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Abstract: The algorithm of the digital adaptive controller is offered in this article for control systems 

with identification of uncertain multivariable continuous-time objects. The adaptive controller includes 

unit of digital identification and unit of digital control. The algorithm of the identification unit allows to 

define the transfer matrix of the uncertain continuous-time plant. Unlike traditional methods of 

identification, the offered analytical algorithm uses Markov parameters not of the uncertain continuous-

time plant, but virtual discrete-like plant. Markov parameters are determined by data of I/O of the 

uncertain continuous-time plant. The algorithm of the control unit is developed with use of control of two 

types: decomposition control and digital control on the output and impacts. The order and parameters of 

the control unit are determined by the method of the analytical design of digital control systems. 

Normalized standard transfer functions are used to create the transfer functions of the adaptive system 

according to required values of astatism order, settling time and overshot. The effectiveness of the 

proposed algorithm of adaptive controller is illustrated by a numerical example. The proposed approach 

can be applied to create control systems for agricultural, food, mining, and other industries. 

Keywords: uncertain multivariable continuous-time plant, identification, Markov parameters, adaptive 

control, design, digital adaptive controller, standard transfer function, astatism, settling time, overshoot. 

 

1. INTRODUCTION 

Requirements to the quality of control systems increase and 

their area of use expands continuously. Moreover, plant 

models are often absent. Therefore, the problem of control of 

uncertain, continuous-time multivariable (MIMO) plants is 

considered in many papers. To solve this problem, adaptive 

systems are usually used. Adaptive control systems are 

designed without using a model of an uncertain plant often. 

Adaptive MIMO systems are designed based on learning 

control in Radac et al. (2015), Xu et al. (2014). An adaptive 

controller is designed according to minimum of a certain 

functional by Zhu and Hou (2015), and Zhu et al. (2016) use 

the backstepping method to design adaptive feedbacks of an 

output. Practically, adaptive design methods assume that the 

order of an uncertain plant is known and constant. 

Adaptive systems with identification of models are more 

efficient. They can be used when the order and parameters of 

a plant change in steps at some points in time. Constancy 

intervals of the order and the parameters can be short Ning et 

al. (2019) or rather long Xu et al. (2014). To create adaptive 

systems of this type, digital algorithms for identification of 

the plant model and for the control design are needed. 

The frequency identification method based on the Wiener-

Hopf equation is one of the earliest. This method is 

statistical; therefore, the identification process has long 

duration. Currently, for identification, harmonious signals are 

used more often. A model of an object is created on the basis 

of sinusoidal test signals Gerasimov et al. (2018), Ahmed et 

al. (2009). In Voevoda et al. (2019) this problem is solved on 

the basis of the amplitude-frequency characteristic of a closed 

system. However, this approach can be implemented if 

changing parameters and ranges of their changes are known a 

priori. That is a significant drawback of this approach. 

One of the earliest non-frequency identification methods of 

B. Ho was represented in Kalman et al. (1971). This method 

was developed based on the Markov parameters of dynamical 

systems Chen (1999) for the identification of discrete plants 

with the use of pulse transient functions. But these functions 

are almost impossible to obtain; therefore, the B. Ho’s 

method is not applied practically. 

Identification is often carried out based on the optimal 

filtering theory. Model coefficients and boundaries of their 

constancy are determined by solving an optimization problem 

with constraints in Aida-zade and Ragimov (2017). 

Parameters of an uncertain plant model are determined by 

integrating the highest derivative variables, which are 

measured with some noise, in Shao et al. (2017). In Genov et 

al. (2017), the state of a complex system is identified under 

ambiguity measurement conditions.  
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At present, the LQG method is the most common method for 

the analytical control systems design Chen (1999), Ghaffar 

and Richardson (2015). However, this method is difficult to 

apply when the plant order is uncertain, therefore, adaptive 

control systems for uncertain plants are often designed using 

PI or PID controllers, see He and Wang (2006). 

The paper is devoted to the development of an algorithm of a 

digital adaptive control with identification of uncertain 

multivariable continuous-time (UC MIMO) plants. The 

algorithm of the identification has been developed using the 

Markov parameters of a virtual discrete-like plant (DLP). The 

Markov parameters are calculated based on continuous-time 

plant reaction to a step test action. The algorithm of the 

adaptive control is designed using decomposition, digital 

control on an output and impacts, and standard normalized 

transfer functions. The offered controller can be implemented 

using parallel digital processing of experimental data by 

multiprocessor controllers, see Levin (2015), Minaev (2016). 

This paper is structured into seven sections. In the sections 2 

and 3 the problem statement and the virtual discrete-like plant 

are introduced. In the section 4 the connection of the Markov 

parameters of any dynamic plant with its transfer function 

and the algorithm of the identification unit following from 

them are considered. The design problem of adaptive control 

is formulated in the section 5. The algorithm as its solution is 

offered in the section 6. Finally, in the section 7 a numerical 

example shows the performance of the proposed algorithms. 

