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Abstract: This paper proposes a generalized minimum detectable fault (MDF) computation
method based on the set-separation condition between the healthy and faulty residual sets for
discrete-time linear parameter varying (LPV) systems with bounded inputs and uncertainties.
First, we equivalently transform the multiple multiplicative actuator faults into the form
of multiple additive actuator faults, which is beneficial to simplify the problem. Then, by
considering the 1-norm of the fault vector, we define the generalized MDF in the case of multiple
additive actuator faults, which can be computed via solving a simple linear programming
(LP) problem. Moreover, an analysis of the effect of the input vector on the magnitude of
the generalized MDF is made. Since the proposed generalized MDF computation method is
robust by considering the bounds of inputs and uncertainties, robust fault detection (FD) can
be guaranteed whenever the sum of the magnitudes of all occurred faults is larger than the
magnitude of the generalized MDF. At the end of this paper, a numerical example is used to
illustrate the effectiveness of the proposed method.
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1. INTRODUCTION

Due to the demand of increasing system performance as
well as its safety and reliability in modern industries, FD
has attracted more and more attention from the scientific
community over the past years. Fault occurrence affects
the operation of the system to perform in its expected way.
To put it simply, FD determines whether the system op-
erates in faulty situations. The set-invariance approach is
an important model-based FD method, which concentrates
on testing consistency between the measured residuals in
real time and the residual set generated in the healthy
situation considering unknown but bounded uncertainties
(Xu et al., 2014, 2015). Under normal circumstances, when
the system reaches the steady state, the measured residual
trajectory finally converges to the healthy residual set.
Once the measured residuals are outside the healthy resid-
ual set, it is indicated that model uncertainties can not
explain the residuals alone and faults must have occurred
in the system (Montes de Oca et al., 2012). In this case, the
measured residual trajectory ultimately converges to the
faulty residual set at steady state. Consequently, provided
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that the healthy and faulty residual sets are separated, FD
can be guaranteed to perform in the steady stage.

Under the circumstances, the primary task of invariant set-
based FD is to construct the healthy and faulty invariant
residual sets. Generally speaking, the robust positively
invariant (RPI) set is defined as a bounded region in state
space that the system state can be confined inside regard-
less of the effect of bounded uncertainties. Furthermore,
the minimal robust positively invariant (mRPI) set is a
unique and compact RPI set contained in any closed RPI
set (Ghasemi and Afzalian, 2018). On one hand, a few
methods with respect to the construction of the RPI sets
for linear time-invariant (LTI) systems have been studied
by researchers in recent years. In Kofman et al. (2007), a
systematic method to obtain the RPI sets for perturbed
LTI systems was proposed. In Olaru et al. (2010), an iter-
ative method was presented which utilized the recursive
iteration of the approximation of the system dynamics
to approximate the mRPI set. On the other hand, Tan
et al. (2019) proposed a novel and practical mRPI set
construction method to characterize the healthy and faulty
residual sets of perturbed discrete-time LPV systems.

In addition, since the invariant set-based FD performance
is highly affected by system uncertainties, the characteri-
zation of the MDF of the invariant set-based FD methods
is significant for us to know the limits of performance of the
FD methods. In Pourasghar et al. (2016) and Kodakkadan
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et al. (2017), the characterization of the minimum mag-
nitude of faults affecting an LTI system in the presence
of uncertainties was presented using both the observer-
based and the set-invariance approaches. However, they
only separated the projections of the healthy and faulty
residual sets over at least one coordinate to obtain certain
conditions for guaranteed MDF, which is a little conserva-
tive due to the over-approximation by using the interval
hull of the invariant sets instead of the invariant sets.
Furthermore, Tan et al. (2019) proposed an effective MDF
computation method based on the set-separation condition
between the healthy and faulty residual sets for LPV sys-
tems, but it merely considered the case of single additive
actuator fault. According to Meseguer et al. (2010), the
MDF (‘triggering limit ’) corresponds to a fault that brings
a residual to its threshold, provided that no other faults
and nuisance inputs are present. Similarly, the case that
multiple faults bring a residual to its threshold should be
taken into account. On the basis of Tan et al. (2019), with-
out loss of generality, we propose the generalized definition
of the MDF in the multiple multiplicative actuator-faults
situation in this paper.

