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Abstract: In this paper, we study the induced probabilistic Boolean dynamics for dynamical
quantum networks subject to sequential quantum measurements. In this part of the paper,
we focus on closed networks of quits whose states evolve according to a Schrödinger equation.
Sequential measurements may act on the entire network, or only on a subset of qubits. First of
all, we show that this type of hybrid quantum dynamics induces probabilistic Boolean recursions
as a Markov chain representing the measurement outcomes. Particularly, we establish an explicit
and algebraic representation of the underlying recursive random mapping driving such induced
Markov chains. Next, with local measurements, we establish a recursive way of computing such
non-Markovian probability transitions.

Keywords: quantum networks, quantum measurements, bilinear systems, Boolean networks

1. INTRODUCTION

Quantum systems admit drastically different behaviors
compared to classical systems in terms of state represen-
tations, evolutions, and measurements, based on which
there holds the promise to develop fundamentally new
computing and cryptography infrastructures for our so-
ciety Nielsen and Chuang (2010). Quantum states are de-
scribed by vectors in finite or infinite dimensional Hilbert
spaces; isolated quantum systems exhibit closed dynamics
described by Schrödinger equations; performing measure-
ments over a quantum system yields random outcomes and
creates back action to the system being measured. When
interacting with environments, quantum systems admit
more complex evolutions which are often approximated
by various types of master equations. The study of the
evolution and manipulation of quantum states has been
one of the central problems in the fields of quantum science
and engineering Altafini and Ticozzi (2012); Jurdjevic and
Sussman (1972); Brockett (1972); Brockett and Khaneja
(2000); Schirmer et al. (2001); Albertini and D’Alessandro
(2003); Li and Khaneja (2009); Tsopelakos et al. (2019).

? This research was supported in part by the National Key R&D
Program of China under Grant 2018YFA0703800, the National
Natural Science Foundation of China under Grants 61873262 and
61733018, and the Australian Research Council under Grants
DP180101805 and DP190103615.

Qubits, the so-called quantum bits, are the simplest quan-
tum states with a two-dimensional state space. Qubits nat-
urally form networks in various forms of interactions: they
can interact directly with each other by coupling Hamil-
tonians in a quantum composite system Altafini (2002);
implicitly through coupling with local environments Shi
et al. (2016); or through local quantum operations such as
measurements and classical communications on the oper-
ation outcomes Perseguers et al. (2010). Qubit networks
have become canonical models for quantum mechanical
states and interactions between particles and fields under
the notion of spin networks Kato and Yamamoto (2014),
and for quantum information processing platforms in com-
puting and communication Perseguers et al. (2010); Shi
et al. (2017). The control of qubit networks has been stud-
ied in various forms Albertini and D’Alessandro (2002);
Wang et al. (2012); Dirr and Helmke1 (2008); Shi et al.
(2016); Li et al. (2017).

In this paper, we study dynamical qubit networks which
evolve as a collective isolated quantum system but subject
to sequential local or global measurements. Sequential
measurements have been used be as a way of manipulation
quantum states Pechen et al. (2006). Global measurements
are represented by observables applied to all qubits in the
network, and local measurements only apply to a subset of
qubits and therefore the state information of the remaining
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qubits becomes hidden. We reveal that this type of hybrid
quantum dynamics induces probabilistic Boolean recur-
sions representing the measurement outcomes, defining
a quantum-induced probabilistic Boolean network Kauff-
man (1969); Shmulevich et al. (2002). Under global mea-
surements, the induced Boolean recursions define Markov
chains for which we establish a purely algebraic represen-
tation of the underlying recursive random mapping. The
representation is in the form of random linear systems em-
bedded in a high dimensional real space. Under local mea-
surements, the resulting probabilistic Boolean dynamics
is no longer Markovian. The transition probability at any
given time relies on the entire history of the sample path,
for which we establish a recursive computation scheme.

A more complete version of the work with full proofs and
more detailed examples can be found in Qi et al. (arXiv).
The remainder of the extended abstract is organized as
follows. Section 2 presents the qubit network model for the
study. Section 3 focuses on the induced Boolean network
dynamics from the measurements of the dynamical qubit
network. Finally Section 4 concludes the paper with a few
remarks.

2. THE QUANTUM NETWORK MODEL

In this section, we present the quantum networks model
for our study. We consider a network of qubits subject to
bilinear control, which aligns with the spin-network models
in the literature. We also consider a sequential measure-
ment process where global or local qubit measurements
take place periodically.