2. PROBLEM STATEMENT 

We assume that an uncertain continuous-time plant is 

described by the equations 

w Pw Qu= +� , у Kw Du= + ,                    (1) 

where w∈R
n
 is the state vector; u∈R

m
 is the vector of 

controls; y∈R
q
 is the vector of output variables of the plant; 

P, Q, K, D are numeric matrices of the corresponding 

dimensions. The order n of the plant and the parameters of its 

model (1) are unknown a priori. They can suddenly change 

and then remain unchanged for quite a long time. At any time 

UC MIMO plant (1) is full, i.e. it has only a controllable and 

observable path between the input and the output of the plant 

Stengel (1994), Gaiduk (1998); but its order is n < nmax, 

where nmax is a priory known value. All the output variables yi 

= yi(t), i = 1, 2, … q are measured. 

The task consists in the development of the digital 

identification algorithm to define the current model (1) and 

the control algorithm of the adaptive digital controller (ADC) 

based on the model (1). This controller must be realizable and 

to provide a required astatism order to reference and external 

disturbances; the settling time and overshoot should have 

values less than required, Raven (1983), Gaiduk (2012). 

3. VIRTUAL DISCRETE-LIKE PLANT 

Let Tspi be the sampling period of the variables yi=yi(t) at the 

identification, then 
1 2( ) [ ]

j j j j j T
k spi k k qky y kT y y y= = …  is the 

vector of discrete values of the deviations of the output 

variables caused by a test action uj(t)=[0…0 uj0 0…0] at 

w(0)=0; uj0=const, j=[1, m]. The identification algorithm is 

based on virtual discrete plants which have the sampling 

period Tspi. These plants are described by the equations: 

, 1k k kw P w Q uν + ν ν ν= + ��� � � ,    k k ky K w Duν ν= +� �� � � .       (2) 

Here 
1 2[ ]Tk k k kw w w wν ν=� � � �…  and 

1 2[ ]
T

k k k qky y y y=� � � �…  are the 

deviations vectors of the state and output variables; 

1 2[ ]T
k k k mku u u u=� � � �…  are the discrete controls, 0,1, 2,k = …; 

, , ,P Q K Dν ν ν
�� � �  are the numerical matrices of the plants (2), 

max[1, ... ]nν = , see: Gaiduk and Plaksienko (2016).  

Let 
1 2[ ]

j j j j T
k k k qky y y y=� � � �…  be the deviations of the output 

variables of the plant (2) caused by the control 

[0 0 0 0]
T

k jku u=� �… …  at  
0 0wν =�  and  

0jk ju u=� ,  
j j

k ky y=� ,  [1,... ]j m= ,  0,1, 2,k = … .   (3) 

Definition 1. The virtual plants (2) are called discrete-like 

plants (DLP) to the continuous plant (1) if the conditions (3) 

are fulfilled. 

The test action uj(t)= uj01(t) can be represented as a sequence 

of rectangular pulses having the duration Tspi and amplitude 

uj0. Therefore, the transfer functions (TF) ( )
i jy u sΘ  of the 

channels uj → yi of the plant (1) are connected with the TF 

( , , )
i jy u spiz TΘ ν� �
�  of the channels 

j iu y→� �  of the DLP (2) with 

v=n by the special ZT-transform: 

{ }1( ) ( , , )
i j i jy u T y u sp ijs Z z T n

−Θ = Θ � �� � , 

 { }( , , ) ( )
i j i jy u sp ij T y uz T n Z sΘ = Θ� �
� � ,    

ij ijn n= � ,         (4) 

where ,ij ijn n�  are the degrees of the denominators of the TF 

( , , )
i jy u spi ijz T nΘ � �� �  and ( )

i jy u sΘ  respectively, j=1,2,…,m, 

i=1,2,…,q. Evidently, the matrices ,P Qν ν
�� , Kν

� depend on Tspi. 

The transforms (4) are carried simply, see Moore (2013). 

However, if the continuous-time plant (1) has “left” poles, 

then the possibility of its identification based on the DLP (2) 

is lost if Tspi is too large. In this regard, the following 

definition is introduced. Let ,0
ij
νη�  be the free coefficient of the 

denominator of the TF ( , , )
i jy u spiz TΘ ν� �
�  of the system (2) and 

0∆�  be the computational error of the controller used. 

