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Abstract: This paper provides sufficient conditions for input-to-state stability of impulsive
control systems on Banach spaces. The derived conditions determine average dwell-time
constraints for a candidate Lyapunov function parametrized by a class of nonlinear rate functions
in order to guarantee the ISS property. Thereby, we consider a generalized case with unstable
continuous flow maps and assume the jumps, rather than the continuous flow to induce a
stabilizing influence on the system dynamics of the impulsive system. Compared to some well-
known related and recent results in the literature, such as fixed dwell-time conditions, the
obtained conditions are more general, while offering a higher flexibility in the choice of candidate
Lyapunov functions.
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1. INTRODUCTION

The present paper is concerned with sufficient stability
conditions for the class of impulsive systems. Impulsive
systems cover a mathematical framework for modeling
dynamical processes that combine continuous and jumping
behavior. An introduction to the theory of impulsive
systems is given by Samoilenko and Perestyuk (1995).

The other key concept considered in this paper is input-
to-state stability (ISS) which was introduced by Sontag
(1989) for systems of ordinary differential equations. ISS
characterizes the behavior of solutions to control systems
with respect to external inputs. Later, it was extended to
switched (Mancilla-Aguilar and Garćıa, 2001) and hybrid
dynamical systems (Cai and Teel, 2005). Studies on ISS
for impulsive control systems were initiated by Hespanha
et al. (2005, 2008) by suggesting classes of impulsive time
sequences that guarantee the ISS property. Thereby, an
exponential candidate ISS-Lyapunov function for impul-
sive systems, parametrized by two linear rate functions
has been utilized to derive dwell-time conditions (DTC).

Roughly speaking, dwell-time conditions establish a bal-
ance of continuous and discontinuous dynamics in terms
of restrictions on the frequency of the jump sequences to
guarantee the ISS property of the underlying impulsive
system. Note that the main difference between fixed and
average DTC is that fixed DTC characterize the min-
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imum/maximum time interval between two consecutive
jumps, while the average ones characterize the average
jump frequency. Generally, fixed dwell-time conditions are
easier to handle, but more conservative than average ones.

Various extensions of the result of Hespanha et al. (2008)
to several classes of impulsive systems have appeared
recently in the literature. For instance, impulsive sys-
tems with delay (Dashkovskiy et al., 2012; Liu et al.,
2011; Sun and Wang, 2012; Wu et al., 2016), infinite-
dimensionality (Dashkovskiy and Mironchenko, 2013) and
stochasticity (Ren and Xiong, 2017; Wu et al., 2016;
Yao et al., 2014) have been extensively studied. In par-
ticular, Dashkovskiy and Mironchenko (2013) suggest a
generalized setting for studying ISS of impulsive control
systems by means of a candidate ISS-Lyapunov function
with nonlinear rates ϕ : [0,∞) → R and ψ : [0,∞) →
[0,∞), rather than the linear rate functions employed by
Hespanha et al. (2005). Naturally, the resulting sufficient
conditions appear to be less conservative. While these
conditions have been initially established in form of fixed
DTC only, it was not until recently that average type ISS-
DTC in this general setting were proposed by Feketa and
Bajcinca (2019a). The interest in the latter is justified by
the reduced conservativeness due to the conjunction of the
average description of the jump sequences and the general
setting with non-linear flow and discontinuous rates of the
candidate Lyapunov functions ϕ and ψ, respectively.

The work of Feketa and Bajcinca (2019a) focuses on the
special case with negative definite function ϕ, indicating
stable flow dynamics of the impulsive system at hand.
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Basically, the present paper extends this result to the dual
case with a possibly unstable flow (i.e., positive definite
rate function ϕ), while requiring a stabilizing impact of
the discontinuous dynamics as governed by the function ψ
at the moments of jump. Compared to the result of Feketa
and Bajcinca (2019a), we introduce a doubly parametrized
sequence of jumps, this enabling us a wider perspective of
the devised condition. Interestingly, it turns out that the
aforementioned fixed DTC result is a special case of the
average ones. Further interpretations are also given in the
hope to develop a better intuition.

The paper is organized as follows. Section 2 recaps the
preliminaries and defines the notation used in the paper.
In Section 3, we state and prove the main result. Section
4 discusses the developed sufficient conditions in view of
the existing ones in the literature. Section 5 provides an
example. We complete the paper with concluding remarks
in Section 6.

2. PRELIMINARIES

We start by recapping some fundamental concepts and
notations used in this paper.

Definition 1. We define the following function classes of
so-called comparison functions, see Sontag (1989).

(1) Class P is the set of all continuous functions γ :
[0,∞) → [0,∞) which satisfy γ(0) = 0 and γ(r) > 0
for all r > 0.

(2) Class K is the set of all continuous functions γ :
[0,∞) → [0,∞) which are strictly increasing and
γ(0) = 0. Class K∞ is the subset of class K for which
additionally γ(s)→∞ as s→∞.

(3) Class KL is the set of all continuous functions β :
[0,∞) × [0,∞) → [0,∞), for which β(s, r) is class K
for every fixed r ≥ 0, and for each fixed s > 0, the
mapping β(s, r) is strictly decreasing with respect to
r and β(s, r)→ 0 as r →∞.