2. SYSTEM DESCRIPTION

2.1 System model

Consider the following discrete-time LPV system affected
by multiplicative actuator faults:

xk+1 =A(θk)xk +B(θk)Guk + Ewk, (1a)

yk =C(θk)xk + Fηk, (1b)

where k ∈ N is the discrete time index. A(θk) ∈ Rnx×nx ,
B(θk) ∈ Rnx×nu , and C(θk) ∈ Rny×nx are respectively
the system, input, and output matrices dependent on
a varying scheduling vector θk ∈ Rnθ . xk ∈ Rnx and
yk ∈ Rny denote the system state and output vectors
at time instant k, respectively. uk ∈ Rnu represents the
control input vector. The unknown input vector wk ∈ Rnw
(including process disturbances, modeling errors, etc.) is
contained in a known compact convex set W = {w ∈
Rnw |Hww ≤ bw} containing the origin. Similarly, the
measurement noise vector ηk ∈ Rnη also belongs to a
given compact convex set V = {η ∈ Rnη |Hηη ≤ bη}
containing the origin. E ∈ Rnx×nw and F ∈ Rny×nη
are constant distribution matrices. The diagonal matrix
G ∈ Rnu×nu models the multiplicative actuator faults. In
fact, the matrix G represents changes induced by faults
in the matrix B(θk), where G = diag([G1, . . . , Gnu ]) with
0 ≤ Gi<1 when the i -th actuator is faulty. Additionally,
G is the identity matrix I when the system (1) is healthy.

It is assumed that the nθ-dimensional scheduling vector θk
is a convex combination of given vertices, which generates
a convex set Θ = Conv{θ1, θ2, . . . , θN }. Therefore, a lin-
ear affine function Φ(θk) of θk can be written as the convex

combination of vertex matrices: Φ(θk) =
∑N
i=1 αiΦ(θi),

where the weighting coefficients αi satisfy the constraints∑N
i=1 αi = 1, 0 ≤ αi ≤ 1 and the function Φ(·) can

represent A(·), B(·), and C(·).

2.2 Design of FD observer

Consider the following Luenberger-structure FD observer:

x̂k+1 =A(θk)x̂k +B(θk)uk + L(yk − ŷk), (2a)

ŷk =C(θk)x̂k, (2b)

where x̂k and ŷk are the estimated state and output vectors
of the system (1), respectively. L ∈ Rnx×ny is the gain
matrix of the observer (2). In the healthy situation (i.e.,
G=I), the state-estimation error ek is defined as ek = xk−
x̂k. In addition, the dynamics of the state-estimation error
ek in the healthy situation can be obtained as

ek+1 = (A(θk)− LC(θk))ek + Ewk − LFηk. (3)

As analyzed in Tan et al. (2019), wk and ηk do not affect
the bounded input-bounded output (BIBO) stability of
the dynamics (3). Therefore, let us directly consider the
stability of the nominal system:

ēk+1 = (A(θk)− LC(θk))ēk, (4)

where ēk is the state-estimation error without considering
the effects of wk and ηk on the dynamics (3).

Theorem 1. According to Daafouz and Bernussou (2001),
the dynamics (4) is poly-quadratically stable if and only
if there exist symmetric positive definite matrices Pi, Pj ,
and matrices Qi of appropriate dimensions such that[

Qi +QTi − Pi ∗
(Ai − LCi)Qi Pj

]
� 0, ∀i, j = 1, 2, . . . ,N , (5)

where the symbol ∗ denotes the transpose of (Ai−LCi)Qi.
In this case, the time-varying parameter-dependent Lya-
punov function is given as V (ēk, θk) = ēTk Z (θk)ēk, with

Z (θk) =
∑N
i=1 αiP

−1
i ,

∑N
i=1 αi = 1, and 0 ≤ αi ≤ 1.

3. SET-THEORETIC ANALYSIS IN THE HEALTHY
SITUATION

If the condition of Theorem 1 is fulfilled, as analyzed
in Tan et al. (2019), there exist a family of RPI sets as
well as the convex hull of the mRPI set denoted as Ω∞
for the dynamics (3). For convenience, we also call Ω∞
the mRPI set of the dynamics (3). As mentioned above,
a novel and practical mRPI set construction method for
perturbed discrete-time LPV systems was reported in Tan
et al. (2019) and we recall it in Theorems 2, 3 and 4.