2.1 Qubit Networks

Qubit is the simplest quantum system whose state space is
a two-dimensional Hilbert space H (:= H2). Let n qubits
indexed by V = {1, . . . , n} form a network with state space
H⊗n. The (pure) states of the qubit network are then in
the space Q(2n) := {q ∈ H2n : |q|2 = 1}.
Let there be a projective measurement (or an observable)
for a single qubit as

M = λ0P0 + λ1P1,

where Pm = |vm〉〈vm| is the projector onto the eigenspace
generated by |vm〉 with eigenvalue λm, m ∈ {0, 1}. For
the n-qubit network, we can have either global or local
measurements.

Definition 1. (i) We term M⊗n = M⊗ · · · ⊗M as a global
measurement over the n-qubit network.

(ii) Let V∗ = {i1, . . . , ik} ⊂ V. Then

MV∗ = I⊗ · · · ⊗ I⊗
i1-th︷︸︸︷
M ⊗I⊗ · · · ⊗ I⊗

ik-th︷︸︸︷
M ⊗I⊗ · · · ⊗ I

is defined as a local measurement over V∗.

The global measurement M⊗n measures the individual
qubit states of the entire network, which yields 2n possible
outcomes [λm1

, . . . , λmn
],mj ∈ {0, 1}, j = 1, . . . , n. Upon

measuring the state |ϕ〉, the probability of getting result
[λm1

, . . . , λmn
] is given by p([λm1

, . . . , λmn
]) = 〈ϕ|Pm1

⊗
· · · ⊗ Pmn

|ϕ〉. Given that the outcome [λm1
, . . . , λmn

]
occurred, the qubit network state immediately after the

measurement is |ϕ〉p = |vm1〉 ⊗ · · · ⊗ |vmn〉. On the
other hand, the local measurement MV∗ measures the
states of the qubits in the set V∗ only, which yields
2k possible outcomes [λmi1

, . . . , λmik
], ij ∈ {0, 1}, j =

1, . . . , k corresponding to the qubits {i1, . . . , ik}. Upon
measuring the state |ϕ〉, the probability of getting result
[λmi1

, . . . , λmik
] is

p([λmi1
, . . . , λmik

]) = 〈ϕ|I⊗ · · · ⊗ I⊗ Pmi1

⊗ I⊗ · · · ⊗ I⊗ Pmik
⊗ I⊗ · · · ⊗ I|ϕ〉,

where mij ∈ {0, 1}, j = 1, . . . , k. Since the local measure-
ment reveals no information about the nodes in V\V∗, we
term the qubits in V∗ as the measured qubits, and those
in V \ V∗ as the dark qubits. For the ease of presentation
and without loss of generality, we assume V∗ = {1, . . . , k}
throughout the remainder of the paper.

2.2 Hybrid Qubit Network Dynamics

Consider the continuous time horizon represented by s ∈
[0,∞). Let A = ıH0 and B` = ıH`, ` = 1, . . . , p with H0 and
H` being Hermitian operators as Hamiltonians. Let |q(s)〉
denote the qubit network state at time s. The evolution of
|q(s)〉 is defined by a Schrödinger equation with controlled
Hamiltonians, and the network state be measured globally
or locally from s = 0 periodically with a period T . To
be precise, |q(s)〉 satisfies the following hybrid dynamical
equations

|q̇(s)〉 =

(
A +

p∑
`=1

u`(s)B`

)
|q(s)〉, s ∈ [tT, (t+ 1)T ),

(1)

|q((t+ 1)T )〉 = |q((t+ 1)T )−〉p, (2)

for t = 0, 1, 2, · · · , where |q((t + 1)T )−〉 represents the
quantum network state right before (t + 1)T along (1)
starting from |q(tT )〉, and |q((t + 1)T )−〉p is the post-
measurement state of the network when a measurement
is performed at time s = (t + 1)T . For the ease of
presentation, we define quantum states

|ψ(t)〉 = |q((tT )−)〉,
|ψ(t)〉p = |q(tT )〉

for the pre- and post-measurement network states at the
(t+ 1)-th measurement.

In particular, the control signals u`(s), ` = 1, . . . , p will
have feedforward or feedback forms.

Definition 2. (i) The control signals u`(s), ` = 1, . . . , p
are feedforward if their values are determined determinis-
tically at t = 0− for the entire time horizon s ≥ 0.

(ii) The control signals u`(s), ` = 1, . . . , p are feedback
if each u`(s) for s ∈ [tT, (t + 1)T ) depends on the post-
measurement state |ψ(t′)〉p, t′ = 0, 1, . . . , t.

