simple consensus problem,
because we are not interested only in obtaining equal
operation frequencies, but we force these frequencies to
be equal to the nominal value.
In the case of voltage regulation, the control objective
follows a slightly different approach. In opposition to
the frequency modification, because the deviation of the
voltage amplitudes around the nominal value is necessary
for power sharing, we cannot enforce these variations to
be zero. However, we can still ask that the mean value of
all these deviations is zero so that, in average, all nodes of
the grid work at the nominal value. Therefore, we define
Voltage Regulation through the following expression:

lim
t→+∞

ν̄ = 0 ⇐⇒ lim
t→+∞

1
N

111′ννν = 0.

3.2 Proposed Controllers

Based on the control strategies proposed in the already
quoted publications, we will consider the controller de-
picted in Figure 2, which can be described by the following
equations:

uuuψ(t) = LLLppp̄pp(t) +LLLpqq̄qq(t) +KKKpp

∫ t

0
uuuψ(τ)dτ (6)

uuuV (t) =
∫ t

0

(
LLLpqp̄pp(τ) +LLLqqq̄qq(τ) +KKKqquuu

V (τ)
)
dτ (7)

The upper branch in the figure is a primary active power
sharing controller that modifies the frequency input dddψ =
ω111 + uuuψ of the inverters, by an active power feedback
through matrix LLLpp = −lppIII − L̂(Gpp) ∈ RN×N , where
lpp ≥ 0 is the droop constant and L̂(Gpp) is the Laplacian
matrix of a weighted undirected graph Gpp over the set of
vertexes V that compose the microgrid. We also consider
a reactive power feedback characterized by matrix LLLqp =
−lqpIII − L̂(Gqp) ∈ RN×N , with lqp ≥ 0 and Gqp another
weighted graph over the vertexes of the microgrid. An
integral secondary controller characterized by KKKpp =
111kkk′pp ∈ RN×N , with kkkpp ∈ RN , is considered to achieve
synchronization.
The lower branch of the controller is associated to the
reactive power sharing objective and modify the amplitude
input of the inverters dddV = V (111 + uuuV ). An integral
consensus based power feedback is considered to achieve
this objective with LLLqq = L̂(Gqq) ∈ RN×N and LLLpq =
L̂(Gpq), where Gqq and Gpq are weighted undirected graphs
over V. A secondary controller characterized by KKKqq =
kkkqq

1
N 111′, with kkkqq ∈ RN is also used to achieve voltage

regulation.
In the setup from the quoted publications, LLLpq = LLLqp =
000 because active and reactive power are treated as if
they were decoupled. Here we add these matrices in
order to have more freedom for tunning the controller to

+

+

LLLpp

LLLqq

LLLpq

LLLqp

p̄pp

q̄qq

κ
uuuψ

V
uuuV

1
s

KKKpp

1
s

KKKqq

+

ω111

dddψ

+

V 111

dddV

Fig. 2. Control strategy diagram.
compensate the effect of matrix CCCp in model (5). Note
that one could further generalize this control strategy
by including secondary crossed feedbacks with matrices
KKKqp 6= 000 and KKKpq 6= 000 of proper dimensions to force the
control input uuuψ to depend dynamically on uuuV and vice
versa.
Note that the graphs Gpp, Gpq, Gqp, and Gqq might eventu-
ally have different sets of edges. However, it is reasonable
to define the edges of all graphs identically in order to
avoid unnecessary communication efforts. Indeed, if we
aim to keep these graphs connected, what is not strictly
necessary for the active power branch, we could define the
weights of the graphs over a star-tree centered on the i-th
node in such a way that only N − 1 communication links
are needed, between the center node and all the others.
Additional edges would imply also additional communica-
tion links between inverters that are not connected to the
i-th node. Furthermore, if the secondary gains are chosen
in such a way that kkkpp = kppsssi and kkkqq = kqqsssi, with
kpp ∈ R and kqq ∈ R, we also restrict the exchange of
signals only between the i-th node and the others keeping
the needed communication links to a minimum.