Theorem 2. (Tan et al., 2019) Under the condition of
Theorem 1, consider an arbitrarily given initial convex set
E0 ⊇ (1+δ)Ω∞, where Ω∞ is the mRPI set of the dynamics
(3) and δ>0. By computing the follwing iterative equation:

Ēk+1 =A(Ek)⊕ S, (6a)

Ek+1 =Conv{Ēk+1 ∪Ek}, (6b)

where ⊕ represents the Minkowski sum, A(·) is a set map-
ping function and A(Ek) = Conv{∪Ni=1(Ai − LCi)Ek},
Conv(·) denotes the convex hull of a set, S = EW ⊕
(−LF )V. There exists a finite k∗ ∈ N such that Ek∗+1 =
Ek∗ . Moreover, Ek∗ is an RPI set for the dynamics (3).

Theorem 3. (Tan et al., 2019) Given an initial RPI set Ek∗

for the dynamics (3), the sequence Ωk: Ωk+1 = A(Ωk)⊕S,
with Ω0 = Ek∗ , ensures that at each iteration, Ωk is an RPI
set of the dynamics (3) and Ω∞ ⊆ Ωk+1 ⊆ Ωk ⊆ Ω0 holds
for k ≥ 1. Furthermore, we have Ω∞ = limk→+∞ Ωk =
⊕∞i=0Ai(S), which is the mRPI set of the dynamics (3).

Furthermore, the initialization of E0 such that E0 ⊇ (1 +
δ)Ω∞ can be guaranteed based on Theorem 4.

Theorem 4. (Tan et al., 2019) Suppose that the dynamics
(3) is stable, the initial convex set E0 ⊇ (1 + δ)Ω∞ can
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be given by E0 = ⊕p
∗−1
i=0 Ai(B(r)) ⊕ p∗ξ

1−ξB(r), where it is

indicated that there exist a scalar ξ ∈ (0, 1), p∗ ∈ N and
a box B(r) = {x ∈ Rnx | ‖x‖∞ ≤ r} containing S, i.e.,
S ⊆ B(r), such that for any k ≥ p∗, Ak(B(r)) ⊆ ξB(r).

4. SET-THEORETIC ANALYSIS IN THE FAULTY
SITUATION

4.1 Disturbance-free system with multiple multiplicative
actuator faults

Above all, let us consider the behavior of the system (1)
with multiple multiplicative actuator faults in the absence
of wk and ηk. Therefore, the analysis is made based on the
following disturbance-free system:

x̃k+1 =A(θk)x̃k +B(θk)Guk, (7a)

ỹk =C(θk)x̃k, (7b)

where uk = [u1, . . . , unu ]T , G = diag([G1, . . . , Gnu ]) with
0 ≤ Gi ≤ 1 for all i = 1, 2, . . . , nu, and G is not the
identity matrix I in the faulty situation. In this case, the
state-estimation error corresponding to the Luenberger-
structure observer (2) is defined as ẽk = x̃k − x̂k, whose
dynamics can be obtained as

ẽk+1 = (A(θk)− LC(θk))ẽk +B(θk)(G− I)uk. (8)

In order to construct the faulty residual set, we have to
transform (8) into a tractable form. Notice that

(G− I)uk =[(G1 − 1)u1, . . . , (Gnu − 1)unu ]T

=[−f1u1, . . . ,−fnuunu ]T ,
(9)

where fi = 1−Gi with 0 ≤ fi ≤ 1 for all i = 1, 2, . . . , nu,
ui is the i-th component of the input vector uk. Since
B(θk) = [B1(θk), . . . , Bnu(θk)], we have B(θk)(G− I)uk =
−
∑nu
i=1 fiuiBi(θk), where Bi(θk) is the i-th column of the

matrix B(θk). Therefore,the dynamics (8) is equivalent to
the following form:

ẽk+1 = (A(θk)− LC(θk))ẽk −
∑nu

i=1
fiuiBi(θk). (10)

Actually, (10) represents the dynamcis of the state-
estiamtion error ẽk with multiple additive actuator faults.
Especially, the dynamcis of the state-estimation error with
single additive actuator fault can be derived as

ẽik+1 = (A(θk)− LC(θk))ẽik − fiuiBi(θk), (11)

where it is assumed that the i-th actuator is faulty. Ob-
viously, according to the superposition principle, we have
ẽk =

