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Abstract: The control of the driver's hand torque of an electric power steering system has been state of 

the art for years. However, due to nonlinear spring characteristics, gear ratios, and degrees of freedom 

which are unconsidered in the design model for the controller or observer design, the challenge still lies 

in the robust implementation of this control approach. In this paper, the results of a systematic model and 

system analysis are used to develop an approach that solves the current stability and robustness problems 

existing in the serial development of steering systems while maintaining the same control quality. For 

this, a modified optimal control design is applied which uses an augmented design model. 
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1. INTRODUCTION 

This paper presents an approach to control the driver’s steer-

ing torque for electromechanical power steering (EPS) sys-

tems based on an invention of Niessen and Henrichfreise 

(2002). One control approach was published by Henrichfreise 

et al. (2003) and Graßmann et al. (2003). In the referenced 

papers, a simplified linear plant model for the steering system 

with two degrees of freedom (DOF) is used for the controller 

resp. observer design. It only considers the elasticity of the 

torsion bar. All other elements are assumed to be rigid. The 

two degrees of freedom are the angle φS of the steering wheel 

and the angle of the lower steering column, which is equal to 

the angle φP of the pinion. Bröcker (2006), Chen and Chen 

(2006), and El-Shaer et al. (2009) use a similar design model 

with the same two degrees of freedom, whereas Chitu et al. 

(2013) developed a design model with three degrees of free-

dom where additionally the EPS motor is elastically coupled 

to the rest of the steering mechanism. Thus, the third degree 

of freedom is the angle φM of the EPS motor. Even in more 

complex vehicle simulation environments, as in the simula-

tion tool suite ASM from dSPACE (2017), only models with 

these three degrees of freedom are used. 

However, such design models lead to control systems which 

have a low robustness, since a real steering mechanism con-

tains additional elasticities and degrees of freedom. These 

elasticities as well as nonlinear plant characteristics are con-

sidered in a detailed model of the steering mechanism, which 

has been validated in many steering applications performed 

in our workgroup. Based on this nonlinear detailed model, a 

new design model for the controller and observer design is 

developed which yields a robust control system. The detailed 

model is shown in section 2. It contains all relevant elastici-

ties and nonlinear characteristics that may exist in a real 

steering mechanism. The following section 3 describes the 

controller and observer design, and in section 4 the corre-

sponding closed-loop system is analysed with respect to both 

its dynamic behaviour and its robustness. Finally, a summary 

is given in section 5.  

The investigations are done based on a steering mechanism 

with an EPS motor in a so-called axially parallel configura-

tion. The methods presented in the following sections can 

also be applied to other configurations or systems.  

2. DETAILED MODEL OF STEERING MECHANISM 

Applying the design models from previous publications, our 

experience with real steering systems showed that these mod-

els do not consider all relevant eigenmodes of a steering 

mechanism. Therefore, a more detailed model of the steering 

mechanism has been developed. Fig. 1 depicts its physical 

substitute model with eight degrees of freedom. The individ-

ual rigid bodies are labelled with the indices S (steering), P 

(pinion), R (rack), N (nut), M (motor), C (casing), V (vehicle), 

WL (left wheel), and WR (right wheel).  
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Fig. 1. Physical substitute model of the steering mechanism 

with eight degrees of freedom 

The arrows in Fig. 1 indicate the degrees of freedom. Here, 

the rack has no degree of freedom. Its deflection sR depends 
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on the angle φP of the pinion via the gear ratio iPR of the cou-

pling between pinion and rack that is assumed to be rigid. 

Moreover, it is defined that the rack is located in front of the 

steering axle in the x-direction of the vehicle coordinate sys-

tem. Consequently, the pinion gear must be placed behind the 

rack. This configuration has the advantage that all degrees of 

freedom and dependent deflections act in positive coordinate 

directions of the vehicle coordinate system. Furthermore, it is 

assumed that the pinion bearing is rigidly coupled to the cas-

ing and that the casing cannot rotate relative to the vehicle. In 

addition, there are universal joints in the steering column 

which have nonlinear gear ratios. Also, the mechanism con-

sisting of tie rod and lever between rack and both wheels has 

a nonlinear gear ratio iRWL resp. iRWR. 

