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Abstract: In this paper we deal with model-based control design in the presence of uncertainties. We use
Stochastic Dynamic Programming to solve two problems, called longitudinal and lateral vehicle control.
The goal is to allow safe driving (navigation) of a moving vehicle in an environment with static obstacles.
We show how to define the optimization problems given the stochastic driver behavior and environment.
The vehicle dynamics model is deterministic (obeys physical laws) and is explicitly integrated into the
optimization problem. In terms of results, the numerically computed control policies provide best-on-
average performance (according to the expected value operator). In simulation, it is shown that the
vehicle effectively avoids obstacles, thus ensuring a safe drive experience.
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1. INTRODUCTION

From a practical point of view, this work is about converting
an off-the-shelf powered wheelchair into a semi-autonomous
vehicle. The goal is to ensure a safe drive for users in an
environment with obstacles. To address this safety concern, a
supervisory control is designed that can assist driver decisions.
This will correct potentially dangerous requests, by taking
into account information coming from cheap ultrasonic sensors
mounted to the sides of the vehicle. Environment awareness is
the key to a safe drive.

A survey of task-oriented approaches to control dynamical
systems like the powered wheelchairs – see Simpson (2005);
Abbink et al. (2018), shows that the driving experience is not a
deterministic process. For this reason, we think that integrating
the uncertainty (stochastic behavior) might be the key to im-
proved control. After careful selection of the control design, we
decided to implement Stochastic Dynamic Programming (SDP)
– see Bertsekas (2005). This seems to be the most suited to
handle our inventory problem: it consists of an optimization
problem that can be solved offline. The outcome is a lookup
table that can easily be implemented online, on the actual vehi-
cle.

Literature review in assistive technologies: Stochastic dy-
namic programming (SDP) has been widely used in robot nav-
igation with uncertainties. In the area of assistive technologies,
SDP has been applied to solve the navigation problem for
shared controlled wheelchairs in a number of studies: Ghorbel
et al. (2018); Demeester et al. (2008). They modeled the collab-
orative control as Partially Observable Markov Decision Pro-
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cess (POMDP) where the uncertainty (stochasticity) in user’s
intention and the environment are considered. Although some
similarities can be found, the control problem is formulated and
solved differently in our paper, in terms of following aspects:

(i) prediction of user’s intention: studies mentioned above
assume all users are goal driven. Consequently, they are
matched against a set of pre-defined clustered goals. How-
ever, no such assumption is required in our approach where
the user’s intention is modeled as a stochastic process. In this
work, we explicitly present a blind driver model and leave the
other types of models for future work.

(ii) wheelchair dynamics model: an accurate system model is
essential for providing useful information in solving such
stochastic problem. Different from most of the works that
neglect transitory dynamics (e.g. the relation between the
driver’s demanded velocity and the actual velocity), here we
model them explicitly. Thus, we avoid having to rely on
steady-state assumption.

(iii) online computation efficiency: the main drawback for
POMDP methods are the high online computational cost. Al-
though it has been largely improved in recent approximation
methods such as hindsight and despot – see Ye et al. (2017),
the best processing frequency is around 3 Hz. As for our
method, the optimization problem is solved entirely offline,
thus leveraging by at least a factor 10 the online decision
making. Consequently, due to the way optimization is being
handled, our method seems to be more suited for safe driving
in static (not dynamic) uncertain environments.

Other limitations of SDP in general, as well as their conse-
quences on our implementation, will be highlighted later on,
in section 3.

Literature review in automotive field: This work was largely
inspired by the SDP implementation of longitudinal vehicle
control of Lin et al. (2004). This involved theory and simu-
lations, and had not been evaluated on hardware according to
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Cook et al. (2006). Liu et al. (2018) mentioned that SDP had
been proposed earlier by Kolmanovsky et al. (2002).

In parallel, we are aware of the works in Chalmers University
Sweden, namely the articles by Rutquist (2002) (later on men-
tioned in his PhD thesis Rutquist (2017)) and Johannesson et al.
(2007).

All aforementioned articles illustrate applications of SDP to
specific types of vehicles (automotive field). In spite of small
differences (e.g., use case on various vehicle types, modeling
in terms of acceleration versus power, etc.), the methodology
is fundamentally the same. It is reused here, in our work, for
a substantially different type of vehicle and a more complex
control problem.