∑nu
i=1 ẽ

i
k. In order to construct the faulty residual set

in the multiple additive actuator-faults situation, we firstly
consider the dynamics (11) in the single additive actuator-
fault situation. As mentioned above, we directly consider
the convex hull of the mRPI set of the dynamics (11).
Firstly, we should deal with the product term uiBi(θk). It
is assumed that the component ui of the input vector uk is
contained in an interval Ui = {µ ∈ R|umini ≤ µ ≤ umaxi }.
Similarly, the column vector Bi(θk) of the matrix B(θk) is
contained in a convex set Bi(Θ) = {x ∈ Rnx |HBix ≤ bBi}.
Then we can obtain a convex set that contains the product
term uiBi(θk) as the following:

uiBi(θk) ∈ B
ui
i (Θ) = Conv{(umini Bi(Θ)) ∪ (umaxi Bi(Θ))}. (12)

Suppose that the dynamics (11) is stable, based on the
results in Theorems 2, 3 and 4, the mRPI set of the
dynamics (11) can be obtained as fiẼi, where Ẽi =
⊕∞j=0Aj(−Bui

i (Θ)) denotes the mRPI set of the dynamics
(11) in the case of fi = 1.

After that, we consider the dynamics (10) to construct
the residual set in the multiple additive actuator-faults
situation. Based on the properties of invariant sets, the
state-estimation error ẽik will always be contained in the

mRPI set fiẼi when the system (7) reaches the steady

state (i.e., ẽik ∈ fiẼi). Suppose that the dynamics (11) is

stable for all i = 1, 2, . . . , nu, then we have ẽik ∈ fiẼi,∀i =
1, 2, . . . , nu. Therefore, if we consider the dynamics (10)
with multiple additive actuator faults, the corresponding
state-estimation error ẽk will be contained in a convex set
Ẽ which includes the mRPI set of the dynamics (10) as

ẽk =
∑nu

i=1
ẽik ∈ ⊕

nu
i=1 fiẼi = Ẽ. (13)

4.2 Healthy and faulty residual sets

Combining (3) with (10), we can further derive the dynam-

ics of the state-estimation error efk in the multiple additive
actuator-faults situation under the effects of wk and ηk:

ef
k+1

= (A(θk)− LC(θk))ef
k

+ Ewk − LFηk −
∑nu

i=1
fiuiBi(θk),

(14)

with efk = ek + ẽk = ek +
∑nu
i=1 ẽ

i
k leading to the invariant

set characterization: Ef = E ⊕ Ẽ = E ⊕ {⊕nui=1 fiẼi},
where E = Ω∞ represents the mRPI set of the dynamics
(3). Furthermore, we define the following residual vector
corresponding to (3) in the healthy situation: rk = yk −
ŷk = C(θk)ek + Fηk, whose set version is

R = C(E)⊕ FV, (15)

where C(E) = Conv{∪Ni=1CiE}. Similarly, we can derive
the residual vector in the multiple additive actuator-faults

situation: rfk = C(θk)efk + Fηk = C(θk)ek + Fηk +
C(θk)

∑nu
i=1 ẽ

i
k = rk +

∑nu
i=1 C(θk)ẽik, whose set version

can be represented as

Rf = R⊕ {⊕nui=1 C(fiẼi)} = R⊕ {⊕nui=1 fiC(Ẽi)}, (16)

where Rf is the faulty residual set containing the residual

vector rfk , which is dependent on all fi, i = 1, 2, . . . , nu. For
convenience, we define the fault vector f = [f1, . . . , fnu ]T

in the multiple actuator-faults situation. According to the
detection criterion of the invariant set-based FD, we need
to check whether rk ∈ R holds or not in real time. If
that relationship does not hold (i.e., rk 6∈ R) after a time
instant k− 1 where rk−1 ∈ R, it indicates that the system
(1) is faulty at time instant k. Otherwise, we believe that
the system (1) still operates in the healthy situation. Once
there are some faults occurred in the system (1), according
to the properties of invariant sets, it is noted that the
residual vector rk will converge to the faulty residual set
Rf . Consequently, provided that there is no intersection
between the healthy residual set R and the faulty residual
set Rf , i.e., R ∩ Rf = ∅, the effective detection of the
faults can be guaranteed in the steady stage.