Besides these nonlinear gear ratios, nonlinear spring charac-

teristics were also integrated in the detailed model of the 

steering mechanism. They are depicted in Fig. 1 by the stiff-

ness cNR of the ball screw drive, stiffness cMN of the belt drive, 

stiffness cNC of the axial nut bearing, stiffness cCV of the cas-

ing attachment, stiffness cRWL resp. cRWR of the attachment of 

the left resp. right wheel, and the stiffness ctb of the torsion 

bar (torque sensor). All springs except the spring of the tor-

sion bar have a nonlinear characteristic. Aside from that, ad-

ditional nonlinear characteristics, such as load-dependent 

friction and mechanical boundaries, as well as viscosity for 

each elastic component (viscoelastic component) have been 

considered in the detailed model. The equations of motion of 

this nonlinear model have been derived, linearized, and con-

verted into state space representation. Based on this model 

with eight degrees of freedom, further simplified models can 

be generated by model order reduction.  

Each of these different models for the steering mechanism is 

extended by a simplified, linear model of a current-controlled 

EPS motor in form of a first order lag system. Combined, 

they form the plant model. The plant model consisting of the 

current-controlled EPS motor and the linearized detailed 

model of the steering mechanism with eight degrees of free-

dom will be called “8DOF” in the subsequent sections. It will 

be used as a model of the real steering system. 

A analysis of the model “8DOF” is carried out by Wittler et 

al. (2017) and Irmer et al. (2019). The papers show that the 

lowest and therefore most dominant eigenfrequency of the 

steering system depends not only on the stiffness ctb of the 

torsion bar but also on the stiffness cNR of the ball screw drive 

and the stiffness cNC of the axial nut bearing. Hence, a model 

with two degrees of freedom from Henrichfreise et al. (2003), 

Bröcker (2006), Chen and Chen (2006), El-Shaer et al. 

(2009), or others which only considers the stiffness ctb of the 

torsion bar, does not exactly map this lowest eigenfrequency 

of the real steering system, whereas other dominant eigenfre-

quencies are not modelled at all.  

The second lowest eigenfrequency depends, inter alia, on the 

parameters of the viscoelastic wheel attachments. The corre-

sponding eigenmode is characterized by in-phase angular 

displacements φWL and φWR of the wheels. Thus, the viscoe-

lastic wheel attachments must be considered in a plant model 

that should reflect the second dominant eigenfrequency of the 

real steering system as well. This is also outlined by Badawy 

et al. (1999), Pfeffer and Harrer (2013), and Schramm et al. 

(2017). Consequently, the models with three degrees of free-

dom from Chitu et al. (2013), dSPACE (2017), or others also 

do not sufficiently model the real steering system. Although 

the models have a higher order, they do not map the second 

lowest eigenfrequency of the real steering system correctly 

because they neglect the viscoelastic wheel attachments. 

Hence, the aforementioned models with two or three degrees 

of freedom are not suitable for a robust control design. There-

fore, the subject of the next chapter is to derive a more ap-

propriate model that will be used for a new control design. 

3. CONTROL DESIGN 

Fig. 2 shows the block diagram of the closed-loop system 

consisting of the detailed plant model “8DOF” and the dy-

namic linear-quadratic-Gaussian (LQG) compensator. The 

compensator contains the linear optimal static state space 

controller (LQR) and the linear optimal state space observer 

(LQE). Their design is the subject of the current chapter. 
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Fig. 2. Block diagram of the closed-loop system with dynam-

