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Abstract: This paper designs an interval observer for discrete linear periodic time-varying
descriptor (LPTVD) systems. First, the discrete LPTVD system is transformed into a linear
time-invariant (LTI) descriptor system by using a stacked form of periodic systems. Then, in
order to reduce complexity, we further transform the equivalent LTI descriptor system into a
minimal-order form. Finally, by using the obtained minimal-order implementation of the discrete
LPTVD system, an interval observer is designed to estimate the system state interval at each
step. At the end, an example is used to illustrate the effectiveness of the proposed results.
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1. INTRODUCTION

State estimation is an important topic in control theory
and applications, which plays a key role in controller de-
sign, fault diagnosis and so on. In order to handle robust
state estimation problems under effects of uncertainties
such as disturbances, parametric uncertainties and mea-
surement noises, two well-known types of observers can
be found in the literature, i.e., interval observers and set-
valued observers. Both observers are based on a classi-
cal assumption that uncertainties are bounded and their
bounds are known, which both have their own advantages
and disadvantages. Generally, the interval observers em-
ploy the lower and upper bounds of uncertainties to design
two point-wise observers to estimate the lower and upper
bounds of states, respectively Efimov et al. (2013a,b);
Gouzé et al. (2000); Mazenc and Bernard (2011), while
in a different way, the set-valued observers obtain robust
state estimations by propagating the sets of uncertainties
through a system model to generate state estimation sets
of actual system states Xu et al. (2014, 2019a,b).

This paper focuses on the design problem of interval ob-
servers. Actually, the design methods of interval observer-
s are widely investigated for different types of systems,
which are generally based on system positivity. Partic-
ularly, the key to design interval observers is to find a
coordinate transformation such that the dynamics of state
estimation error is transformed into a cooperative one and
then interval observers are designed. In the literature, the
design methods of interval observers were proposed for
linear time-invariant (LTI) systems (Mazenc and Bernard
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(2010, 2011) for continuous systems and Efimov et al.
(2013b); Wang et al. (2018) for discrete systems). In Räıssi
et al. (2012), the interval observers were designed for a
class of nonlinear system using partial exact linearizations.
In Krebs et al. (2016); Wang et al. (2015), the design
problems of interval observers for linear parameter varying
(LPV) systems were investigated. Thabet et al. (2014)
proposed a method to design the interval observer for
continuous linear time-varying (LTV) systems. In Efimov
et al. (2013a), the design method of interval observers for
discrete LTV systems was presented. However, the method
in Efimov et al. (2013a) only gave a way to design a con-
stant coordinate transformation to transform the discrete
time-varying system matrix into a nonnegative matrix,
which requires that the time-varying system matrix is
bounded and that the bound is sufficiently thin. Moreover,
under the notion of reducible discrete LTV systems, the
method was extended to design an interval observer for
periodic LTV systems. However, the reducible condition is
a limit to general periodic LTV systems.

In real situations, many physical systems can be modeled
as systems of differential and algebraic equations, which
are called descriptor systems, singular systems or differen-
tial algebraic equations. However, many descriptor systems
are nonlinear or time-varying. If using time-invariant lin-
earizations to simplify descriptor systems, we sometimes
result in incorrect approximations. Moreover, nonlinear
systems, if correctly linearized along a trajectory, naturally
result in linear time-varying descriptor systems. Within
the knowledge scope of the authors, the design of interval
observers for the discrete LPTVD systems is a relatively
open issue. Thus, we are motivated to design interval
observers for the discrete LPTVD systems for robust state
estimation of such systems in this paper.

This paper transforms the discrete LPTVD system into a
discrete LTI descriptor system by using a stacked form
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of periodic systems. Then, by using a series of system
equivalence transformations, the discrete LTI descriptor
system is transformed and decomposed into a minimal-
order realization composed of a discrete LTI dynamic
subsystem and a discrete static subsystem. Consequently,
an interval observer is designed for the discrete LPTVD
system based on the minimal-order implementation, which
has relatively low complexity and can be widely used for
robust state estimation of discrete LPTVD systems.