3.3 Dynamic behavior of closed loop system

We are interested in finding a dynamical model of the form
ẋxx = AAAxxx+BBBwww, where xxx =

[
eee′p, eee′q, υυυ′, ν̄

]
,www =

[
w̄ww′p, w̄ww′q

]′,
and matrices AAA ∈ R(3N−1)×(3N−1) and BBB ∈ R(3N−1)×(2N)

depending on the parameters of the transmission circuit
(5) and the described controller.
Note that from the inverse relationships between the errors
and the normalized powers we have that

CCCqLLLppp̄pp = CCCq(−lppIII − L̂(Gpp))(TTT+eeep + 1
N

111111′p̄pp)

= CCCqLLLppTTT
+eeep.

Similarly, CCCqLLLqpq̄qq = CCCqLLLqpTTT
+eeeq. For the reactive power

branch,LLLqqq̄qq = LLLqq(TTT+eeeq+ 1
N 111111′q̄qq) = LLLqqTTT

+eeeq andLLLpqp̄pp =
LLLpqTTT

+eeep. These expressions can be used to simplify the
dynamical equations discussed in the sequel.
For the errors, taking the derivative of model (5), we can
write that[

ėeep
ėeeq

]
=
[
TTTFFFCCCQ TTTFFFCCCP
−TTTFFFCCCP TTTFFFCCCQ

] [
δ̇δδ
ν̇νν

]
+
[
TTT 000
000 TTT

] [
w̄wwp
w̄wwq

]
.
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From equation (6) and (4), we have that

δ̇δδ = κ

(
LLLppp̄pp(t) +LLLpqq̄qq(t) +KKKpp

∫ t

0
uuuψ(τ)dτ

)
Which can be replaced in the expression for the deriva-
tive of the errors. Using the inverse relationship between
the errors and the powers, and additionally noting that
CCCpKKKpp = CCCqKKKpp = 000, the part of the derivative of the
errors that depends on δ̇δδ can be expressed in terms of the
errors only.
For the derivative of the voltage deviations we can derive
equation (7) to write, using (4), that

ν̇νν = LLLpqTTT
+eeep +LLLqqTTT

+eeeq + kkkqq
1
N

111′ννν.

Which also depend on the errors and can be replaced in the
expressions for the derivative of the errors. As ν̄ = 1

N 111′ννν
and 111′LLLpq = 111′LLLqq = 000, we obtain immediately from the
previous expression that ˙̄ν = 1

N 111′kkkqq ν̄. Note that this does
not depend on the load or its rate change and that if the
control gain were zero, then the mean value of the voltages
deviations would remain constant at its initial condition.
Similarly, deriving equation (6) we can obtain an expres-
sion for the frequency deviation derivative, υ̇υυ, in terms of
the elements of vector xxx. By combining these dynamical
expressions with (4), and the inverse relationship between
the powers and their respective errors, we can finally write
that

d

dt

eeepeeeqυυυ
ν̄

 =

AAA11 AAA12 000 AAA14
AAA21 AAA22 000 AAA24
AAA31 AAA32 AAA33 AAA24
000 000 000 AAA44


eeepeeeqυυυ
ν̄

+

 TTT 000
000 TTT
BBB31 BBB32

000 000

[w̄wwpw̄wwq
]
,

where
AAA11 = TTTFFF (κCCCqLLLpp +CCCpLLLpq)TTT+,
AAA12 = TTTFFF (κCCCqLLLqp +CCCpLLLqq)TTT+,
AAA14 = TTTFFFCCCpkkkqq,
AAA21 = TTTFFF (−κCCCpLLLpp +CCCqLLLpq)TTT+,
AAA22 = TTTFFF (−κCCCpLLLqp +CCCqLLLqq)TTT+,
AAA24 = TTTFFFCCCqkkkqq,
AAA31 = κ (LLLppFFFCCCp +LLLqpFFFCCCq)LLLpqTTT+,
AAA32 = κ (LLLppFFFCCCp +LLLqpFFFCCCq)LLLqqTTT+,
AAA33 = κ (LLLppFFFCCCq −LLLqpFFFCCCp) + 111kkk′pp,
AAA34 = κ (LLLppFFFCCCp +LLLqpFFFCCCq)kkkqq,

AAA44 = 1
N 111′kkkqq, BBB31 = κLLLpp, and BBB32 = κLLLqp.