ic LQG compensator 

For a constant angle φS of the steering wheel, the torsion bar 

torque Ttb is equal to the steering torque TS induced by the 

driver at the steering wheel. Hence, the task of the compensa-

tor is to adjust the torsion bar torque Ttb to a given externally 

generated requested steering torque Treq. By setting the re-

quested steering torque Treq as the reference variable, it is 

possible to generate a defined steering feel for the driver with 

an additional outer control loop. The steering torque TS itself 

and the rack force FR, which results from the contact between 

the tire and the road as well as from the friction at the rack, 

represent disturbance variables for the control system. The 

effect of these disturbance variables is compensated by a dis-

turbance feedforward. Since it is not possible to measure all 

state and disturbance variables, an optimal observer is used to 

provide an estimate x̂p of the state vector xp of the plant and 

an estimate x̂d = [T̂S, F̂R]T of the disturbance input vector 

[TS, FR]T of the plant. For this, the observer uses measure-

ments of the torsion bar torque Ttb, motor angular velocity 

ΩM, and motor current ia, as well as the reference current iref 

for the inner control loop of the EPS motor (Graßmann et al. 

(2003), Henrichfreise et al. (2003)). 

The control system must satisfy the requirements of a good 

control and disturbance behaviour as well as it must have a 

higher degree of robustness against unconsidered eigenmodes 

and parameter uncertainties in the plant model than the con-

trol systems of previous approaches. A precondition for a 

good dynamic behaviour is active vibration damping of the 
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oscillating modes of the mechanical system. Therefore, an 

LQG compensator is designed based on Henrichfreise (1997) 

which considers the natural limitations of the real system, so 

that no bounds are exceeded during normal operation. How-

ever, the use of a high-order model for the compensator (con-

troller and observer) design causes problems because its pa-

rameters often cannot be identified or vary substantially dur-

ing operation. For example, the eigenfrequencies change un-

der load due to the nonlinear spring characteristics and gear 

ratios. This is detrimental to the control, since it does not 

match the respective eigenmodes of the plant model suffi-

ciently. Consequently, a compensator of the lowest possible 

order should always be implemented. Nevertheless, the de-

sign model should not be reduced too much. 

Thus, a method is described in the following section that can 

be applied to reduce the detailed model without impairing its 

characteristics, so that the resulting reduced model can be 

used for the subsequent compensator design. The method 

preserves stability and provides a high approximation quality 

in the relevant frequency range for the control. Starting point 

is the state space representation 

x Ax Bu

y C x Du

 

 

ɺ
 (1) 

of the stable linearized detailed model of the steering mecha-

nism with the (n)-vector x of the state variables of the steer-

ing mechanism and n = 16 (eight degrees of freedom). The 

aim is to determine a well-suited reduced model  

red redred red

redred redred

x A x B u

y C x D u y

 

  

ɺ
 (2) 

of the steering mechanism with a (m)-vector xred and m < n 

for the design of a robust control. 

3.1  Design Model based on Modal Order Reduction 

Reduced models can be generated in different ways, for ex-

ample by physically motivated order reduction (Wittler et al. 

(2017)). However, the control systems resulting from this 

reduced design models are not necessarily robust against the 

unconsidered eigenmodes of the plant model. Therefore, this 

paper will present an alternative approach based on modal 

order reduction. For this purpose, the detailed model of the 

steering mechanism from (1) is transformed into modal form  

z z Bu

y C z Du

 

 

ɶɺ

ɶ

 (3) 

with z = [z1, z2]T, Λ = diag(Λ1, Λ2), B̃ = [B̃1, B̃2]T, and 

C̃ = [C̃1, C̃2], where z1 describes the state vector of the domi-

nant state variables and z2 the state vector of the residual state 

variables of the steering mechanism. Since all eigenvalues of 

the linearized detailed model of the steering mechanism are 

different, the corresponding system matrix A can be diago-

nalized, so that the submatrices Λ1 = diag(λ1, …, λm) and 

Λ2 = diag(λm+1, …, λn) of the modal system matrix Λ become 

diagonal. 

The corresponding transfer matrix of the linearized detailed 

model of the steering mechanism follows from the equation 

1

1 1 11

1

2 22

2
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.
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
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ɶ ɶ
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 (4) 

If only the state vector z1 of the dominant state variables of 

the steering mechanism is considered, the state space repre-

sentation of the modal reduced model of the steering mecha-

nism becomes 

1 1 1 1

11 .
red

z z B u

y C z Du

 

 

ɶɺ

ɶ

 (5) 

This reduced model has the same dominant eigenvalues 

λ1, …, λm as the detailed model. However, the zeros of the 

individual transfer paths can be different.  