Assistive control using SDP: In this work we consider the
simultaneous control of the linear and angular velocities (v,ω)
of a powered wheelchair. To achieve this, we need models for
each of the four blocks depicted in Fig. 1.

Supervisory 
Control

(deterministic)

Wheelchair 
Dynamics

(deterministic)
Driver Intention

(stochastic)

Environment
(stochastic)

(𝒗,𝝎)

distance to obstacles

velocities

(𝒗𝐝, 𝝎𝐝)

position 

+

+

(𝒗𝐮, 𝝎𝐮)

(𝒗𝐫, 𝝎𝐫)

Fig. 1. Schematic overview of the stochastic framework.

This article is organized as follows. Section 2 is dedicated to
modeling three blocks of Fig. 1, namely Wheelchair dynamics,
Environment and Driver Intention. Then, we formulate two
separate control problems in section 3 called the longitudinal
control, where the aim is to control the variable v, and the
lateral control where the ω variable is controlled. Eventually,
they are joined together in order to allow safe driving. Finally,
simulations are presented in section 4 and the paper ends with
conclusions.

2. MODELING

In this work we consider the situation of a vehicle sitting and
advancing on flat ground (no slope inclination).

Driver Intention: The driver expresses their intention by
moving the joystick. The forward-backwards movement cor-
responds to a desired linear velocity vd, whereas the left-right
movement is interpreted as a desired angular velocity ωd. Fig. 2
shows the relationship between joystick raw data (vjoy,ωjoy) –
an ellipse, and the associated desired velocities (vd,ωd). All
(vd,ωd) pairs inside the blue shape of Fig. 2b are attainable
(reachable) by the actual velocities (v,ω): one can see (vd,ωd)
pairs as user-demanded references which will, in turn, be at-
tained after a while (i.e. after a short transient). The curve of
Fig. 2b can be experimentally identified, or calculated accord-
ing to the so-called profiles (pre-specified by the manufacturer
or custom-modified using dedicated software and hardware),
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Fig. 2. Boundary of the driver joystick raw data and associated
maximum velocities.

as we have done in Fig. 2. Note that both x-axes have been
reversed in Fig. 2 so that positive angular velocities are found
on the left-hand side of each figure. This is to overlap with
driver gestures and thus facilitate their intuitive interpretation.

Unlike wheelchair dynamics which obey physical laws (e.g.
gravity, inertia, electric current flow, etc.) and can be modeled
in a deterministic manner, the driver intention does not. Even in
situations where the driver is given specific rules (e.g. a path to
follow, avoid obstacles, etc.) there is still significant uncertainty
involved. For this reason, we choose a stochastic model for the
driver’s intention at next sampling time k:

vd,k+1 = wvd,k ; ωd,k+1 = wωd,k (1)

where (wvd,k ,wωd,k) are two independent random variables
within the boundaries of Fig. 2b. Without loss of generality for
the SDP methodology, we assume here an uniform distribution
for (wvd,k ,wωd,k). We call this the blind driver model, because it
acts irrespective of the presence of obstacles in the environment
(there is equal chance of hitting or not obstacles).

In practice, we expect temporal as well as state variables
dependency in the probability distribution. More complicated
driver models could be integrated in a future study.

Wheelchair dynamics: Wheelchair dynamics obey physical
laws which are well known. This allowed us to build a deter-
ministic physical model using Euler-Lagrange method – see our
previous work Teodorescu et al. (2019). We obtained:(

vk+1
ωk+1

)
= satΩv,ω

(
σ1vk +σ2(vd,k + vu,k)

σ3ωk +σ4(ωd,k +ωu,k)

)
(2)

where parameters σ1 to σ4 are given in Teodorescu et al.
(2019).Although dynamics of variables (vk,ωk) are uncoupled
(as can be seen from (2)), their maximum allowed values are
dependent on one another. For this reason, we preferred to use
vector notation in (2). The saturation ensures values (vk,ωk)
stay within (inside) the Ωv,ω -set, which corresponds to the blue
shape of Fig. 2b. Note that maximum demanded velocities
(vd,ωd)-set is exactly the same as the maximum attainable
(reachable) velocities (v,ω)-set, called Ωv,ω in (2). In practice,
there is a combination of a low-level velocity-feedback control
and a Safety block that cuts off electric current flowing to
motors that goes beyond certain values.