Definition 2. If the sampling period Tspi=T
°
spi, and the TF 

( , , )
i jy u spiz TΘ ν�

� �
�  is such that 

  ,0
0ij

νη ∆�� � ,  
max[1,... ]nν = ,                      (5) 

then the DLP (2) is correct. If 
spi spiT T> �  and ,0

0ij
νη ∆�� � , then 

the DLP (2) is incorrect. 
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4. MARKOV PARAMETERS AND TRANSFER 

FUNCTIONS 

The Markov parameters 
i jm
ς
�  of each channel 

j iu y→� �  of the 

DLP (2) with the order v are defined by the expressions: 

0
i j i jm d= �� , 1 j

i j im K P Q
ς ς−

ν ν ν= �� �� ,   1, 2, 3,ς = … ,        (6) 

where 
i jd�  is the element of the matrix D� ; 

iKν
�  is the i-row of 

the matrix Kν
� , 1,i q= ; jQ ν

�  is the j-column of the matrix Qν
� , 

1,j m= , see: Chen (1999), Gaiduk and Plaksienko (2016). The 

values 
,
j

i ky�  of the DLP (2) are associated with the values 
jku�  

by the expressions: 

0 0 0
j

i i ij jy K w d uν= +�� � � , 

  
1

1
0

0

k
j k j

ik i i j ij jky K P w K P Q u d u
−

ς−
ν ν ν ν ν ν ς

ς=

= + +∑ �� � � �� � � � ,   1, 2, 3,...k = .    (7) 

From the expressions (6) and (7) it follows that if 
0 0w =� , and 

the condition (3) is satisfied, then the Markov parameters can 

be calculated by the formulas: 

 0
0 0/
j

ij i jm y u=� ,    
1

1
0

0

j
i j i j i jm y u m

ς−
ς − ρ

ς
ρ=

= +∑� � , 1, 2, 3,...ς = .     (8) 

As shown above, the virtual DLP (2) includes the systems of 

the order v=1,2,…nmax. Evidently, all these systems have the 

same Markov parameters 
i jm
ς
�  (8). The transfer function of 

the channel 
j iu y→� �  of the system (2) with the order v is 

{ }1( , ) ( , ) dj( ) ( , )
i j

j
y u i ijz P z K A zI P Q d P z

−
ν ν νΘ ν = ν − + ν� �

��� � � � � ,   (9) 

1
, , 1 ,1 ,0( , ) det( ) ...P z zI P z z z

ν ν−
ν ν ν ν ν− ν νν = − = η +η + +η +η� � � � � � ,  (10) 

where 
, 1ν νη =� ; dj( )A zI Pν− �  is the adjoint v×v-matrix, which 

can be represented as follows, Gantmakher (1988, p. 88): 

     1 2
, , , 1dj( ) ( ) ...A zI P Iz P I z

ν− ν−
ν ν ν ν ν ν ν ν−− = η + η + η +� �� � �  

   1 2
, 1 ,1... ( ... )P P I

ν− ν−
ν ν ν ν− ν ν+ η + η + + η� �� � � .     (11) 

According to (10), (11) the coefficients of TF ( , , )
i jy u spiz TΘ ν� �

�  

(9) depend on 
ijm
ς
�  (8) and Tspi. This TF can be found from 

the input–output equations of the DLP (2) in the form: 

,0 ,1 ,

,0 ,1 , 1 1
( , , )

i j

ij ij ij

y u spi

ij ij ij

z z
z T

z z z

ν ν ν ν ν

ν ν ν ν− ν− ν

γ + γ + + γ
Θ ν =

η + η + + η +
� �

� � �…
�

� � �…

.      (12) 

Two systems of algebraic equations relate the coefficients of 

the transfer functions (9) – (11), (12) and the parameters 
ijm
ς
� , 

Gaiduk and Plaksienko (2016). The first system allows us to 

estimate the degree ˆ
ijn  of the denominator of the TF (12) 

with the corresponding TF ( )
i jy u sΘ  according to (4): 

{ }ˆ max 0ij ijn
βν= ν δ ≠� , detij ijM

βν βνδ = � ,                (13) 

1 2

2 3 1

1 2 1

ij ij ij

ij ij ij
ij

ij ij ij

m m m

m m m
M

m m m

β+ β+ β+ν

β+ β+ β+ν+
βν

β+ν β+ν+ β+ ν−

 
 
 

=  
 
 
 

� � �…

� � �…
�

� � � �

� � �…

, 1, 2, 3, ...ν = .     (14)  

Here β is an arbitrary integer from the interval [0, βmax]. Then 

we can calculate the coefficients ,
ij
ν ρη� , ˆ[0,1,... 1]nρ = −  of the 

TF (12) with ˆ
ijnν =  using the formulas: 

( )
1ˆ ˆ ˆ

ij ij ijn n n

ij ij ijM
−β β

η = − ϒ� �� ,                        (15) 