In the remaining part of this paper, Section II introduces
preliminary knowledge. The main results on the design of
interval observer for the LPTVD systems are presented
in Section III. Section IV uses a numerical example to
illustrate the proposed interval observer. The paper is
finally concluded in Section V.

2. PRELIMINARIES AND SYSTEM MODEL

2.1 Preliminaries

The compatible zero matrix is denoted as O, the n-
dimensional identity matrix is denoted as In and blockdiag{}
denotes the diagonal matrix full of block matrix elements.
The vector inequalities are understood element-wise.

Definition 1. For a matrixA, we defineA+
i,j = max(0, Ai,j),

where A+
i,j and Ai,j are the i-th row and j-th column ele-

ments of A+ and A, respectively. Moreover, corresponding
to the matrix A+, we further define A− = A+ −A.

Definition 2. A matrix A is called nonnegative if all its
elements are nonnegative.

Lemma 1. Given a non-autonomous discrete-time system

xk+1 = Axk + bk,

where A is nonnegative and bk ≥ 0. If the initial condition
x0 ≥ 0 is given, one always has xk ≥ 0 for all k > 0

Lemma 2. For a matrix A ∈ Rm×n and a vector x ∈ Rn
with x ≤ x ≤ x, one has

A+x−A−x ≤ Ax ≤ A+x−A−x. (1)

Lemma 3. For A ∈ Rn×n, R ∈ Rn×n and C ∈ Rp×n, if
there is a matrix L ∈ Rn×n such that A−LC and R have
the same eigenvalues, then there is a matrix S ∈ Rn×n
such that R = S(A − LC)S−1 provided that the pairs
(A−LC, e1) and (R, e2) are observable for some e1 ∈ R1×n

and e2 ∈ R1×n.

Lemma 3 is used to design a matrix S such that R = S(A−
LC)S−1 is nonnegative. The details on Lemma 3 could be
found in Efimov et al. (2013b) and Räıssi et al. (2012).

2.2 System Model

This paper considers the discrete LPTVD system

Gk+1xk+1 =Akxk +Bkuk + Ekνk, (2a)

yk =Ckxk + Fkηk, (2b)

where k denotes the k-th time instant, Gk+1 ∈ Rn×n, Ak ∈
Rn×n, Bk ∈ Rn×p, Ek ∈ Rn×r, Ck ∈ Rq×n and Fk ∈ Rq×s
are time-varying periodic parametric matrices of period
ω, xk ∈ Rn and yk ∈ Rq denote the state and output
vectors, uk ∈ Rp represents the control input vector,
νk ∈ Rr represents the unknown input vector (including

disturbances, modeling errors, etc.), and ηk ∈ Rs is the
measurement noise vector. In this paper, the system (2) is
called an ω-periodic descriptor system.

Assumption 1. wk and ηk are bounded by

W ={νk ∈ Rr : ν ≤ νk ≤ ν},
V ={ηk ∈ Rs : η ≤ ηk ≤ η},

respectively, where ν, ν, η and η are constant vectors.

3. INTERVAL OBSERVER FOR LPTVD SYSTEMS

3.1 Equivalence of ω-stacked Form

The periodic system (2) can be equivalently rewritten into
the following dynamics:

GR(λ)xk(h) =Axk(h) + Buk(h) + Eνk(h), (3a)

yk(h) =Cxk(h) +Duk(h) + Fηk(h), (3b)

with

R(λ) =

[
O I(ω−1)n

λI O

]
, (4a)

G = block diag{Gk+1, Gk+2, · · · , Gk+ω}, (4b)

A = block diag{Ak, Ak+1, · · · , Ak+ω−1}, (4c)

B = block diag{Bk, Bk+1, · · · , Bk+ω−1}, (4d)

C = block diag{Ck, Ck+1, · · · , Ck+ω−1}, (4e)

D = block diag{Dk, Dk+1, · · · , Dk+ω−1}, (4f)