Coordinate frames and transformation. Notations. In this
article we use two coordinate frames. On the one hand, the base
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frame is attached to the moving vehicle. Its two perpendicular
axes are as follows: xb-axis points forward (in front of the
vehicle) and yb-axis points to the left-hand side of the vehicle.
Together, they form the base frame obxbyb and can be seen in
Fig. 3. On the other hand, the inertial frame o0x0y0 is fixed in
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Fig. 3. View from above: vehicle advancing in an environment
with uniformly-spaced obstacles.

the Cartesian space. By convention, we fix the inertial frame
with respect to the initial position of the wheelchair (namely,
when the vehicle is powered on): the origin o0 is situated at the
center of mass of the left drive wheel; x0-axis and y0-axis are
parallel to xb-axis and yb-axis, respectively, the initial time t0.
This can be easily visualized later on, in section 4, Fig. 10.

In order to familiarize our reader with notations used in this pa-
per (consistent with Spong et al. (2005)), we find it instructive
to indicate the transformation of coordinates between the two
aforementioned frames. Given a fixed obstacle in the inertial
frame of coordinates (x0

o,y
0
o) it can be expressed in coordinates

of the moving base frame (xb
o,k,y

b
o,k) as:(

x0
o

y0
o

)
= R0

o,k

(
xb

o,k
yb

o,k

)
+o0

b,k, with R0
o,k =

(
cosϕk −sinϕk
sinϕk cosϕk

)
and o0

b,k =

(
x0

ob,k

y0
ob,k

)
. Subscripts “o”, “ob” stand for the obstacle

and the origin of the base frame, respectively; superscripts “0”,
“b” indicate the inertial and the base frames, respectively. ϕk is
the vehicle’s angular displacement (its time-derivative is equal
to the vehicle’s angular velocity ωk from (2)).

Environment: The vehicle is surrounded by obstacles, as can
be seen in Fig 3. Below, we model the dynamics of one obstacle
in coordinates of the base frame:

(
xb

o,k+1
yb

o,k+1

)
= satΩb


(xb

o,k−∆t vk)cos(∆tωk)

+yb
o,k sin(∆tωk)

−(xb
o,k−∆t vk)sin(∆tωk)

+yb
o,k cos(∆tωk)

 (3)

where ∆t is given also in Teodorescu et al. (2019). The sat-
uration involved in (3) is artificial, since the vehicle is not
moving in any confined environment. However, it is necessary
for SDP implementation, where all state variables need to stay

on a finite grid. Consequently, the Cartesian space around the
vehicle is bounded by a sufficiently large Ωb-set which can have
an arbitrary shape (a circle or square etc.). In particular, in this
work we will set the boundaries of Ωb to be consistent with the
maximum custom range of the ultrasonic sensors (in the order
of a few meters).

3. SUPERVISORY CONTROL

This section is entirely dedicated to the control block from
Fig. 1. We start by recalling the Stochastic Dynamic Program-
ming (in general), then formulate two optimization problems
for safely driving the vehicle. In agreement with the termi-
nology in automotive field, the longitudinal control problem
involves optimally avoiding to crash into an obstacle situated
in front of the vehicle; the lateral control problem consists in
optimally steering away from an obstacle situated to one side
of the vehicle. In robotics, these two problems are known as the
translational and rotational control problems, respectively.

Stochastic Dynamic Programming: This method allows to
solve an optimization problem (see Bertsekas (2005)):

min
u0,..,uN−1

A
E

w0,..,wN−1

{
N−1

∑
k=0

gk(xk,uk,wk)+gN(xN)

}
(4)

such that equality constraints xk+1 = f (xk,uk,wk) and inequal-
ity constraints are fulfilled. Standard notations have been used
here: xk is the vector of state variables; u0, ..,uN−1 are each
vectors of the control variables at different sampling time in-
stants k = 0, ..,N− 1; the uncertainty variables are the vectors
w0, ..,wN−1; f (·) is a function governing the dynamics of the
system; N is the time horizon.