 ˆ ˆ ˆ ˆ ˆ,0 ,1 , 1ij ij ij ij ij

T
n n n n n

ij ij ij ij

− η = η η η
 

� � � �… , 

  ˆ ˆ ˆ ˆ ˆ1 2ij ij ij ij ij

T
n n n n n

ij ij ij ijm m m
β β+ + β+ + β+ + ϒ =

 
� � � �… .         (16) 

If the condition (5) is satisfied, the coefficients ,
ij
ν ργ� , 

ˆ[0,1, ... ]ijnρ =  of the TF (12) with ˆ
ijnν =  can be calculated as 

ˆ 1ˆ ˆ,

0

ijij ij
nn n

ij ij ij ijm m
− −ρρ −ρ µ ρ+µ

µ=
γ = + η∑� �� � , 

ˆ[0,1,... 1]ijnρ = − ,      ˆ ˆ, 0ij ijn n

ij ijmγ =� � .                   (17) 

Application of the ZT-transform (4) to (12) with the extension 

zoh yields the TF ( ) ( ) / ( )
i jy u ij ijs Η s P sΘ = . The estimate n̂  of 

the plant (1) order is determined by the degree of the estimate 

of its characteristic polynomial: 

 ˆ( ) l.c.m.{ ( )}i jP s P s= ,   ˆˆ deg ( )n P s= .               (18)  

The transfer matrix estimate of the plant (1) is determined 

using the expression 

11 11 1 1

1

1 1

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

m m

yu

q q qm qm

H s Q s H s Q s

s P s

H s Q s H s Q s

−

 
 

Θ =  
 
  

…

� 	 �

…

,     (19) 

where ˆ ˆ( ) ( ) / ( )
i jy u i jQ s P s P s= . 

The identification algorithm using the expressions above 

allows you to identify UC MIMO continuous plants. 

Information processing, when separate channels are 

identified, can be performed in parallel. It is advisable to 

implement the identification algorithm based on the 

expressions (3) - (19) using computing tools oriented on 

parallel information processing, see: Levin (2015), Minaev 

(2016). The proposed DLP and expressions (4), (5) ensure the 

high efficiency of this identification method using the 

Markov parameters. 

5. ADAPTIVE CONTROL DESIGN  

The adaptive control system with identification of the UC 

MIMO plant (1) with m = q has been designed using the 

decomposition control, which forms q independent channels 

(plants) channels with single output, proposed in Gaiduk 

(2012). In this case, the control units of ADC of the system 

for each this plant are created considering the influence of 

other controls uj as disturbances. We consider analytical 
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design of the control unit algorithm on the base of control on 

output and impacts, see Gaiduk and Plaksienko (2016). 

Let Tspc be the sampling period of the digital control unit and 

Tspc>>Tspi. The matrix ( )yu zΘ  is the result of the direct ZT-

transform (4) with T = Tspc of the q×q-transfer matrix ˆ ( )yu sΘ  

(19). Application of the transformation, which corresponds 

to the decomposition control, to the transfer matrix ( )yu zΘ  

gives q independent plants. Suppose each such plant is 

described by the equation: 

( ) ( ) ( ) ( ) ( ) ( )P z y z H z u z F z f z= +                 (20) 

where y(z), u(z) and f(z) are z-images of the controlled 

variable, the control and the external non-measurable 

disturbance; P(z), H(z), F(z) are some polynomials. The 

coefficients of the polynomials in (20) have known values; 

and P(z) and H(z) do not have common factor. The digital 

control unit of ADC is described by the equation: 

( ) ( ) ( ) ( ) ( ) ( )z u z z r z z y z∆ = Γ − Λ                  (21) 

where r(z) is the z-image of the reference signal r = r(t) of 

control system of plant (20), see Gaiduk and Plaksienko 

(2018); ∆(z), Γ(z), Λ(z) are required polynomials whose 

degrees are such that 

dc dc
∗µ ≥ µ                                  (22) 

min{ , , 0}dc dc dcr r lµ = − γ − , 

deg ( )dcr z= ∆ , deg ( )zγ = Γ , deg ( )l z= Λ . 

Usually 1dc
∗µ =  or /dc del spcT∗µ = τ  where 

delτ  is a time delay. The 

system (20), (21) must have the order of astatism 1r
∗ζ =  to the 

reference r = r(t) and 1r
∗ζ =  to the disturbance f = f(t); settling 

time less than 
stt∗  s; overshoot less than σ*

 % and the roots 

stability margin β*
<1. 