Note that this closed loop model is not linear with respect
to the parameters in matrices LLLpp, LLLpq, LLLqp, and LLLqq.
Also, there are several entries that are identically zero.
This gives space to define more complex control strategies,
for example considering secondary crossed feedback as
discussed before.
The dynamic behavior of vector xxx is not affected directly
by the load, but by its change rate, meaning that the con-
trol objectives can be achieved for any constant load level,
i.e. when w̄wwp = w̄wwq = 000, if matrix AAA ∈ R(3N−1)×(3N−1) is
Hurwitz. Robustness analysis, for example through H∞- or
H2-norms, can also be done to characterize the influence
of the change rate of the loads into any of the control
objectives.

Table 1. Lines Nominal Parameters.
i j Rij [Ω] Lij [mH]
1 2 0.5000 1.1000
1 4 0.9000 1.4000
2 3 0.1000 0.7600
3 4 0.1000 1.5000

P
i0
[p
.u
.]

0

0.5

1

time [s]0 5 10 15

Q
i0
[p
.u
.]

0

0.1

0.2

0.3

0.4

node 1 node 2 node 3 node 4

Fig. 3. Load active and reactive powers in per unit, p̄pp0 and
q̄qq0.

4. NUMERIC EXAMPLE

Consider a microgrid with N = 4 nodes, nominal fre-
quency f = 50[Hz], nominal amplitude V = 220[VRMS ],
and with line parameters described in Table 1. The nom-
inal rating powers, which are also used as per unit bases,
are S1 = S2 = 600[V A], S3 = 300[V A], and S4 = 500[V A]
for the respective nodes. The load, non-passive and in per
unit, is changing arbitrarily according to the graphs shown
in Figure 3.
With κ = 0.01, we will consider primary control matrices
derived from the Laplacian matrix of an undirected star
graph G = (V, {(1, 2), (1, 3), (1, 4)}) centered in the first
node. With arbitrary droop gains and edges weights, with

L̂(G) =

 3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

 ,

we choose
LLLpp = −3.00III − 0.05L̂(G), LLLqq = −0.03L̂(G)
LLLqp = −0.10III − 0.05L̂(G), LLLpq = −0.02L̂(G).

Again arbitrarily, for the secondary gains we define,
kkkpp = −175sss1, kkkqq = −340sss1.

With these matrices, we have that the eigenvalues of
matrix AAA are all real and negative, eig {AAA} ∈ [−175, −
12.3708]. That is, the closed loop microgrid should reach
all four control objectives simultaneously. This can be seen
in Figure 4, where the per unit injected powers are shown,
and Figure 5, where the frequency input and the voltage
amplitude deviations are shown.
Note that, as the load is not constant, power sharing
and synchronization are not reached instantaneously at
every moment. However, the transient behavior of the grid
present little differences with the desired situation.
We can characterize the transient behavior of the grid
through the corresponding H∞-norms of the transfer func-
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Fig. 5. Frequency input deviation υυυ (with detail), and
voltage amplitude deviation ννν.

tions between the change rate of the load powers, w̄ww =
[w̄ww′p, w̄ww′q]′, to the active power error, the reactive power er-
ror, and the frequency deviation, respectively, in this case,
‖Hwww,eeep

‖∞ = 0.0764, ‖Hwww,eeeq
‖∞ = 0.0553, and ‖Hwww,υυυ‖∞ =

0.0023. As these values are smaller than one, we have that
the chosen control strategy attenuates the effect of the load
changes on the variables of interest but this effect does not
disappear.

5. CONCLUSION

In this paper we dealt with the secondary control of a
single phase microgrid considering four control objectives:
active and reactive power sharing, frequency restoration,
and voltage regulation. The closed loop analysis is per-
formed through a linearized model of the microgrid, where
the inverters play the role of control actuators and are
controlled in such a way that the four control objectives
can be simultaneously reached. The main characteristics
of this control strategy are shown within a simulation
example.
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