In general, the solution of (4) cannot be calculated (pursued)
analytically. Instead, it is computed numerically by first placing
each variable on a finite grid:

xk ∈ {x1,x2, ..,xNx}; uk ∈ {u1,u2, ..,uNu}
wk ∈ {w1,w2, ..,wNw}

(5)

with Nx, Nu, Nw the total number of points on the state vec-
tors grid, the control actions grid and the uncertainties grid,
respectively. The superscript indicates the index of the state.
Then, apply Bellman’s principle of optimality – see Bertsekas
(2005, §2): minimize the expected transition cost, which pro-
ceeds backwards in time k = N−1, ..,0 from iteration k+1 to
k:

Jk(xk) = min
uk∈Ωuk

A
E
wk
{gk(xk,uk,wk)+ Jk+1 (xk+1(xk,uk,wk))}

with initial condition JN(xN) = gN(xN), and gk(·) is the transi-
tion cost. This process is depicted on a simplified toy (dummy)
example in Fig. 4. To the right-hand side of k + 1 instant,
one can notice the optimal paths associated to the cost-to-go
Jk+1(xk+1). Between the time instants k + 1 and k the actual
minimization takes place using three control law candidates
u1, u2 and u3, and averaging the effect of two uncertainties w1

and w2. We have crossed out (using a red x) the two candidate
trajectories associated to u1 and u2 in order to symbolize the
fact that they are suboptimal; u3 is the optimum.

We end this general presentation of SDP by mentioning some
practical aspects. Firstly, the computation (extraction process)
of the optimal control laws takes significant amount of time
(see later on in this section) making it well suited for offline
computation. Second, it suffers from the well-known curse of
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Fig. 4. SDP algorithm proceeding backwards in time – figure
adapted from Bertsekas (2005, §2).

dimensionality (exponential increase of the required compu-
tation with each new state, control variable or uncertainty):
compact-sized problems are preferred over large ones. Third,
stationary control laws u0 = u1 = .. = uN−1 are interesting,
since they depend only on state variables vector (and thus are
independent of time), making them usable for online, real-time
implementation.

Longitudinal control: In this configuration we use state vari-
ables xk = (vk,vd,k,xb

o,k), uncertainty wk = wvd,k and control ac-
tion uk = vu,k. We make the assumptions that vehicle advances
only forward (vk ≥ 0) and does not rotate (ωk ≡ 0 and ωd,k ≡ 0);
consequently, yb

o,k is constant. This gives a total of three state
equations translating system dynamics (1)-(3). We formulate a
safe stop strategy by weighting in the continuous-time transi-
tion cost safety (the first term) and supervisory corrective action
(second term):

g(x(t),u(t),w(t)) =−ẋb
o(t)+β1(xb

o(t)) |vu(t)| (6)
The meaning becomes clear once we think of the cumulative
effect. The sum in (4) corresponds to an integrator in continuous
time, and

∫ tf
t0 ẋb

o(τ) = xb
o(tf)−xb

o(t0) is the total traveled distance
by the obstacle, between an initial instant t0 and a final one
tf. When the obstacle approaches the vehicle, this quantity is
negative, and when the obstacle moves away from the vehicle
this quantity is positive. In forward only driving, this quantity
can only be ≤ 0. This explains the minus sign in front of the
first term in (6). The second term in (6) represents a penalty
on control law deviations with respect to driver’s intention.
The weight function β1(·) is chosen to be a polynomial of
degree ≥ 2 in the variable xb

o,k translating a desired dominance
of the first term (safety concerns) when obstacles are very
near. Using (3) with assumption ωk ≡ 0, it is not a surprise

𝑡𝑘

𝑥𝑜,𝑘
𝑏

𝑡𝑘+1

𝑥𝑜,𝑘+1
𝑏 𝑥b𝑜b

Fig. 5. Relative motion of the obstacle (the red tree) with respect
to base frame.

that discretizing the first term of (6) gives ẋb
o,k ≈ (xb

o,k+1 −
xb

o,k)/∆t =−vk (see Fig. 5). This translates the fact that, in this
configuration, the linear velocity of the obstacle is exactly the
same as the wheelchair’s linear velocity, but with opposite sign.
the Consequently, the discrete-time transition cost is

gk(vk,vd,k,xb
o,k,vu,k) = σ1vk +σ2(vd,k + vu,k)

+β1(xb
o,k)
∣∣vu,k

∣∣
The inequality constraints of this optimization problem are as
follows. Control law candidates vu,k should be chosen so that
predicted velocity vk+1 as well as total required velocity vu,k +
vd,k should stay within the boundaries of Ωv≥0,ω=0 from (2) and
Fig. 2b. In particular, the latter condition will avoid the situation
when driver demands to move forward and the Supervisory
control responds by moving the wheelchair backwards, thus
contradicting driver’s expectation.