6. DESIGN PROBLEM SOLUTION 

Let the condition on stability of the designed system be 

1 maxsys z
∗

ρ
ρ

 β = − ≥ β 
 

,                     (23) 

where zρ are the roots of the characteristic polynomial D(z) of 

the system (20), (21). This condition defines a region Ω on 

the complex z-plane, i.e. an area of permissible location of 

the roots of the polynomial D(z). The polynomial P(z) from 

(20) is factorized as ( ) ( ) ( )P z P z P zΩ Ω= , where the polynomial 

PΩ(z) includes all the roots of the polynomial P(z) which 

satisfy condition (23), and ( ) ( ) / ( )P z P z P zΩΩ = . Suppose, in 

(20) H(z)=hϑ or if 
1

( ) ( )
H

H z h z z
ϑ

ϑ ρρ=
= −∏  then the roots H

zρ  

satisfy to the condition (23), i.e. H(z)=HΩ(z). In this case, the 

polynomial 
0( ) ( ) ( ) ( )D z P z H z D zΩ= � , where 1

0 ( ) ( )H z h H z−
ϑ= , 

and 
0 1( ) D

D

n

nD z z z= δ + δ + + δ �

�

� …  is some polynomial. 

In (20), let 
1( ) ( 1) ( )un

P z z P z= −  and 
1( ) ( 1) ( )fn

F z z F z= − , where 

P1(1)≠0, F1(1)≠0. In this case, the system (20), (21) will have 

a required order of astatism, if 

max{ ; ; 0}r u f fn n
∗ ∗ν = ζ − ζ − ,                      (24) 

0( ) ( )( 1) ( )z H z z zν∆ = − ∆� , ( ) ( ) ( )z P z zΩΛ = Λ� ,            (25) 

where ( )z∆�  and ( )zΛ�  are some polynomials with degrees: 

acr r v= − ϑ −� ,  
ac acl r nΩ= − µ −� ;  deg ( )n P zΩ Ω= . 

The coefficients of the polynomials 

0
( )

r
z z

ρ
ρρ=

∆ = θ∑
�� ,  

0
( )

l
z zρ

ρρ=
Λ = λ∑

�
�            (26) 

are determined by the solution of the next algebraic system: 

000

11 0

1

0

1

0 0 0

0 0

0 0

0

0 0

0 0 0 0

D

D

l

n

nn

r n

h

h

ϑ

ϑ

−

 δλη   
    δη η    
    λη
 ⋅ =  

θη    
    δη    
 θ δ        

�

�

�







�

…

�…

�	 � 	

�� 	 � 	

�� 	 	

… 	

.        (27) 

The matrix of system (27) has 1l +�  columns composed by the 

coefficient hϑ and 1r +� columns composed by the coefficients 

ηρ of the 
0( ) (z 1) ( ) ...

n
nP z P z z

ν
Ω= − = η + + η









. The degrees of the 

polynomials ( )D z�  and (25), (26) are calculated as follows 

1dc P dcr n ∗= + ν + µ − ,   1P dcr n ∗= + µ − ϑ −� ,   n nΩ= + ν



 , 

1l nΩ= + ν −� ,  1P dcD
n n n

∗
Ω= + + µ + ν − ϑ −� ,       (28) 

where np=degP(z). The formulas (28) follow from solvability 

conditions of the system (27), the conditions (23), (24), and 

the equality 
0( ) ( ) ( ) ( )D z P z H z D zΩ= � . 

The coefficients 
iδ  of the polynomial ( )D z�  are assigned 

using the standard normalized transfer functions (SNTF) 

Θsn(s) of continuous systems, see Gaiduk (2012, p. 344-346). 

For this purpose, the coefficients of the required SNTF are 

stored in the ADC microprocessor memory. As you know, 

the functions ( )zΘ , which are the result of the conversion 

( ) { ( )}Tz Z sΘ = Θ , usually have a relative degree 
Θµ  equal to 

zero or one. Therefore, the denominator degree of the TF 

Θsn(s) is taken equal to 
adD

n nΘ = − µ� , where 

ad cp dc
∗

Θµ = µ + µ − µ ; deg ( ) deg ( )cp P z H zµ = − . The coefficients ∆ρ 

and the settling time tst,tab of the suitable SNTF are selected from 

the microprocessor memory by using the values *
1gζ = , ntab=nΘ 

and σ<σ* %. Then the coefficients of the denominator of the 

sought TF Θyr(s) are calculated using the formula: 

n
r

Θ−ρ
ρ ρδ = ∆ ω ,    [ , 0]n Θρ = ,                 (29) 

where  / ( )r tab st dct t T∗ω = − . 
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If 1r
∗ζ = , then 1

0 1 1 0( ) / ( )
n n

yr ns s s sΘ Θ

Θ

−
−Θ = δ + δ + + δ + δ… . Its 

ZT-transform with T=Tspc yields 
0( ) ( ) / ( )yr z z zΘ = ζ ζ . The 

condition ζ(z)= ζΩ(z) must be met. The coefficients of the 

polynomials 
0(z) ( )ad D

D

n

nD z z z
µ= ζ = δ + … + δ�

�

�  and 

1 0( ) ( 1) ( ) ...
n

nP z z P z z z
ν

Ω= − = η + + η + η








 are calculated. The 

coefficients 
ρδ , ηρ and also hϑ are substituted into the system 

(27); its solution yields to the polynomials: ( )z∆� , ( )zΛ�  (26). 