Let (X, ‖ · ‖), (U, ‖ · ‖) be two Banach spaces which rep-
resent the state space and the input space, respectively.
Let t0 ∈ R be the initial time. Uc is the space of bounded
functions from [t0,∞) to U and we define the norm

‖u‖∞ := sup
t∈[t0,∞)

{‖u(t)‖}

on this space. We denote the left limit of a function f at t
by f−(t).

Let S = (tn)n∈N be a strictly increasing sequence of
impulse times in (t0,∞) without accumulation points.

An impulsive differential equation (IDE) is defined by
interacting continuous and discontinuous evolution maps:

ẋ(t) = Ax(t) + f(t, x(t), u(t)) , t ∈ [t0,∞) \ S,
x(t) = gi

(
x−(t), u(t)

)
, t = ti, i ∈ N,

(1)

where u ∈ Uc and x(t) ∈ X. The closed linear operator
A is the infinitesimal generator of a C0-semigroup on X,
f : [t0,∞)×X×U → X and gi : X×U → X for all i ∈ N.
The function f is continuous and Lipschitz-continuous on
bounded subsets of X, uniformly with respect to the first
and third argument, i.e., for every T ≥ t0, every C ≥ 0
and every D > 0, there is a constant L > 0, such that

‖f(t, x, u)− f(t, y, u)‖ ≤ L ‖x− y‖

holds for all x, y ∈ X with ‖x‖,‖y‖ ≤ C, all u ∈ Uc and all
t ∈ [t0, T ]. We are interested in solutions in the mild sense,
i.e., x ∈ PC([t0,∞), X), where PC([t0,∞), X) is the space
of piecewise continuous functions from [t0,∞) to X which
are right-continuous and the left limit exists for all times
t ∈ [t0,∞). We assume that for the given system, a robust
forward unique global mild solution exists for every initial
condition x(t0) = x0 and every u ∈ Uc, i.e. for all C > 0
and all T > t0

sup{‖x(t; t0, x0, u)‖ | ‖x0‖ ≤ C, t ∈ [t0, T ], u ∈ Uc}
exists and is finite. Here, we denoted the value of the
solution trajectory at time t with the initial condition
x(t0) = x0 and input u ∈ Uc by x(t; t0, x0, u). We shorten
the notation by x(t) if the parameters are clear from the
context or can be chosen arbitrarily. Sufficient, though
rather strict conditions for the existence and uniqueness
of the solutions on Banach spaces are given by Liu (1999)
and Ahmed (2003).

Definition 2. For a given sequence of impulse times S we
call system (1) input-to-state stable (ISS) if there exist
functions β ∈ KL and γ ∈ K∞ such that for every initial
values (t∗, x∗) ∈ [t0,∞) × X and every input function
u ∈ PC([t∗,∞), U), system (1) has a global solution which
satisfies

‖x(t; t∗, x∗, u)‖ ≤ β(‖x∗‖ , t− t∗) + γ(‖u‖∞)

for all t ∈ [t∗,∞).

Definition 3. A continuous function V : X → R+
0 is called

a candidate ISS-Lyapunov function for an impulsive dif-
ferential equation (1), if it fulfills the following conditions:

(1) There exist functions α1, α2 ∈ K∞ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)
holds true for all x ∈ X.

(2) There exist such functions χ ∈ K∞, ψ ∈ P and a
continuous function ϕ : [0,∞) → R with ϕ(0) = 0,
that for all u ∈ Uc and all x = x(t; t0, x0, u) whenever

V (x) ≥ χ(‖u‖∞) ,

the differential and jump inequalities

d

dt
(V (x)) ≤ ϕ(V (x)) , (2)

V
(
gi
(
x−, u(ti)

))
≤ ψ

(
V (x−)

)
(3)

hold true for all i ∈ N. Here, d
dt (V (x)) stands for the

Dini-derivative

d

dt
V (x∗) = lim sup

s↘0

1

s
(V (x(s+ t; t, x∗, u))− V (x∗)) .

(3) There exists a function α3 ∈ K such that for all x ∈ X
and all u ∈ U which satisfy

V (x) < χ(‖u‖) ,
as well as for all i ∈ N the jump inequality satisfies

V (gi(x, u)) ≤ α3(‖u‖) . (4)

Remark 4. We emphasize that Condition 3 in Definition
3 is essential. The results of e.g. Feketa and Bajcinca
(2019a) and Dashkovskiy and Mironchenko (2013) neglect
to mention this condition, but it is mandatory there as
well. We show its necessity in the following example: Let
us consider the one-dimensional system
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ẋ = −x, ∀t ∈ R+
0 \ N;

x =


1

2
x−, if

∣∣x−∣∣ ≥ |u| ,
1, else,

∀t ∈ N.

The function V (x) = |x| satisfies Conditions (1) and (2)
with χ(s) = s, ϕ(s) = ψ(s) = 1

2s, but there exists no
continuous K∞-function γ such that the system is ISS.