Lateral control: This problem is slightly more complex than
the previous one. It involves one more state variable, making
a total of four, xk = (ωk,ωd,k,xb

o,k,y
b
o,k) with associated state

equations (1)-(3). The uncertainty is wk = wωd,k and the control
variable is uk = ωu,k. The vehicle is allowed to rotate only. To
be more precise, we make the first assumption that the linear
velocity of the vehicle is positive but very small vk ∈ (0,ε)
with ε an arbitrarily small number. This makes dynamics of vk
negligible in (2), so we can disregard it, but also encourages us
to formulate an optimal safe turn strategy by taking into account
an obstacle of coordinates (xb

o,k,y
b
o,k) situated towards the front

of the vehicle. The second assumption is that this obstacle is
situated towards the left-hand side of the vehicle: consequently,
the vehicle should turn towards the right, heading away from
the danger.

𝑦b,𝑘
𝑦b,𝑘+1

𝑥b,𝑘
𝑥b,𝑘+1

𝑡𝑘

𝑡𝑘+1

𝑦b,𝑘
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𝜃𝑘+1(a) Relative obstacle motion
viewed with respect to two over-
lapped base frame instants
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(b) Absolute obstacle position
with respect to the fixed iner-
tial frame

Fig. 6. View from above: perception of the nearby obstacle (in
red) as the vehicle rotates.

As the vehicle turns in Cartesian space, the obstacle is perceived
as rotating with an angle θk around the vehicle, in a circular
motion. This is illustrated in Fig. 6. For safety reasons, we want
at the next iteration, θk+1 to be higher, thus heading away from
the obstacle. By subtracting the two quantities, we end up with
the optimization problem of minimizing θk+1− θk = ∆tωk+1.
Hence, the transition cost is chosen to be

gk(ωk,ωd,k,xb
o,k,y

b
o,k,ωu,k) = ∆t

(
σ3ωk +σ4(ωd,k +ωu,k)

)
+β1(db

o,k)
∣∣ωu,k

∣∣
where db

o,k = ||
(
xb

o,k yb
o,k
)
||2 is the distance to the obstacle.

Note the same tuning function β1(·) from section ”Longitudinal
control” was used here, ensuring trade-off between the two
terms. The second term acts as penalty to deviations with
respect to driver’s demands.

The inequality constrains are also very similar to section ”Lon-
gitudinal control”. Candidates control values ωu,k should be
chosen so that predicted velocity ωk+1 as well as total required
velocity ωu,k+ωd,k should stay within the boundaries of Ωv=0,ω
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from (2) and Fig. 2b. The first condition is imposed by feasibil-
ity concerns and the second is to avoid contradicting driver’s
expectation (when the driver demands to turn right, the Super-
visory Control will not yield an action making the wheelchair
rotate towards the left).

Joint longitudinal and lateral control: In order to achieve
simultaneous control over the (v,ω) variables, we propose to
combine together the two control laws. This is a straightforward
option allowing safe navigation in an environment with obsta-
cles. Although effective in practice, this solution does not take
into account coupling effects between the two (v,ω) variables.

As future work, we would like to draft a few elements of the
coupled (v,ω) problem. This new optimization problem would
have to deal with a dynamic system with 6 state variables xk =
(vk,vd,k,ωk,ωd,k,xb

o,k,y
b
o,k) and thus all 6 state equations (1)-(3),

two uncertainties wk = (vd,k,wωd,k) and two control variables
uk = (vu,k,ωu,k). This elegant multiple-input multiple-output
formulation will suffer from one major drawback: the well-
known curse of dimensionality mentioned in the Introduction,
making it very expensive in terms of offline computation power.