E = block diag{Ek, Ek+1, · · · , Ek+ω−1}, (4g)

F = block diag{Fk, Fk+1, · · · , Fk+ω−1} (4h)

and

uk(h) =[uT (k + hω) uT (k + hω + 1) (5a)

· · ·uT (k + hω + ω − 1)]T , (5b)

xk(h) =[xT (k + hω) xT (k + hω + 1) (5c)

· · ·xT (k + hω + ω − 1)]T , (5d)

yk(h) =[yT (k + hω) yT (k + hω + 1) (5e)

· · · yT (k + hω + ω − 1)]T , (5f)

νk(h) =[νT (k + hω) νT (k + hω + 1) (5g)

· · · νT (k + hω + ω − 1)]T , (5h)

ηk(h) =[ηT (k + hω) ηT (k + hω + 1) (5i)

· · · ηT (k + hω + ω − 1)]T , (5j)

where h denotes the number of periods, and λ denotes the
one-step forward time operator in the variable h or the
ω-step forward time operator in the variable k. Since (2)
is periodic, G, A, B, C and D are constant, which implies
that the system (2) is transformed into an equivalent linear
time-invariant (LTI) descriptor system (3).

3.2 System Transformation

The method in Misra (1996) is used to transform the
system (3) into a time-invariant system. Thus, we further
rewrite the parametric matrix G in (3) into

G =

[
G11 O
O G22

]
, (6)

where G11 = block diag{Gk+1, Gk+2, · · · , Gk+ω−1} ∈
R(ω−1)n×(ω−1)n and G22 = Gk+ω. This implies that

GR(λ) =

[
O G11

λG22 O

]
. (7)
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By observing the structure of GR(λ) in (7), we could
transform GR(λ) into a block diagonal matrix by premul-
tiplying (3a) with a permutation matrix

P =


O · · · O In
In O O O
...

. . .
...

...
O · · · In O

 (8)

such that

PGR(λ) =block diag{λGk+ω, Gk+1, · · · , Gk+ω−1},

PA =


O · · · O Ak+ω−1

Ak O O O
...

. . .
...

...
O · · · Ak+ω−2 O

 ,

PB =


O · · · O Bk+ω−1

Bk O O O
...

. . .
...

...
O · · · Bk+ω−2 O

 ,

PE =


O · · · O Ek+ω−1

Ek O O O
...

. . .
...

...
O · · · Ek+ω−2 O

 . (9)

Thus, the system (3a) can be further transformed into a
new descriptor system:

λḠxk(h) =Āxk(h) + B̄uk(h) + Ēνk(h), (10)

where

Ḡ =


Gk+ω · · · O O
O O O O
...

. . .
...

...
O · · · O O

 , B̄ = PB, Ē = PE , (11)

Ā =


O · · · O Ak+ω−1

Ak −Gk+1 O O
...

. . .
...

...
O · · · Ak+ω−2 −Gk+ω−1

 . (12)

3.3 Minimal-Order System Implementation

In order to reduce (10) to obtain a minimal-order imple-
mentation for less complexity, we recall Fact 1.

Fact 1. (Misra and Patel (1989)). For a regular matrix
pencil λG − A, i.e., det(λG − A) 6≡ 0 where G ∈ Rn×n
and A ∈ Rn×n, it can always find two orthogonal matrices
U ∈ Rn×n and V ∈ Rn×n such that UTGV =

[
G11 G12

O O

]
and UTAV =

[
A11 A12

O A22

]
, where G11 ∈ Rl×l, G12 ∈ Rl×n−l,

A11 ∈ Rl×l, A12 ∈ Rl×n−l and A22 ∈ Rn−l×n−l.