The corresponding transfer matrix of the reduced model is 

1
1 11

1 1 11

1

( ) ( )

adj( ) det( )
.

det( )

redG s C s I B D

C s I B D sI

s I



 


  

  




ɶ ɶ

ɶ ɶ
 (6) 

Comparing this equation with (4) yields that the transfer ma-

trix G(s) of the detailed model can be partitioned into the 

transfer matrix Gred (s) of the modal reduced model and a 

transfer matrix Gresidual (s) for the residual part 

( ) ( ) ( ) .red residualG s G s G s   (7) 

Assuming the transfer matrix G(s) does not contain any inte-

gral behaviour or this has been neglected, the stationary gains 

of the individual transfer paths of the linearized detailed 

model of the steering mechanism results from the equation 

0 0 0
lim ( ) lim ( ) lim ( )

(0) (0) .

  
 

 

red residual
s s s

red residual

G s G s G s

G G
 (8) 

For the general case Gresidual (0) ≠ 0 this means that the modal 

order reduction cannot reproduce the stationary gains of the 

detailed model. Nevertheless, the stationary error can be 

elimintated by an adaptation of the feedthrough matrix 

(0) .residualD D G ɶ  (9) 

This implies that the transfer behaviour of the residual 

eigenmodes of the plant model is assumed to be sufficiently 

fast that it can be considered proportional. Thus, the final 

state space representation of the modal reduced model of the 

steering mechanism becomes 

1 1 1 1

11 .
red

z z B u

y C z Du
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 (10) 
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The reduced plant model consisting of the modal reduced 

model of the steering mechanism with m = 6, which corre-

sponds to a model with three degrees of freedom, and the 

current-controlled EPS motor is henceforth denoted by 

“3DOF modal”.  

By neglecting the residual state variables of the steering 

mechanism in (5) and the adaptation of the feedthrough ma-

trix in (9), additional zeros may occur in the individual trans-

fer paths. Here, a zero is created in the right s-half plane in 

the control transfer path from the control variable iref to the 

controlled variable Ttb of the reduced plant model “3DOF 

modal”. However, this zero is located so far to the right that 

its effect is only evident in the high-frequency range far 

above the bandwidth of the control. This is visible in the cor-

responding frequency response of the control transfer path 

shown in Fig. 3. The same holds for the other transfer paths. 

-150

-100

-50

0

8DOF

3DOF modal

 

Fig. 3. Frequency response of the control transfer path of the 

detailed and the reduced plant model 

Additionally, Fig. 3 illustrates the frequency response of the 

control transfer path of the detailed plant model “8DOF”. It 

can be seen that the frequency response of the reduced plant 

model “3DOF modal” matches the frequency response of the 

detailed plant model “8DOF” with sufficient accuracy up to 

frequencies greater than 3000 rad/s. Since the reduced plant 

model “3DOF modal” based on (10) has the same dominant 

eigenvalues and the same steady-state gains as the detailed 

plant model “8DOF”, the step responses of the individual 

transfer paths of both models are also almost identical. There-

fore, this reduced plant model is a suitable approximation of 

the detailed plant model. It is the starting point for the follow-

ing LQR and LQE design. 

3.2  LQR Design 

The subsequent section describes the design of the optimal 

static state space controller using the reduced plant model 

“3DOF modal” under the assumption that all its state varia-

bles and disturbance variables are measurable. For this, the 

reduced plant model is augmented by suitable linear models 

for reference and disturbance excitation and a weighting 

model (Henrichfreise (1997)). However, a calculation of the 

feedforward gains as shown by Henrichfreise (1997) does not 

provide steady-state accuracy for this application. The reason 

for this is that for both reference and disturbance excitation, 

the steady state requires a control variable iref unequal to zero. 

Since the LQR design not only minimizes the control error 

e = Treq - Ttb but also minimizes the use of the control variable 

iref, steady-state accuracy cannot be achieved. Therefore, an 

alternative calculation of the reference and disturbance feed-

forward gains is developed. 