The polynomials ∆(z) and Λ(z) are calculated using (25); the 

polynomial 1
0( ) ( ) ( )z h P z z−

ϑ ΩΓ = ζ . Substituting these 

polynomials in (21), we find the equation of the control unit 

of the desired ADC. The calculation results are correct, if the 

polynomials 
1 0( ) ( ) ( ) ( )D z H z P z D zΩ= �  and P(z)∆(z)+H(z)Λ(z)  

have similar coefficients Gaiduk, and Plaksienko (2018). 

If the polynomial 
1( ) ( 1) ( )z z zν∆ = − ∆ , then we take the 

equations of the control unit (21) as 

1( ) ( ) ( ) ( ) ( ) ( )z z z r z z y z∆ ξ = Γ − Λ� ,  ( 1) ( ) ( )z u z zν− = ξ� ,   (30)  

where ( )zξ�  is a z-image of an additional variable 
kξ� . We 

have formed the algorithm for calculating the values uk, k = 

0,1,2, ... by converting the equations (30) to the original 

variables , , ,k k k ku g y−ν −ν −νξ� . Expressions (20) – (30) allow 

to calculate parameters of the digital control unit (21) for 

each channel of the UC MIMO (1) automatically. The desired 

connections between the channels are provided by the 

method presented in Gaiduk (1998). 

7. EXAMPLE 

Assume, that the order of an uncertain plant is not more than 

nmax=4; the plant has one output and two inputs: control u and 

disturbance f=f(t). If βmax=2, Tspi=1 s, then 

Nm=2nmax+βmax=10; the duration of each test ttes=NmTspi=10 s; 

test action u10=u20=3⋅1(t); 
0 0.01∆ =� ; number ξ=10. The 

identification algorithm of ADC includes the following steps: 

Step 1. First u1(t), and then u2(t) operates on the plant in 

steady state 3-4 times. The output variable is measured over 

ttes with the sampling period Tspi=1 s. The averaged values 
1 1
1 1( )spi ky kT y= , 2 2

1 1( )spi ky kT y=  and the Markov parameters, 

calculated with using (8), are listed in Table 1. 

Step 2. Let 
11 11

km mυ =� � , then using (14) with β=0, v=1,2,3,4 we 

find: 01
11det 0.0672M =� , 02

11det 0.0027M =� , 
1

503
1 2.8868 1det 0M

−− ⋅=� , 

1
904

1 8.672 1det 02 0M
−− ⋅= ≈� ; further using (13) we find 

11
ˆ 3n = . 

Step 3. The vector 3 10
11 [ 3.4072 10 1.2214 2.2214]T−η = − ⋅ −�  is 

calculated using (15), (16) with i=j=1, 
11

ˆ 3n = , β=0. Since 

3.4072⋅10
-10

<<0.01 the condition (5) is not satisfied, i.e. DLP 

(2) is incorrect at Tspi = 1s. Therefore, we go to step 7. Step 7. 

New sampling period and duration of the test are calculated: 

Tspi=Tspi/ξ s; ttes=0.1⋅10=1 s; new values of the test actions 

u10=15, u20=0.5 are selected, and then we go to step 1 again.  

Table 1. Digital data with Tspi = 1 s 

k 
1
1ky  11

km�  2
1ky  12

km�  

0 0 0 4.2000 1.4 

1 0.2017 0.0672 5.2091 0.3364 

2 0.3784 0.0589 5.8091 0,2000 

3 0.6547 0.0921 6.4091 0.2000 

4 1.0525 0.1326 7.0091 0,2000 

5 1.5988 0.1821 7.6091 0.2000 

6 2.3264 0.2425 8.2091 0.2000 

7 3.2755 0.3164 8.8091 0.2000 

8 4.4951 0.4065 9.4091 0.2000 

9 6.0452 0.5167 10.209 0.2000 

10 7.9988 0.6512 10.609 0.2000 

Step 1. Repeating the actions described above gives the new 

rounded values listed in Table 2. Then we go to step 2 again.  