5. COMPUTATION OF THE GENERALIZED MDF

In this section, an effective method to compute the gener-
alized MDF by considering the constraint R ∩ Rf = ∅ is
presented. It is noticed that the mathematical description
of the MDF for single additive actuator fault has already
been presented in Tan et al. (2019). Without loss of gener-
ality, here we further propose the generalized MDF in the
multiple additive actuator-faults situation as follows:
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min ‖f‖1
s.t. R∩Rf = ∅; 0 ≤ fi ≤ 1, ∀i = 1, 2, . . . , nu,

(17)

where ‖f‖1 denotes the 1-norm of the fault vector f . Since
‖f‖1 =

∑nu
i=1 |fi| =

∑nu
i=1 fi, the optimization problem

(17) is equivalent to the following form:

min
∑nu

i=1
fi

s.t. R∩Rf = ∅; 0 ≤ fi ≤ 1, ∀i = 1, 2, . . . , nu.

(18)

As a matter of fact, the constraints 0 ≤ fi ≤ 1 (i =
1, 2, . . . , nu) describe a hypercube in nu-dimensional Eu-
clidean space. Furthermore, the optimal solution of the
optimization problem (18) describes a hyperplane denoted
as
∑nu
i=1 fi = λ with respect to each component fi of

the fault vector f , where λ is the generalized MDF. No-
tice that 0 ≤ fi ≤ 1 for all i = 1, 2, . . . , nu, we have
0 ≤

∑nu
i=1 fi ≤ nu, where

∑nu
i=1 fi = 0 and

∑nu
i=1 fi = nu

describe a vertex of the above hypercube, respectively.
And all the available values that satisfy

∑nu
i=1 fi = ρ

(0 < ρ < nu) represent a series of parallel hyperplanes
contained in that hypercube. The line between the point∑nu
i=1 fi = 0 and the point

∑nu
i=1 fi = nu is perpendicular

to all these parallel hyperplanes. In terms of the definition
of the generalized MDF, we hold the opinion that the
system (1) is faulty as long as the magnitude of

∑nu
i=1 fi

is larger than the magnitude of λ.

In order to illustrate better, we consider a special case
nu = 3 in Fig. 1. As shown in Fig. 1, the area between the
red point

∑3
i=1 fi = 3 and the plane

∑3
i=1 fi = λ indicates

the range of guaranteed detectable faults in the steady
stage, while the area between the blue point

∑3
i=1 fi = 0

and the plane
∑3
i=1 fi = λ indicates that the system (1) is

healthy or in faulty situations that can not be guaranteed
to detect. To sum up, the generalized MDF describes a
boundary where the healthy residual set R and the faulty
residual set Rf are just separate. Therefore, we aim to
figure out the optimization problem (18) hereinafter to
obtain the value of the generalized MDF. Unfortunately,
it is complex and can not be solved directly.

In the following Theorem 5, the optimization problem
(18) is transformed into a simple LP problem to obtain
the generalized MDF. Before presenting Theorem 5, we
first give a relevant corollary. Kvasnica (2005) presented a
computation method of the Minkowski sum of two poly-
topes which are given in H-representation. In consequence,
we further propose the result of the Minkowski sum of
multiple polytopes in Corollary 1.
Corollary 1. If nu known polytopes Pi (i = 1, 2, . . . , nu)
are given in H-representation, i.e., Pi = {xi ∈ Rn|Hixi ≤
bi} (i = 1, 2, . . . , nu), their Minkowski sum M =

nu
⊕
i=1
Pi

can be computed by the following projection:

M=



r ∈ Rn
∣∣∣∣∃ xi, i = 1, 2, . . . , nu − 1, s.t.

H1 . . . 0 0
...

...
...

...
0 . . . Hnu−1 0

−Hnu . . . −Hnu Hnu




x1
...

xnu−1

r

≤


b1
...

bnu−1

bnu




.

Theorem 5. For the optimization problem (18), the mag-
nitude of the generalized MDF can be obtained by solving
the following LP problem:

Fig. 1. The blue point represents
∑3
i=1 fi = 0 while the

red point represents
∑3
i=1 fi = 3. And the plane∑3

i=1 fi = λ represents the generalized MDF.

min −
∑nu

i=1
fi

s.t.