Computation time: One of the most important aspects (a key
point) when implementing the SDP algorithm is to use a grid
(5) that is sufficiently fine so that transitory dynamics is prop-
erly captured by the optimization problem and consequently
transitory effects can be observed in the resulting data. On a
modern workstation (Dell T320 with Intel CPU Xeon E5-2407
running at 2.4 GHz), the time to compute the numerical solution
of vu,k from section ”Longitudinal control” (a 3-state-variable
system), is in the order of a few days. To compare with, it takes
10 times more to compute ωu,k from section ”Lateral control” (a
4-state-variable system), namely in the order of a few weeks. A
6-state-variable system would require substantially more time
of non-stop operation to compute the solution (possibly in the
scale of years).

Sensors: To summarize the results of section 3, we now have
two control laws

vu,k(vk,vd,k,xb
o,k) and ωu,k(ωk,ωd,k,xb

o,k,y
b
o,k) (7)

in the form of lookup tables (matrices). This include (vk,ωk)
which are estimated from the custom-made drive wheel en-
coders, as well as (vd,k,ωd,k) given by the standard joystick.
On the other hand, there is no sensor capable of measuring
(xb

o,k,y
b
o,k). Instead, we have to rely on distance measurements

from the ultrasonic sensors, placed in an array all around the
vehicle. Each sensor has a theoretical beam width (coverage)
of 45◦and measures the distance db

o,k to the closest obstacle
within range. However, the exact location of the obstacle is
unknown: it can be anywhere on the the arc spanning from one
side of the beam to the other end (the entire 45◦range). Since
this information is not accessible through sensor measurements,
we propose to proceed to a reduction (folding) in the space of
variables: for each db

o,k we take the average value on the arc
mentioned above.

Finally, this allowed us to reexpress the control matrices from
(7) as vu,k(vk,vd,k,db

o,k) and ωωωu,k(ωk,ωd,k,db
o,k). Note that all

dependent state variables are now accessible via sensor mea-
surements. These control matrices will be tested in the next
section.

4. SIMULATIONS

The stochastic framework depicted in Fig 1 provides not only
the means to design control, but also to simulate the overall
behavior. Given a known probability distributions of the driver
intention, they can be used to simulate possible realizations. In

Region3

Region1

Region2

Fig. 7. View from above: wheelchair fitted with 3 ultrasonic
sensors, each covering a separate region.

Fig 8, the vehicle is fitted with 3 ultrasonic sensors mounted
under the footplate on the front, each sensor covering a sector
of 45◦. The longitudinal control will use the distance mea-
surement coming from the sensor covering region 1, while the
lateral control will use the other two sensors covering regions
2 and 3. In this section we will use two driver models: one
deterministic and the other one stochastic (the blind driver
model). The vehicle can advance only forward (not backwards)
and can rotate freely.

Now, we want to test the blind driver model. Fig 9 shows a ran-
dom sequence of uniformly distributed points within Ωvd,ωd . We

-101
d
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Fig. 8. Driver demand according to the blind driver model: a
realization with random occurrence points (in black) trans-
lating forward vehicle motion and free (unconstrained)
rotation.

simulated the outcome of these driver demand points (vd,ωd)
on the vehicle in Fig 10a. This trajectory is entirely arbitrary
and lasts 20 seconds. Notice a few obstacles were hit. As
expected, once we enable supervisory control in Fig 10 no
more obstacles were hit and the vehicle advances much more
cautiously (the total traveled distance is reduced).
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(a) Supervisory Control is disabled: 2 obstacles, numbered in chronological
order, were hit and run through.
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(b) Supervisory Control is enabled

Fig. 9. View from above: Vehicle’s trajectory issued by the blind
driver model, in an environment with obstacles. Initial,
starting position is where the driver is sitting (same for
both figures).

5. CONCLUSION

This paper presented a stochastic framework for control design
and simulation, based on Stochastic Dynamic Programming
(SDP). The supervisory control assists the driver of a vehicle (a
wheelchair) by correcting his actions, thus ensuring safe driv-
ing (navigation) in an environment with static obstacles. The
feasibility of the concept is assessed by running simulations.
They show the ability of the vehicle to safely navigate using a
combination of longitudinal and lateral control.

This methodology is quite modular, allowing subsequent up-
date of any of the four blocks of this stochastic framework: the
driver intention model, wheelchair dynamics, the environment
model, and the supervisory control. The major drawback of
SDP in general, and of our implementation in particular, is
the computation time. Therefore, as future work we intend to

implement a policy iteration algorithm, due to its property of
monotonic convergence towards the optimal solution.
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