Note that since the matrix pencil λG − A is assumed to
be regular, it is concluded that the submatrix A22 is a full
rank matrix, i.e., rank(A22) = n − l. Thus, under Fact 1,
we can find two orthogonal matrices Ū ∈ Rn×n, V̄ ∈ Rn×n
and a coordinate transformation

x̊k(h) = V̄−1xk(h)

to transform the system (10) into the following form:

λG̊x̊k(h) =Åx̊k(h) + B̊uk(h) + E̊νk(h), (13a)

yk(h) =C̊x̊k(h) +Duk(h) + Fηk(h), (13b)

where

G̊ =ŪT ḠV̄ =

[
G̊11 G̊12

O O

]
, B̊ = ŪT B̄ =

[
B̊1

B̊2

]
, (14a)

Å =ŪT ĀV̄ =

[
Å11 Å12

O Å22

]
, C̊ = CV̄ =

[
C̊1 C̊2

]
, (14b)

E̊ =ŪT Ē =

[
E̊1
E̊2

]
(14c)

with G̊11 ∈ Rl×l and Å11 ∈ Rl×l.

Corresponding to the system structure of (13) and (14),

we define x̊k(h) = [ x̊T
1,k(h) x̊T

2,k(h) ]
T

, where x̊1,k(h) ∈ Rl
and x̊2,k(h) ∈ Rnω−l. Thus, the system (13) can be
equivalently rewritten into

λG̊11x̊1,k(h) =Å11x̊1,k(h) + Å12x̊2,k(h)− λG̊12x̊2,k(h)

+ B̊1uk(h) + E̊1νk(h), (15a)

0 =Å22x̊2,k(h) + B̊2uk(h) + E̊2νk(h), (15b)

yk(h) =C̊1x̊1,k(h) + C̊2x̊2,k(h) +Duk(h)

+ Fηk(h). (15c)

Under Fact 1, Å22 is a full rank matrix, (15b) can be
further transformed into

x̊2,k(h) =− Å−1
22 B̊2uk(h)− Å−1

22 E̊2νk(h), (16a)

λx̊2,k(h) =− λÅ−1
22 B̊2uk(h)− λÅ−1

22 E̊2νk(h). (16b)

By substituting (16) into (15), an equivalent form of the
system (15) is obtained as

λG̊11x̊1,k(h) =Å11x̊1,k(h) + (B̊1 − Å12Å−1
22 B̊2)uk(h) + (E̊1

− Å12Å−1
22 E̊2)νk(h) + λG̊12Å−1

22 B̊2uk(h)

+ λG̊12Å−1
22 E̊2νk(h),

yk(h) =C̊1x̊1,k(h) + (D − C̊2Å−1
22 B̊2)uk(h)

− C̊2Å−1
22 E̊2νk(h) + Fηk(h). (17)

It can be observed that there exists a delay operation on
uk(h) in (17). Thus, it is necessary to further transform
the system (17) to avoid the delay operation on uk(h).
Consequently, a coordinate transformation is defined as

G̊11x̊1,k(h) =G̊11x̌1,k(h) + G̊12Å−1
22 B̊2uk(h), (18a)

λG̊11x̊1,k(h) =λG̊11x̌1,k(h) + λG̊12Å−1
22 B̊2uk(h). (18b)

Without loss of generality, only the case that G̊11 is
nonsingular is considered here. Thus, with the coordinate
transformation (18), the system (17) is be transformed into

λG̊11x̌1,k(h) =Å11x̌1,k(h) + (B̊1 + Å11G̊−1
11 G̊12Å−1

22 B̊2

− Å12Å−1
22 B̊2)uk(h) + G̊12Å−1

22 E̊2νk(h+ 1)

+ (E̊1 − Å12Å−1
22 E̊2)νk(h), (19)

yk(h) =C̊1x̌1,k(h) + (D − C̊2Å−1
22 E̊2)νk(h) + Fηk(h)