3. BOOLEAN DYNAMICS FROM QUANTUM
MEASUREMENTS

In this section, we focus our attention on the induced
Boolean dynamics from the sequential measurements of
the qubit networks. We impose the following assumption.

Assumption 3. The u`(s), ` = 1, . . . , p are feedforward sig-
nals. Consequently, there exist a sequence of deterministic
Ut, t = 0, 1, 2, . . . such that |ψ(t+ 1)〉 = Ut|ψ(t)〉p.
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3.1 Induced Probabilistic Boolean Networks

Under the global measurement M⊗n, we can use the
Boolean variable xi(t) ∈ {0, 1} to represent the mea-
surement outcome at qubit i for step t, where xi(t) = 0
corresponds to λ0 and xi(t) = 1 corresponds to λ1. We can
further define the n-dimensional random Boolean vector

x(t) = [x1(t), · · · , xn(t)] ∈ {0, 1}n

as the outcome of measuring |ψ(t)〉 under M⊗n at step
t. The recursion of |ψ(t)〉p generates the corresponding
recursion of x(t) for t = 0, 1, 2, . . . , resulting in an in-
duced probabilistic Boolean network (PBN). Similarly,
subject to local measurement, we can define xk(t) =
[x1(t), · · · , xk(t)] ∈ {0, 1}k as the outcome of measuring
|ψ(t)〉 by MV∗ , where xi(t) ∈ {0, 1} continues to represent
the measurement outcome at qubit i.

|ψ(t)〉p |ψ(t+ 1)〉 |ψ(t+ 1)〉p

x(t) x(t+ 1)

Ut measurement

Fig. 1. Induced Boolean network dynamics.

We are interested in the interplay between the underlying
quantum state evolution and the induced probabilistic
Boolean network dynamics.

3.2 Global Measurement: Markovian PBN

Transition Characterizations We first analyze the be-
haviors of the induced probabilistic Boolean network dy-
namics under global qubit network measurements. Let
δiN be the i-th column of identify matrix IN . Denote
∆N = {δiN |i = 1, . . . , N}, and particularly ∆ := ∆2 for
simplicity. Identify {0, 1} ' ∆ under which 0 ∼ δ12 and
1 ∼ δ22 . Let x = [x1, . . . , xn] ∈ {0, 1}n be associated with

x] := δx1+1
2 ⊗ · · · ⊗ δxn+1

2 = δ

∑n

i=1
xi2

n−i+1

2n , (3)

where ⊗ represents the Kronecker product. In this way, we
have identified {0, 1}n ' ∆2n . For the ease of presentation,
we also denote bxc :=

∑n
i=1 xi2

n−i+1, and consider x, bxc,
and x] = δ

bxc
2n interchangeable without further mentioning.

Recall S as the set containing all (2n)2
n

Boolean mappings
from {0, 1}n to {0, 1}n. Each element in S is indexed by
f[α1,...,α2n ] ∈ S with αi = 1, . . . , 2n, i = 1, . . . , 2n, where

f[α1,...,α2n ](si) = sαi , si ∈ {0, 1}n, i = 1, . . . , 2n. (4)

In this way, the matrix f[α1,...,α2n ] = [δα1
2n , . . . , δ

α2n

2n ] serves
as a representation of f[α1,...,α2n ] since

f[α1,...,α2n ]δ
i
2n = δαi

2n , i = 1, . . . , 2n. (5)

Recall the observable M = λ0P0 + λ1P1 for one qubit.
We choose {|0〉, |1〉} as the standard orthonormal basis
of H, and denote Q0 = |0〉〈0|, Q1 = |1〉〈1|. Then there
exists a unitary operator u = |v0〉〈0| + |v1〉〈1| ∈ L∗(H),
whose representation under the chosen basis {|0〉, |1〉} is
u ∈ C2×2 which is a unitary matrix, such that P0 = uQ0u

†

and P1 = uQ1u
†.

Let {|0〉, |1〉}⊗n be the standard computational basis of the
n-qubit network. We denote for i = 1, . . . , 2n that

|bi〉 = |bi1 · · · bin〉 (6)

where |bi1 · · · bin〉 ∈ {|0〉, |1〉}⊗n with bij ∈ {0, 1}, j =
1, . . . , n. Now we can sort the elements of {|0〉, |1〉}⊗n by
the value of bbic in an ascending order. Let Ut have the
representation Ut ∈ C2n×2n under such an ordered basis.
Note that u ⊗ · · · ⊗ u has its matrix representation as
u⊗ · · · ⊗ u under the same sorted basis. Define

UM
t = (u⊗ · · · ⊗ u)†Ut(u⊗ · · · ⊗ u). (7)

For the induced Boolean series {x(t)}∞t=0, the following
result holds, whose proof is omitted as it is a direct
verification of quantum measurement postulate.