Table 2. Digital data with Tspi = 0.1 s 

k 
1
1ky  11100 k

m⋅ �  2
1ky  12

km�  

0 0 0 0.7000 1.4 

1 0.5045 3.3632 0.7706 0.1413 

2 0.5918 0.5821 0.7873 0.0334 

3 0.6360 0.2946 0.7981 0.0215 

4 0.6785 0.2837 0.8082 0.0202 

5 0.7241 0.1821 0.8182 0.0200 

6 0.7733 0.2425 0.8282 0.0200 

7 0.8262 0.3164 0.8382 0.0200 

8 0.8830 0.4065 0.8482 0.0200 

9 0.9436 0.5167 0.8582 0.0200 

10 1.0083 0.6512 0.0200 0.0200 

Step 2. The determinants 02 5
11det 6.518 10M

−= ⋅� , 

01
11det 0.034M =� , 03 10

11det 8.561 10M
−= − ⋅� , and 

04 26
11det 2.767 10M

−= − ⋅�  are calculated using (14) with 

11 11
km mυ =� � , β=0, v=1,2,3,4; the order 

11
ˆ 3n =  is determined 

using (13). Then we go to step 3. Step 3. The vector 
3
11 [ 0.113 1.244 2.131]η = − −�  is calculated using (15), (16) with 

i=j=1, 
1 1

ˆ 3n = , β=0. The value 3,0
11 00.113 0,01η = > ∆ =�� , i.e. 

condition (5) is satisfied, and DLP (2) is correct with Tspi=0.1 

s; therefore, we can go to next step. Step 4. The factors 
3,0
11 0.0324γ =� , 3,1

11 0.0658γ = −� , 3,2
11 0.0336γ =� , 3,3

11 0γ =�  are 

calculated using (17). Then the transfer function 

2

11 3 2

0.0336 0.0658 0.0324
( ,0.1;3)

2.131 1.244 0.113

z z
z

z z z

− +
Θ =

− + −
�  

can be written using (12) and we go to step 5. Step 5. 1
TZ − -

transform (4) of the TF 
11( ,0.1;3)zΘ�  with Tspi=0.1 yields to 

2

11 3 2 10

0.8 0.3 0.4ˆ ( )
21.8 4.4 3.54 10

s s
s

s s s
−

+ +
Θ =

+ − + ⋅
,             (31) 

and we go to step 6. Step 6. Performing step 2 – step 5 with 

i=1, j=2, dates of the Table 2 and Tspi = 0.1 s gives 
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2

12 2 13

1.4 27.3 7.8ˆ ( )
22 3.908 10

s s
s

s s
−

− −
Θ =

+ + ⋅
;                (32) 

we go to step 8. Step 8. The estimates ˆ( )P s , n̂ , 
12

ˆ ( )Q s  and 

ˆ ( )yu sΘ  are determined by the formulas (18), (19) with 

3,0 2,0
ˆ ˆ 0η = η =  in (31) and (32): 3 2ˆ( ) 21.8 4.4P s s s s= + − , ˆ 3n = , 

12
ˆ ( ) 0.2Q s s= − , 

2

3 2

3 2

3 2

0.8 0.3 0.4

21.8 4.4ˆ ( )
1.4 27.31 2.394 1.56

21.8 4.4

T

yu

s s

s s s
s

s s s

s s s

 + +
 

+ − Θ =
 − − +
 

+ − 

.      (33) 

Then we go to Step 9. Let, the control unit (21) should have 

sampling period Tspc=0.6 s and 1d c
∗µ = . The control system 

should have 1r f
∗ ∗ζ = ζ = , 0.11∗β ≥ ; 5.6stt∗ ≤ s; 5∗σ ≤ %; the 

reference r(t) and output y(t) are measured. The algorithm of 

the control unit of the ADC includes the next steps: 

Step 9. The ZT-transform (4) of the matrix ˆ ( )yu sΘ  (33) with 

Tspc = 0.6 s, see Moore, (2013), gives: 

2

3 2 6

3 2

3 2 6

0.05155 0.08458 0.03998

2.128 1.128 2.087 10
( )

1.4 5.804 7.376 2.946

2.128 1.128 2.087 10

T

yu

z z

z z z
z

z z z

z z z

−

−

 − +
 

− + − ⋅ Θ =
 − + −
 

− + − ⋅ 

.    (34) 

In (34) the factor 2.087⋅10-6 is replaced by zero, and the 

polynomials of the equation (20) are written: 

3 2( ) 2.128 1.128P z z z z= − + ,  

2( ) 0.05155( 1.6407 0.7756)H z z z= − + , 

    3 2( ) 1.4 5.804 7.376 2.946F z z z z= − + − .         (35)      