+ (C̊1G̊−1
11 G̊12Å−1

22 B̊2 − C̊2Å−1
22 B̊2)uk(h).

Note that as long as the descriptor system (10) is regular,
it is always able to transform (10) into a minimal-order

nonsingular descriptor system in the form (19) with G̊11

nonsingular. Thus, in the case that G̊11 in (14) is singular,
we could further find orthogonal transformation matrices
to transform (19) into a nonsingular descriptor system
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in the same form (19) by following the same procedure
above (see Misra and Patel (1989)). Thus, all the following
analysis will be done based on the nonsingular case of (19)
and the system (19) is equivalently transformed into

x̌1,k(h+ 1) =Ǎx̌1,k(h) + B̌uk(h) + Ě ν̌k(h), (20a)

yk(h) =Čx̌1,k(h) + Ďuk(h) + F̌ η̌k(h). (20b)

where

Ǎ = G̊−1
11 Å11, Č = C̊1, F̌ = [ (D−C̊2Å−1

22 E̊2) F ] ,

B̌ = G̊−1
11 (B̊1 − Å12Å−1

22 B̊2 + Å11G̊−1
11 G̊12Å−1

22 B̊2),

Ď = (C̊1G̊−1
11 G̊12Å−1

22 B̊2 − C̊2Å−1
22 B̊2),

Ě = [ G̊−1
11 (E̊1−Å12Å−1

22 E̊2) G̊−1
11 G̊12Å

−1
22 E̊2 ] ,

ν̌k(h) =
[
νk(h)T νk(h+ 1)T

]T
,

η̌k(h) =
[
νk(h)T ηk(h)T

]T
. (21)

Under Assumption 1, it is known that νk(h), ν̌k(h) and
η̌k(h) are also bounded, which are denoted as

νh ≤ νk(h) ≤ νh, ν̌ ≤ ν̌k(h) ≤ ν̌, η̌ ≤ η̌k(h) ≤ η̌

for all h ≥ 0 and k ≥ 0 with

νh =[ νT ··· νT ]︸ ︷︷ ︸
ω

T
, νh = [ νT ··· νT ]︸ ︷︷ ︸

ω

T
,

ν̌ =[ νhT νh
T ]︸ ︷︷ ︸

2

T
, ν̌ = [ νhT νh

T ]︸ ︷︷ ︸
2

T
,

η̌ =[ νT ··· νT ηT ··· ηT ]︸ ︷︷ ︸
ω+ω

T
, η̌ = [ νT ··· νT ηT ··· ηT ]︸ ︷︷ ︸

ω+ω

T
.

3.4 Design of Interval Observer

In Sections 3.2 and 3.3, the discrete LPTVD system (2) is
transformed into a discrete LTI system (20). This implies
that the design problem of interval observer for (2) can be
transformed into that of interval observer for (20).

Assumption 2. The pair (Ǎ, Č) in (20) is detectable.

Under Assumption 2, we can design a stable observer to
estimate the states of (20), which assures the existence
of interval observers for the LPTVD system (2). Thus,
under Definition 2, Lemmas 1 and 3, and the equivalent
system transformations in Sections 3.2 and 3.3, an interval
observer for the system (2) is designed in Theorem 1.

Theorem 1. For an invertible matrix S ∈ Rl×l and a gain
matrix L ∈ Rl×qω such that S(Ǎ−LČ)S−1 is nonnegative
and Ǎ−LČ is a Schur matrix, an interval observer can be
designed for the LPTVD system (2) as

xk(h) ≤ xk(h) ≤ xk(h)

with

xk(h) =V̄+x̊k(h)− V̄−x̊k(h), (24a)

xk(h) =V̄+x̊k(h)− V̄−x̊k(h), (24b)

where

x̊k(h) = [ x̊T
1,k

(h) x̊T
2,k

(h) ]
T
, x̊k(h) =

[
x̊
T

1,k(h) x̊
T

2,k(h)
]T
,

(25a)

x̊1,k(h) =(G̊−1
11 G̊11S

−1)+x̄1,k(h)− (G̊−1
11 G̊11S

−1)−×
x̄1,k(h) + G̊−1

11 G̊12Å−1
22 B̊2uk(h), (25b)

x̊1,k(h) =(G̊−1
11 G̊11S

−1)+x̄1,k(h)− (G̊−1
11 G̊11S

−1)−×
x̄1,k(h) + G̊−1

11 G̊12Å−1
22 B̊2uk(h), (25c)

x̄1,k(h+ 1) =S(Ǎ − LČ)S−1x̄1,k(h) + S(B̌ − LĎ)uk(h)