Hx ≤ b,Hηy ≤ bη ,
Hx−Hz ≤ b,Hηy −Hηt ≤ bη ,
H̃ixi ≤ fib̃i, ∀i = 1, 2, . . . , nu − 1,

−H̃nuz − H̃nuFt−
∑nu−1

i=1
H̃nuxi ≤ fnu b̃nu ,

0 ≤ fi ≤ 1, ∀i = 1, 2, . . . , nu,

(19)

where V = {η ∈ Rnη |Hηη ≤ bη}, C(E) = {x ∈ Rny |Hx ≤
b}, and C(Ẽi) = {xi ∈ Rny |H̃ixi ≤ b̃i} (i = 1, 2, . . . , nu).

Proof. Consider the dual case of (18), then we obtain the
following optimization problem:

max
∑nu

i=1
fi

s.t. R∩Rf 6= ∅; 0 ≤ fi ≤ 1, ∀i = 1, 2, . . . , nu.

(20)

In fact, for any magnitude of
∑nu
i=1 fi larger than the

optimal solution of the problem (20), the constraints in
(18) are satisfied, therefore the optimal solution here
represents an infimum for the optimization problem (18).
Furthermore, the optimization problem (20) is equivalent
to the following optimization problem:

min −
∑nu

i=1
fi

s.t. R∩Rf 6= ∅; 0 ≤ fi ≤ 1, ∀i = 1, 2, . . . , nu.

(21)

Based on (15) and (16), considering the constraint R ∩
Rf 6= ∅ in (21), we have

R∩Rf 6= ∅ ⇔ 0 ∈ Rf ⊕ (−R)⇔ 0 ∈ R⊕ {⊕nui=1 fiC(Ẽi)} ⊕ (−R)

⇔ 0 ∈ C(E)⊕ (−C(E))⊕ F (V⊕ (−V))⊕ {⊕nui=1 fiC(Ẽi)}.
(22)

Since the sets E and Ẽi are the mRPI set of the dynamics
(3) and (11), respectively, both of them are known poly-

topes. Consequently, the convex hulls C(E) and C(Ẽi) (i =
1, 2, . . . , nu) are known polytopes too. For the convenience
of illustration, it is assumed that C(E) = {x ∈ Rny |Hx ≤
b}, C(Ẽi) = {xi ∈ Rny |H̃ixi ≤ b̃i} (i = 1, 2, . . . , nu). After
that, in the light of Corollary 1, we have

C(E)⊕ (−C(E))=

{
z ∈ Rny

∣∣∣∃x, s.t. [H 0
H −H

][
x
z

]
≤
[
b
b

]}
,

F (V⊕ (−V)) ={
β ∈ Rny

∣∣∣∃y, t, s.t. β = Ft,

[
Hη 0
Hη −Hη

][
y
t

]
≤
[
bη
bη

]}
.

(23)

In addition, let S = C(E) ⊕ (−C(E))⊕F (V⊕ (−V))⊕
{⊕nui=1 fiC(Ẽi)}, which can be computed as
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S =

{
m ∈ Rny

∣∣∣∃x, y, z, t, r, xi, s.t. m = z + β + r,[
H 0
H −H

][
x
z

]
≤
[
b
b

]
, β = Ft,

[
Hη 0
Hη −Hη

][
y
t

]
≤
[
bη
bη

]
,

H̃ixi ≤ fib̃i,∀i = 1, 2, . . . , nu − 1,

H̃nur −
∑nu−1

i=1
H̃nuxi ≤ fnu b̃nu

}
=

{
m ∈ Rny

∣∣∣∃x, y, z, t, xi, s.t.[
H 0
H −H

][
x
z

]
≤
[
b
b

]
, β = Ft,

[
Hη 0
Hη −Hη

][
y
t

]
≤
[
bη
bη

]
,

H̃ixi ≤ fib̃i, ∀i = 1, 2, . . . , nu − 1,

H̃nu (m− z − β)−
∑nu−1

i=1
H̃nuxi ≤ fnu b̃nu

}
=

{
m ∈ Rny

∣∣∣∃x, y, z, t, xi, s.t.[
H 0
H −H

][
x
z

]
≤
[
b
b

]
,

[
Hη 0
Hη −Hη

][
y
t

]
≤
[
bη
bη

]
,

H̃ixi ≤ fib̃i,∀i = 1, 2, . . . , nu − 1,

H̃nu (m− z − Ft)−
∑nu−1

i=1
H̃nuxi ≤ fnu b̃nu

}
.