Proposition 4. Let Assumption 3 hold. With global mea-
surement, the {x(t)}∞t=0 form a Markov chain over the
state space {0, 1}n, whose state transition matrix Pt at
time t is given by

[Pt]i,j = P
(
x(t+ 1)

∣∣∣x(t)
)

=
∣∣∣[UM

t ]j,i

∣∣∣2,
for i = bx(t)c, j = bx(t + 1)c ∈ {1, 2, . . . , 2n}, where
[·]i,j stands for the (i, j)-th entry of a matrix. In fact,
there holds Pt = (UM

t )† ◦ (UM
t )>, where ◦ stands for the

Hadamard product.

The following theorem establishes an algebraic represen-
tation of the recursion for {x(t)}∞t=0.

Theorem 5. Let Assumption 3 hold. The recursion of
{x(t)}∞t=0 can be represented as a random linear mapping

x](t+ 1) = Ftx
](t), (8)

where 〈Ft〉 is a series of independent random matrices in
R2n×2n . Moreover, the distribution of Ft is described by

P(Ft = f[α1,...,α2n ]) =

2n∏
i=1

∣∣∣[UM
t ]αi,i

∣∣∣2.
3.3 Local Measurement: Non-Markovian PBN

We now turn to the local measurement case, where at time
t, MV∗ = M⊗k ⊗ I⊗(n−k) is performed over |ψ(t)〉 and
produces outcome xk(t) = [x1(t), . . . , xk(t)]. Therefore,
without loss of generality, we assume that M = λ0P0 +
λ1P1 = λ0|0〉〈0|+ λ1|1〉〈1|.
Given xk(t), the post-measurement state |ψ(t)〉p depends
on xk(0), . . . ,xk(t−1) due to the local measurement effect
as xk(t) alone is not enough to determine |ψ(t)〉. Therefore
{xk(t)}∞t=0 is no longer Markovian. Let r : xk(0), . . . , xk(t)
be a path of measurement realization. Define

Pr(0) := P(xk(0))

Pr(1) := P(xk(1)|xk(0))

...

Pr(t+ 1) := P(xk(t+ 1)|xk(t), . . . , xk(0)).

We aim to provide a recursive way of calculating the above
transition probabilities. Recall from (6) that {|0〉, |1〉}⊗n =
{|bi〉, i = 1, . . . , 2n} is a sorted basis for H⊗n. Let

|ψ(0)〉 =

2n∑
i=1

ai|bi〉
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with
∑2n

i=1 |ai|2 = 1 be the state of the quantum network
at time t = 0. Let Ut be the matrix representation of Ut
under the chosen basis for t = 0, 1, 2, · · · . Recall bxk(t)c :=∑k
i=1 xi(t)2

k−i + 1, and x ]k (t) := δ
bxk(t)c
2k

. Then we have
the following theorem.

Theorem 6. Let Assumption 3 hold and M = λ0|0〉〈0| +
λ1|1〉〈1|. Let r : xk(0), . . . , xk(t) be a realization of
the random measurement outcomes. Then there exist
βr(t) ∈ C2n−k

with βr(t) = [βr
1(t), . . . , βr

2n−k(t)]> for

t = 0, 1, 2, . . . , such that Pr(t) = ‖βr(t)‖2 for all t ≥ 0,
where βr(t) satisfies the recursion

βr(t+ 1) =
((

x ]k (t+ 1)
)> ⊗ I⊗(n−k))Ut(

x ]k (t)⊗ I⊗(n−k)
) βr(t)

‖βr(t)‖
(9)

with βr
i (0) = a(bxk(0)c−1)2n−k+i, i = 1, . . . , 2n−k.

4. CONCLUSIONS

We have studied dynamical quantum networks subject to
sequential local or global measurements leading to prob-
abilistic Boolean recursions which represent the measure-
ment outcomes. With global measurements, such resulting
Boolean recursions were shown to be Markovian, while
with local measurements, the state transition probability
at any given time depends on the entire history of the
sample path. Under the bilinear control model for the
Schrödinger evolution, we showed that the measurements
in general enhance the controllability of the quantum net-
works. The global or local measurements were assumed to
be prescribed in the current framework.
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