First, the reference feedforward gain kr is calculated accord-

ing to the block diagram of the closed-loop system shown in 

Fig. 4. 

plant
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Fig. 4. Block diagram of the closed-loop system with refer-

ence feedforward 

Based on the reduced plant model, the transfer function Gν (s) 

of the controlled system with state vector feedback can be 

determined. Then, the error transfer function is 

( ) 1 ( ) . e rG s k G s  (11) 

If now steady-state accuracy is requested for at least step-

shaped reference excitation, the constant gain factor for the 

reference feedforward must be 

1 / (0) .rk G  (12) 

The gains for the disturbance feedforward can be calculated 

similarly. For this, Fig. 5 shows the block diagram of the con-

trolled system with disturbance feedforward. 
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Fig. 5. Block diagram of the closed-loop system with disturb-

ance feedforward 

For the transfer matrix from the disturbance input vector 

[TS, FR]T of the plant to the torsion bar torque Ttb, the equa-

tion 

( ) ( ) ( )
T

z d dG s G s k G s   (13) 

is given, where Gd (s) is the transfer matrix of the controlled 

system for the disturbance input vector and Gν (s) the transfer 

function of the aforementioned controlled system with state 

vector feedback. If here steady-state accuracy also is request-

ed for at least step-shaped disturbance excitation, the equa-

tion 

(0) / (0)T
d dk N N  (14) 

follows for the disturbance feedforward, where Nd (s) de-

scribes the numerator polynomial matrix of the transfer ma-
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trix Gd (s) and Nν (s) the numerator polynomial of the transfer 

function Gν (s). 

3.3  LQE Design 

After the controller gains have been determined in the LQR 

design, an optimal state space observer is inserted into the 

control system that provides optimal estimates for the state 

and disturbance variables of the plant, since these are often 

not measurable as assumed in the LQR design. Starting point 

for the design of the linear observer is again the reduced plant 

model “3DOF modal”. This model is augmented by a suitable 

disturbance model for the realization of a disturbance obser-

vation and a stochastic environment (Henrichfreise (1997)). 

The minimization of the observer estimation error x - x̂ for 

the augmented model with x = [xP, TS, FR]T provides the val-

ues of the optimal observer gain matrix. Thereby, a higher 

robustness of the control system can be achieved by aspiring 

loop transfer recovery (LTR) with appropriate process noise 

intensities in the LQE design (Henrichfreise (1997)). 

4. SYSTEM ANALYSIS 

The behaviour of the control system is first analysed using 

linear models in the time and frequency domain. The closed-

loop system consists of the detailed plant model “8DOF”, 

which describes the real plant with adequate accuracy, and a 

compensator designed with the previously described reduced 

model “3DOF modal”. In contrast, the aforementioned papers 

only use a simple plant model for system analysis. Such an 

approach does not allow to analyse how robust the control 

system is against the eigenmodes of the real steering mecha-

nism that are unconsidered in the design model. Thus, the 

plant model used for system analysis should always be as 

detailed as possible. 

4.1  Dynamic Behaviour of the Control System 

Fig. 6 depicts the reference step response and the disturbance 

step responses of the closed-loop system for a requested 

steering torque Treq of 1 Nm, an actual steering torque TS of 

1 Nm, and a rack force FR of 1 kN. The individual settling 

times of the step responses as well as the overshoots resp. 

amplitudes of the controlled variable Ttb are sufficiently 

small. Furthermore, the control approach ensures steady-state 

accuracy in the case of step-shaped reference or disturbance 

excitation. Hence, the dynamic behaviour of the control sys-

tem is good.  

The slow decay of the control errors results from a transmis-

sion zero which is unfavourably located in the plant model. A 

more detailed system analysis is carried out for a related de-

sign model by Irmer et al. (2019). 

4.2  Robustness of the Control System 

In this section, the robustness of the control system will be 

analysed. The robustness characteristics can be derived from 

the Nyquist plot of the open-loop system which is created by 

cutting the closed-loop system from Fig. 2 at the control in-

put iref of the plant model. For the given system with only one 

control variable iref, the gain margin and the phase margin can 

be used to assess the robustness of the control system. 