+ SLyk + (−SLF̌)+η̌ − (−SLF̌)−1η̌

+ (SĚ)+ν̌ − (SĚ)−ν̌, (25d)

x̄1,k(h+ 1) =S(Ǎ − LČ)S−1x̄1,k(h) + S(B̌ − LĎ)uk(h)

+ SLyk + (−SLF̌)+η̌ − (−SLF̌)−1η̌

+ (SĚ)+ν̌ − (SĚ)−ν̌, (25e)

x̊2,k(h) =− Å−1
22 B̊2uk(h) + (−Å−1

22 E̊2)+νh

− (−Å−1
22 E̊2)−νh, (25f)

x̊2,k(h) =− Å−1
22 B̊2uk(h) + (−Å−1

22 E̊2)+νh

− (−Å−1
22 E̊2)−νh. (25g)

Proof : (20) can be equivalently transformed into

x̌1,k(h+ 1) =Ǎx̌1,k(h) + B̌uk(h) + L(yk − Čx̌1,k(h)

− Ďuk(h)− F̌ η̌k(h)) + Ě ν̌k(h),

=(Ǎ − LČ)x̌1,k(h) + (B̌ − LĎ)uk(h) + Lyk

− LF̌ η̌k(h) + Ě ν̌k(h), (26)

where L is designed to stabilize the dynamics (i.e., such
that Ǎ − LČ is a Schur matrix). For the system (26), it is
able to find a coordinate transformation matrix S with

x̄1,k(h) = Sx̌1,k(h)

such that the matrix S(Ǎ−LČ)S−1 is nonnegative. Thus,
with this coordinate change, (26) is transformed into

x̄1,k(h+ 1) =S(Ǎ − LČ)S−1x̄1,k(h) + S(B̌ − LĎ)uk(h)

+ SLyk − SLF̌ η̌k(h) + SĚ ν̌k(h). (27)

Thus, an interval observer for x̄1,k(h) of (27) is designed
as (25d) and (25e). We define estimation errors:

˜̄x1,k(h) = x̄1,k(h)− x̄1,k(h),

˜̄x1,k(h) = x̄1,k(h)− x̄1,k(h)

subject to
˜̄x1,k(h+ 1) =S(Ǎ − LČ)S−1 ˜̄x1,k(h) + d, (29a)

˜̄x1,k(h+ 1) =S(Ǎ − LČ)S−1 ˜̄x1,k(h) + d, (29b)

where

d =− SLF̌ η̌k(h) + SĚ ν̌k(h)− (−SLF̌)+η̌

+ (−SLF̌)−1η̌ − (SĚ)+ν̌ + (SĚ)−ν̌, (30a)

d =(−SLF̌)+η̌ − (−SLF̌)−1η̌ + (SĚ)+ν̌ − (SĚ)−ν̌

+ SLF̌ η̌k(h)− SĚ ν̌k(h). (30b)

Under Lemma 2, it is known that d ≥ 0 and d ≥ 0 always
hold. Moreover, since the matrix S(Ǎ−LČ)S−1 is designed
to be nonnegative and Schur, as long as the given initial

conditions ˜̄x1,k(0) ≥ 0 and ˜̄x1,k(0) ≥ 0 are satisfied, we

always have ˜̄x1,k(h) ≥ 0 and ˜̄x1,k(h) ≥ 0 for all h ≥ 0 and
k ≥ 0. This implies that we always have

x̄1,k(h) ≤ x̄1,k(h) ≤ x̄1,k(h).
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By considering (18), we could further know