Step 10. In this case: 
1,2 0.8807H

z = ; ϑ=2, hϑ=0.0516; 
1 0
P

z = , 

2 1.128Pz = ; 
3 1.0
P

z = ; np=3, nu=1, F(1)≠0, nf=0; µcр=3-2=1; 

condition (23) is satisfied, since 1-0.8807≥0.11; factorization 

of the polynomial P(z) gives: PΩ(z)=z, 
2

( ) 2.128 1.128P z z zΩ = − + , nΩ=1, 2nΩ = ; number 

max{1 1;1 0; 0} 1ν = − − = . Calculations by formulas (28) give: 

rdc=4, 1r =� , 3n =



, 2l =�  and 4
D

n =� . Let 1Θµ = , then 

µad=1+1-1=1, nΘ=4-1=3. Step 11. The coefficients ∆ρ and 

time tst,tab are selected from the memory of the controller 

using values: * 1rζ = , ntab=nΘ=3 and σ=0<5%; ∆0=1, ∆1=3, 

∆2=3, ∆3=1, tst,tab=6.31 s. The coefficients ωr=6.31/(5.6-

0.6)≈1.262 and δρ are calculated using (29): δ3=1, δ2=3.786, 

δ1=4.7779; δ0=2.0099. These coefficients lead to transfer 

function: Θ(s)=2.01/(s
3
+3.786s

2
+4.778s+2.01). ZT-transform 

of this Θ(s) with Tspc = 0.6 gives the polynomials: 

ζ0(z)=0.0415z
2
+0.095z+0.0133 and ζ(z)=z

3
-1.407z

2
+0.66z-

0.103. The roots of the polynomial ζ(z) satisfy to the 

condition (23). Therefore, in this case 

4 231.40( 7 0.66 0) ( 3) .10D z z z zz z z− + −= ζ =� . Step 12. System 

(27) is composed using the coefficients of the polynomial 
3 2( ) 3.128 3.256 1.128P z z z z= − + −



 and the numbers 

hϑ=0.0516, 2l =�  and 1r =� . Solution of this system and 

expressions (25), (26) yield to the polynomials: 
2(z) 54.0688 88.8233 37.6594z zΛ = − +� ; (z) 1.7211z∆ = +� ; 

3 2( ) (z 1)(z 0.0804 z 2.0482 z 1.3349)z∆ = − + − + ; 

3 2( ) 54.0688 88.8233 37.6594z z z zΛ = − + ; 

3 2( ) 0.8045 1.8423 0.2582z z z zΓ = + + .           (36) 

Step 13. Polynomials: D1(z)=z
7
-3.048z

6
+3.744z

5
-2.277z

4
+ 

0.681z
3
-0.08z

2
, D2(z)=z

7
-3.048z

6
+3.744z

5
-2.277z

4
+ 0.681z

3
-

0.08z
2
-0.0001z. The parameters of the control unit are 

calculated correctly, since the coefficients of the polynomials 

D1(z) and D2(z) are close to each other. Step 14. The 

equations of this control unit are written according to (30) 

considering 1ν =  and the polynomials (36): 

   ( 1) ( ) ( )z u z z− = ξ� ,   

 3 2(z 0.0804 z 2.0482 z 1.3349) ( )z− − + ξ =�          

3 2(0.8045 1.8423 0.2582 ) ( )z z z r z= + + −  

3 2(54.0688 88.8233 37.6594 ) ( )z z z y z− − + .   (37)                      

Step 15. The control unit algorithm of the digital controller is 

formed by converting the equations (37) to the origin  

1 2 3 4 10.0804 2.048 1.335 0.805k k k k kr− − − − −ξ = ξ + ξ − ξ + +� � � �  

2 3 11.842 0.258 54.069k k kr r y− − −+ + − +  

2 388.823 37.659k ky y− −+ − ;  
1 1k k ku u − −= + ξ� ,     (38) 

where k = 0, 1, 2, ….; 0iξ =� , ri=0, yi=0, ui=0, if i<0.  

The rounded values of the coefficients are given above to be 

short. Let's note that the adaptive digital controller will 

correctly work if not less than 13-15 digits are considered in 

the given above expressions of its algorithm. In Fig. 1 shows 

the response to a step input r(t) =1(t) of the designed adaptive 

control system (33), (38). 

  
Fig. 1. System response to the input r(t) = 1(t) 

Obviously, the astatism orders, the overshoot and the settling 

time of the system are not worse than the required values. 

The expressions (6) – (30) allow to analytically find the ADC 
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algorithm for each channel of the UC MIMO plant (1) if a 

part of the SNTF is stored in the memory of the controller. 

8. CONCLUSIONS 

The offered algorithm of digital controllers for systems of 

adaptive control with the identification of uncertain plants 

can be implemented with minimal prior information. This 

algorithm can be applied only to fully plants, the order and 

parameters of which jump quite rarely. The digital controllers 

provide required values of the quality criteria of a closed 

adaptive control system. The problem of design of adaptive 

control systems for uncertain plants is currently relevant, 

since it is increasingly necessary to control complex plants 

whose mathematical models are a priori complex or 

impossible to find. 
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