(24)

Since R ∩Rf 6= ∅ ⇔ 0 ∈ S based on (22), the constraint
0 ∈ S can lead to a series of linear constraints Hx ≤ b,
Hηy ≤ bη, Hx − Hz ≤ b, Hηy − Hηt ≤ bη, H̃ixi ≤ fib̃i
(i = 1, 2, . . . , nu − 1), −H̃nuz − H̃nuFt−

∑nu−1
i=1 H̃nuxi ≤

fnu b̃nu . Finally, we obtain the LP problem (19). �

In summary, Theorem 5 presents the method to compute
the magnitude of the generalized MDF. No matter how
the component ui (i = 1, 2, . . . , nu) of the input vector uk
varies in the interval Ui = {µ ∈ R|umini ≤ µ ≤ umaxi }, FD
can always be guaranteed in the steady stage by using
the invariant set-based method as long as the sum of
the magnitudes of all occurred faults is larger than the
magnitude of the generalized MDF. In fact, Theorem 5
describes a more universal circumstance and it includes
the case of computing the magnitude of MDF for single
additive actuator fault, which is presented in Tan et al.
(2019). Moreover, if we consider a special case that nu = 1,
we will obtain the same results as Tan et al. (2019).
Nevertheless, the results obtained from the optimization
problem (19) may be deemed to be conservative since the
set of the input vector uk is considered here. Actually, we
can reduce the conservatism of results on the magnitude
of the generalized MDF by decreasing the varying range
of the input vector uk. Particularly, if the specific value
ūi of the component ui is known to compute the set
Būi
i (Θ) = ūiBi(Θ) instead of computing the convex hull

set Bui
i (Θ) in (12), we can obtain a less conservative

magnitude of the generalized MDF. In this case, the
magnitude of the generalized MDF is dependent on the
value of each component ui and the whole solving process
is similar to the above which is omitted here.

6. NUMERICAL EXAMPLE

We consider the discrete-time LPV system (1) with

A(θk)=

[
0.85 0.2θk(2)

0.1θk(1) 0.75

]
, C(θk)=

[
0.04θk(2) 0.3

0.05 0.01θk(1)

]
,

B(θk) =

[
0.5678θk(1) 0.4265θk(1) 0.2464θk(1)
0.3492θk(2) 0.7347θk(2) 0.6386θk(2)

]
,

E =

[
0.6324 0.2785
0.0975 0.5469

]
, F =

[
0.8147 0.1270
0.9058 0.9134

]
,

with θk = [θk(1), θk(2)]T . The bounding sets of wk and
ηk are designed as W = {w ∈ R2| ‖w‖∞ ≤ 0.02} and
V = {η ∈ R2| ‖η‖∞ ≤ 0.02}. It is assumed that the com-
ponent ui (i = 1, 2, 3) of the input vector uk is contained
in the intervals U1 = {µ ∈ R|1.5 ≤ µ ≤ 1.8}, U2 = {µ ∈
R|0.8 ≤ µ ≤ 1.2}, and U3 = {µ ∈ R|1.0 ≤ µ ≤ 1.6}, re-
spectively. The bounding set of the scheduling vector θk is
given as Θ = Conv{[0.5, 0.5]T , [1, 0.5]T , [1, 1]T , [0.5, 1]T }.
Furthermore, the gain matrix L of the FD observer (2)

is designed as L =

[
0.5 0
0 1

]
. According to Theorem 1,

the linear matrix inequalities (5) can be solved and thus
we can obtain proper matrices to verify poly-quadratical
stability of the nominal system (4) using YALMIP.