x̊1,k(h) =G̊−1
11 G̊11S

−1x̄1,k(h) + G̊−1
11 G̊12Å−1

22 B̊2uk(h).

Thus, using the results in Lemma 2, we could obtain

x̊1,k(h) ≤ x̊1,k(h) ≤ x̊1,k(h)

as presented in (25b) and (25c). Similar to (24), we could
also use Lemma 2 to obtain the interval of x̊2,k(h) as

x̊2,k(h) ≤ x̊2,k(h) ≤ x̊2,k(h)

with

x̊2,k(h) =− Å−1
22 B̊2uk(h) + (−Å−1

22 E̊2)+νh

− (−Å−1
22 E̊2)−νh, (32a)

x̊2,k(h) =− Å−1
22 B̊2uk(h) + (−Å−1

22 E̊2)+νh

− (−Å−1
22 E̊2)−νh. (32b)

Based on (24) and (32), we could obtain the interval of
x̊k(h) presented in (25f) and (25g) as

x̊k(h) ≤ x̊k(h) ≤ x̊k(h).

Thus, by considering the transformation xk(h) = V̄x̊k(h)
and using Lemma 2, we obtain the interval in (24a) as

xk(h) ≤ xk(h) ≤ xk(h).

Thus, the proof is completed. �

In order to better present the proposed results, a system-
atic procedure is summarized in Algorithm 1.

Algorithm 1 Interval observer for LPTVD systems

Require: Parameter matrices Gi+1, Ai, Bi, Ei, Ci and
Fi (i = 0, 1, ..., ω − 1), initial values x0, x0, x0, ν, ν,
η and η, periodic iteration initial time k0 = 0, input
vector u, and simulation period from k = 1 to k = Tω;

1: Equivalently rewrite the original LPTVD system (2)
into the ω-stacked form as presented in (3);

2: Using P to transform the ω-stacked form (3) into a
new equivalent descriptor system form (10);

3: Using Fact 1 to find an orthogonal transformation pair
(Ū , V̄) to obtain a minimal-order form (19);

4: After a series of orthogonal transformations till G11 is
non-singular, the system can be rewritten into (20);

5: Under Theorem 1, design a pair (S, L) to realize the
interval observer using the minimal-order form;

6: for h = 0 to T − 2 do
7: if h = 0 then
8: According to the given initial values, calculate

xk(h), xk(h) and xk(h) based on (2);

9: Calculate x̄1,k(h), x̄1,k(h), x̊k(h) and x̊k(h);
10: else
11: Update x̄1,k(h), x̄1,k(h), x̊k(h) and x̊k(h) based

on (25);
12: Update xk(h) and xk(h) based on (24);
13: end if
14: end for
15: return state interval estimations xk and xk.

Remark 1. In Algorithm 1, due to the existence of νk(h+1)
in (20), when the simulation is set from k = 1 to k = Tω
(T periods), we can only show the results of T − 1 periods
(i.e., h can only take values from 0 to T −2). By observing
(2) and (3), we know that all the stacked signals uk(h),
xk(h), yk(h), νk(h) and ηk(h) are dependent of a stacked

initial time instant k for (3), which is denoted as k0 in
Algorithm 1 and is set as k0 = 0 for brevity.

4. ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of the proposed method, a
3-periodic discrete LPTVD system is considered as

A0 =

[
0.2209 0
0.6000 1.5956

]
, A1 =

[
0.3618 0
0.6000 0.3298

]
,

A2 =

[
0.1737 0
0.6000 0.4746

]
, B0 =

[
1 0.9

0.5 1.3

]
,

B1 =

[
1 0.1
−0.6 −0.3

]
, B2 =

[
0.2 0.4
0.5 0

]
, Gi+1 =

[
1 0
0 0

]
,

Ci =

[
1 0
0 2

]
, Ei = Fi = I2, (i = 0, 1, 2).