 

Fig. 6. Step responses of the closed-loop system 

Fig. 7 depicts the Nyquist plots of the open-loop system con-

sisting of the detailed plant model “8DOF” and the LQG 

compensator designed with the reduced model “3DOF mod-

al”. In the plant model, the moments of inertia JWL and JWR of 

the wheels, all stiffnesses cNR, cNC, cCV, cRWL, and cRWR, as well 

as the values of the gear ratios iRWL and iRWR between rack and 

wheels are varied, while the compensator is always designed 

with unchanged and constant design model parameters. The 

Nyquist plots illustrate that the control system is stable for all 

tested parameter variations and that the robustness is always 

satisfactory. All systems have an almost infinite gain margin 

and a phase margin of at least 40°. Thus, a design model 

which has been modally reduced in this way provides excel-

lent robustness characteristics.  

 

Fig. 7. Nyquist plots of the open-loop system with parameter 

variations in the plant model 
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Even for a combined load-dependent variation of the stiff-

nesses in the plant model – for example, because of an instan-

taneous operating point characterized by a specific steering 

torque as well as external forces and torques acting on the 

tires – the robustness characteristics of the control system are 

good. In the case of a higher steering torque and nonlinear 

spring characteristics in the real steering system, this leads to 

increased stiffnesses for the springs in the linearized plant 

model, which is displayed in Fig. 7 for a large steering torque 

with the corresponding curve cmax. In this way, the nonlinear 

characteristics of the steering system are taken into account in 

the analysis with linear models. In addition, the curve cmin 

describes an operating point where the stiffnesses of the plant 

are smaller than assumed in the compensator design due to 

fatigue or inaccurate parameter identification. 

The curve Jmin resp. Jmax illustrates the result for the case that 

the moments of inertia JWL and JWR of the wheels in the plant 

model are minimal (JWL = JWR = 0.8 kg∙m²) resp. maximal 

(JWL = JWR = 1.7 kg∙m²), and the curve imed resp. imax for the 

case that the rack is slightly (sR = 0.013 m, → 

iRWL = 0.17 m/rad, iRWR = 0.16 m/rad) resp. maximally 

(sR = 0.08 m → iRWL = 0.15 m/rad, iRWR = 0.11 m/rad) deflect-

ed. A deflection sR of the rack results in different values for 

the gear ratios iRWL and iRWR of the right and left wheel at-

tachment due to the kinematics of the tie rod and lever link-

ages. Despite these parameter variations, the control system 

remains stable, whereas a control system containing a com-

pensator which has been designed with a model that does not 

consider the viscoelastic wheel attachments would become 

unstable. 

The parameter changes described here are a selection of the 

parameter variations conducted for the plant model. All cor-

responding control systems with unchanged parameters for 

the compensator designed with the reduced model “3DOF 

modal” show comparably good robustness characteristics. 

Therefore, these results are not presented here. 

4.3  Simulation Results 

In the subsequent chapter, the results of the nonlinear simula-

tion model of the closed-loop system are displayed. The sim-

ulation model consists of the nonlinear detailed plant model 

with eight degrees of freedom and the compensator designed 

with the reduced plant model “3DOF modal”. In addition to 

load-dependent friction, nonlinear spring characteristics and 

gear ratios, as well as mechanical boundaries in the nonlinear 

plant model, the nonlinear simulation model also contains 

process noise, measurement noise, and quantization. 

The curves presented in Fig. 8 show the simulation results if 

the nonlinear simulation model is excited from 0.05 s on with 

a requested steering torque Treq of 2 Nm, from 0.4 s on with 

an actual steering torque TS of 2 Nm, and from 0.7 s on with 

constant disturbance torques of 25 Nm at both wheels. The 

curves indicate that the load-dependent friction is visible in 

the simulation results. The friction acts against the EPS motor 

torque and leads to smaller amplitudes of the reference step 

response compared to the results of the linear closed-loop 

system from Fig. 6. This can be seen in the upper left dia-

gram of Fig. 8 from 0.05 s on. In addition, the friction has a 

significant effect on the estimate F̂R of the disturbance force 

FR at the rack, which is displayed in the lower left diagram. 
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Fig. 8. Time histories of the reference and controlled variable 