Firstly, we can obtain the mRPI sets E and Ẽi (i = 1, 2, 3)
based on Theorems 2, 3 and 4. The construction process
of these mRPI sets is ommitted and readers can refer to
Tan et al. (2019) for more details. Then, according to
Theorem 5, the generalized MDF in the multiple additive
actuator-faults situation is obtained as λ = 0.5426 (f1 =
0.5426, f2 = f3 = 0). Thus, for any actuator faults, as
long as the sum of all occurred faults is larger than this
threhold, the detection of the faults can be guaranteed.
We assume the following faults scenario: from k = 0 to
k = 40, the system operates in the healthy situation. From
k = 41 to k = 100, we inject three faults (f1 = 0.2426, f2 =
0.1, f3 = 0.2) into the system. For convenience, we directly
consider drawing the interval hull (the two blue lines) of
the healthy residual set R. The results of on-line FD for
the generalized MDF λ = 0.5426 are shown in Fig. 2. It
is observed that from k = 45 to k = 100, the measured
residual rk in real time is outside R and the faults are
detected. As mentioned above, as long as the sum of
the magnitudes of all occurred faults is larger than the
magnitude of the generalized MDF, FD can be guaranteed
by utilizing our proposed method.

For the reason that the input vector uk can affect the
magnitude of the generalized MDF, we can reduce the
conservatism of results on the magnitude of the generalized
MDF by decreasing the varying range of the input vector
uk. For the sake of illustration, we consider the case that
nu = 1 and utilize the variation of the component u1

to analyze the effect of the varying range of uk on the
magnitude of the generalized MDF. The magnitudes of the
generalized MDF for single actuator fault with respect to
different varying ranges of the component u1 are displayed
in Table 1. In addition, for a specific value ū1 inside the
varying range of the component u1, we can also compute
the corresponding magnitude of the generalized MDF.

Table 1. The magnitudes of the generalized
MDF w.r.t. different varying ranges of u1

Varying range of u1 the generalized MDF

u1 ∈ [1.5, 1.8] 0.5426

u1 ∈ [1.6, 1.8] 0.5087

u1 ∈ [1.7, 1.8] 0.4788

u1 ∈ [1.75, 1.8] 0.4651

It is worth mentioning that we can obtain the same
results as Table 1 by using the MDF computation method
for single additive actuator fault presented in Tan et al.
(2019), which verify the universality of Theorem 5. To
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Fig. 2. On-line FD for the generalized MDF λ = 0.5426.
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Fig. 3. The different magnitudes of the generalized MDF
w.r.t. different varying ranges of u1.

dispaly and illustrate better, we show the generalized MDF
for specific values of u1 and results of Table 1 in Fig.
3. In Fig. 3, the black line represents the magnitudes
of the generalized MDF for different specific values of
u1, which is plotted by computing a magnitude of the
generalized MDF with a step increment of 0.003 from
1.5 to 1.8. The purple line represents the magnitude of
the generalized MDF when u1 ∈ [1.75, 1.8]. Similarly, the
green line and blue line represent the magnitudes of the
generalized MDF when u1 ∈ [1.7, 1.8], u1 ∈ [1.6, 1.8],
respectively. It is observed that in each small interval (i.e.,
[1.75,1.8], [1.7,1.8], [1.6,1.8]), the black line is always below
the purple line, green line, and blue line. Additionally,
the purple line and green line are both below the blue
line since the blue line has a larger varying range of the
component u1, which exactly conforms to the theoretic
analysis that the conservatism of results on the magnitude
of the generalized MDF can be reduced by decreasing
the varying range of the input vector uk. The red line
represents the magnitude of the generalized MDF when
u1 ∈ [1.5, 1.8], whose result is the most conservative since
all the values of the component u1 have been considered.
Therefore, it can be found that all other lines are below
the red line. According to the analysis above, it can be
concluded that if we know more infomation on the input
vector uk, we can reduce the conservatism of results on the
magnitude of the generalized MDF as expected. Moreover,
we can see from the black line in Fig. 3 that the larger
the component u1 is, the smaller the magnitude of the
generalized MDF, which is practical and meaningful.

7. CONCLUSION

This paper characterizes the generalized MDF of the
invariant set-based robust FD methods for perturbed
discrete-time LPV systems affected by multiple multiplica-
tive actuator faults. The main contribution is threefold.
First, we obtain the dynamics of the state-estimation error

in the multiple multiplicative actuator-faults situation and
transform it into a tractable form. Second, by considering
the 1-norm of the fault vector, we define the generalized
MDF in the multiple additive actuator-faults situation,
which can be computed via solving a simple LP problem.
Third, an analysis of the effect of the input vector on the
magnitude of the generalized MDF is made. In the future,
we are devoted to extend these results to sensor faults.
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