The system initial input needs to meet the initial value
constraints since the matrix G1 is singular. Thus, we give
the suitable initial conditions, input signal, disturbance
signal, noise signal and their bounds as

u =

[
sin(kTs) + cos(2kTs)

1 + 0.2cos(kTs)

]
, ν =

[
0.1cos(5kTs)
0.1sin(3kTs)

]
,

η =

[
0.12cos(4kTs)
0.12sin(6kTs)

]
, x0 =

[
−0.4516
−1.2009

]
,

x0 =

[
0.1
−0.8

]
, x0 =

[
−1
−1.8

]
, ν =

[
0.1
0.1

]
, ν =

[
−0.1
−0.1

]
,

η =

[
0.12
0.12

]
, η =

[
−0.12
−0.12

]
,

where Ts = π/10 is the sampling period and the simulation
period is set from k = 1 to k = 30. Under Fact 1, an
orthogonal transformation pair (Ū , V̄) is obtained:

Ū = I6, V̄ =

 0.8549 0.0741 −0.3739 0.3520 0 0
−0.3215 −0.0279 0.1406 0.9360 0 0
0.1888 0.0164 0.4350 0 0.0827 −0.8763
−0.3436 −0.0298 −0.7915 0 −0.1505 −0.4817
0.0683 0.0059 0.1574 0 −0.9852 0
−0.0864 0.9963 0 0 0 0

 .
Under the orthogonal transformation, the obtained para-
metric matrices G̊11 and Å22 are nonsingular. Thus, conse-
quently, the minimal-order form (20) can be obtained and
the corresponding parametric matrices are presented as

Ă = 0.0139, B̆ = [ 0.0735 0.0662 0.2032 0.0203 0.2339 0.4679 ] ,

C̆ = [ 0.8549 −0.6429 0.1888 −0.6871 0.0683 −0.1728 ]
T
,

V̆ =
[
V̆1:6 V̆7:12

]
,

D̆ =

 0 0 0 0 0 0
−0.6267 −1.6295 0 0 0 0

1 0.9 0 0 0 0
−3.6386 −3.2747 3.6386 1.8193 0 0
0.3618 0.3256 1 0.1000 0 0
−0.9148 −0.8233 −2.5284 −0.2528 −2.1070 0

 ,
V̆7:12 = [ 0.8781 0.2015 0.1775 1.0417 0 0.1820 ] ,

V̆1:6 = [ 0.0613 −0.0028 0.2007 −0.0145 1.1697 −0.0025 ] ,

F̆ =
[
F̆1:6 I6

]
,

F̆1:6 =

−0.7507 −0.1722 −0.1518 −0.8906 0 −0.1556
0.5646 −1.1239 0.1141 0.6698 0 0.1170
0.8342 −0.0380 −0.0335 −0.1967 0 −0.0344
−3.0352 0.1384 0.1220 −5.3485 0 0.1251
0.3018 −0.0138 0.9879 −0.0712 0 −0.0124
−0.7631 0.0348 −2.4978 0.1800 0 −4.1826

 .
The pair (S, L) as seen at Step 5 of Algorithm 1 for the
design of the interval observer is obtained as
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Fig. 1. Interval estimations of a 3-periodic LPTVD system.

S = I6, L = [−0.0774 0 −0.0774 0 −0.0774 0] .

In this example, the state vector has two components x1

and x2 and their bounds are denoted as x1, x1, x2 and
x2, respectively. Using the parameters presented above
and the proposed design method in Section III, the state
intervals estimated by the designed interval observer and
real states are both shown in Figure 1, which illustrate
the effectiveness of the proposed interval observer for state
estimations of the LPTVD system. Note that, as explained
in Remark 1, only 27 steps can be shown in Figure 1.

5. CONCLUSIONS

This paper designs an interval observer for the discrete
LPTVD system. In this proposed method, the discrete
LPTVD system is first transformed into a discrete LTI
stacked form. Then by using system equivalence transfor-
mations, the discrete LTI stacked form is transformed into
a minimal-order system implementation. Based on this
minimal-order implementation, a new interval observer is
finally designed for the discrete LPTVD system. In the
future research, we will explore methods to design an
interval observer for discrete linear time-varying systems.
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