(top left), disturbance variables (bottom), and control variable 

(top right) of the nonlinear closed-loop system 

The disturbance torques at both wheels also affect the esti-

mate F̂R of the disturbance force FR at the rack, so that the 

observer treats these disturbance torques as an equivalent 

force FR. The fact that in this experiment the disturbance due 

to the road contact acts at the wheels as in the real system and 

not at the rack as assumed in the observer design causes that 

the springs of the wheel attachments are significantly de-

formed. The other springs are also deformed, and the rack is 

deflected, so that the nonlinear spring characteristics and gear 

ratios also have an influence on the time histories. This can 

be seen in larger overshoots of the controlled variable Ttb and 

larger amplitudes of the control variable iref resp. ia from 0.7 s 

on compared to the results of the linear closed-loop system 

from Fig. 6. Nevertheless, the nonlinear closed-loop system 

remains stable. 

Additionally, Fig. 9 shows the results of the same experiment 

described above if the compensator is designed with a model 

that does not approximate the viscoelastic wheel attachments. 

The design model is a model with two degrees of freedom 

comparable to the model from Henrichfreise et al. (2003), 

Bröcker (2006), Chen and Chen (2006), or El-Shaer et al. 

(2009). It will be called “2DOF” in the following. It can be 

seen that up to 0.7 s the results of the nonlinear closed-loop 

system containing a compensator designed with the model 

"2DOF" are similar to the results of the nonlinear closed-loop 

system containing the compensator designed with the model 

"3DOF modal”. However, as soon as the closed-loop system 

is excited from 0.7 s on with a disturbance torque at both 

wheels due to the road contact, the compensator with the de-

sign model "2DOF" becomes unusable, as this compensator 
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leads to a large and only slowly decaying oscillation of the 

controlled variable Ttb.  

 

Fig. 9. Time histories of the controlled variable (left) and 

EPS motor current (right) of the nonlinear closed-loop sys-

tems containing compensators designed with different models 

A similarly poor dynamic behaviour of the closed-loop sys-

tem in the case of a disturbance excitation at the wheels due 

to the road contact is also obtained with a design model with 

more degrees of freedom if, like the model "2DOF", it does 

not consider the viscoelastic wheel attachments. Therefore, 

the design model "3DOF modal" is the optimally reduced 

model, since it has a minimal order while at the same time it 

models all dominant eigenmodes of a steering mechanism. 

5.  CONCLUSION AND OUTLOOK 

The paper describes the design of an optimal control for the 

driver’s steering torque of an electromechanical power steer-

ing (EPS) system. For this, an LQG compensator consisting 

of an optimal static state space controller (LQR) with refer-

ence and disturbance feedforward control and an optimal 

state space observer (LQE) with disturbance estimation is 

used. The LQG compensator provides active vibration damp-

ing and disturbance compensation. For the controller and 

observer design, a model is used that reflects all dominant 

eigenmodes of a steering mechanism, especially the critical 

eigenmode due to the viscoelastic wheel attachments. In the 

above-quoted papers this critical eigenmode was not included 

in the design models. Therefore, the resulting control systems 

showed a lack of robustness. In addition, these simple models 

of the plant were used not only for the control design but also 

as the plant model for the analysis of the closed-loop system. 

In this paper, a nonlinear detailed model of the steering 

mechanism with eight degrees of freedom is used to build the 

plant model for the analysis. This plant model represents the 

real steering system much better than the analysis models 

used in previous publications. Hence, the novelty of this pa-

per lies in this detailed plant model and the method of deriv-

ing a reduced model from it.  

The resulting closed-loop system shows a good dynamic be-

haviour and a high robustness against external disturbances, 

unconsidered degrees of freedom, nonlinear system charac-

teristics, and plant parameter variations. Thus, the presented 

control fulfils the requirements for a modern steering system 

and allows the adaptation of the steering feel to the current 

driving situation. In the next step, this approach will be ap-

plied to steer-by-wire systems.  
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