Remark 5. A possible way to dispense with the require-
ment of global existence of the solution of (1) is by impos-
ing the following condition: Rate function ϕ is Lipschitz-
continuous, i.e., there exists a constant L > 0 such that
for all s, r ≥ 0 the estimate |ϕ(s)− ϕ(r)| ≤ L |s− r| holds
true. The global existence of (7) on intervals [ti, ti+1),
i ∈ N0 then follows from Picard-Lindelöf theorem, and
by Definition 3, Condition (1), x(t) is bounded for each
t ∈ [t0,∞). From Pazy (1983, Chapter 6, Theorem 1.4)
one can conclude the existence of a unique global solution.

Remark 6. For a compact Banach space, e.g., if X is finite-
dimensional, Condition 3 in Definition 3 can be substituted
by the requirement that gi(0, 0) = 0 and continuity of gi.
However, this is not sufficient for the non-compact case
anymore, as gi( · , u) may not be bounded on the ball
Br = {x ∈ X | ‖x‖ < r} for some r > 0 and ‖u‖ = r. Apart
from this, our proof will not exhibit additional complexity
from the use of infinite-dimensional spaces.

Finally, by N = N(t, s) : [t0,∞)× [t0,∞)→ N0, we define
the number of elements of S in the interval (s, t], reflecting
the number of jumps in the same interval.

3. MAIN RESULT

With the definitions of the last section, we are now able
to state our main result.

Theorem 7. Let there exist a candidate ISS-Lyapunov
function for the impulsive differential equation (1) with
rates ϕ ∈ P, ψ ∈ P defined as in Definition 3 and constants
ρ,N0 > 0 such that for S the inequality

N(t, s) ≥ ρ · (t− s)−N0 (5)

holds for all t > s ≥ t0. If there exists some δ > 0, such
that for all a > 0, the inequality∫ ψ(a)

a

− 1

ϕ(s)
ds ≥ 1

ρ
+ δ (6)

holds, then the impulsive system (1) is ISS.

Note that (5) and (6) define our Lyapunov-based dwell-
time condition. Also for all a > 0, the inequality ψ(a) < a
needs to be fulfilled because the integral of a negative
term can only be strictly positive if the upper limit of
the integral in (6) is smaller than the lower limit. We will
use this fact several times in the rest of the paper.

Proof. We first assume V (x(t)) ≥ χ(‖u‖∞) for all
(t, x, u). In this case, by Definition 3 the function V fulfills
the inequalities:

d

dt
(V ◦ x)(t) ≤ ϕ((V ◦ x)(t)) , t ∈ [t0,∞) \ S, (7)

(V ◦ x)(t) ≤ ψ
(
(V ◦ x)−(t)

)
, t ∈ S. (8)

If the right hand side of (7) is not equal to zero, we can
transform (7) to

d
dt (V ◦ x)(t)

ϕ((V ◦ x)(t))
≤ 1. (9)

Hereby, we explicitly exclude the case ϕ((V ◦ x)(t)) = 0,
i.e., (V ◦x)(t) = 0 from this inequality. However, we do not
need this estimate anyway because trajectories of (7)–(8)
that become equal to zero will remain identical to zero.

Integrating (9) over the interval [ti, t∗], i ∈ N0, for some
t∗ ∈ [ti, ti+1), we obtain∫ t∗

ti

d
dt (V ◦ x)(t)

ϕ((V ◦ x)(t))
dt ≤ t∗ − ti. (10)

In particular, with the substitution s := (V ◦x)(t), the left
limit t∗ ↗ ti+1 reads

(V ◦x)−(ti+1)∫
(V ◦x)(ti)

1

ϕ(s)
ds ≤ ti+1 − ti. (11)

In contrast to fixed dwell-time, for average dwell-time
assertions it is not sufficient to investigate the time be-
tween two jumps only to decide whether the system is ISS.
Instead, to prove stability one needs to consider a long-
term average. To this end, we evaluate the solution after a
sufficiently large number of jumps n ∈ N. Assembling (6)
and (11) yields the upper-bound estimate

(V ◦x)(ti+n)∫
(V ◦x)(ti)

1

ϕ(s)
ds

=

i+n∑
k=i+1

 (V ◦x)−(tk)∫
(V ◦x)(tk−1)

1

ϕ(s)
ds+

ψ((V ◦x)−(tk))∫
(V ◦x)−(tk)

1

ϕ(s)
ds


≤

i+n∑
k=i+1

(
tk − tk−1 −

(
1

ρ
+ δ

))
= ti+n − ti − n

(
1

ρ
+ δ

)
.

The restriction for admissible jump sequences (5) enables
us to estimate the length of the time interval (ti, ti+n) by

ti+n − ti ≤
N(ti+n, ti) +N0

ρ
=
n+N0

ρ
. (12)

From this, it follows
(V ◦x)(ti+n)∫
(V ◦x)(ti)

1

ϕ(s)
ds ≤ ti+n − ti − n

(
1

ρ
+ δ

)

≤ n+N0

ρ
− n

(
1

ρ
+ δ

)
=
N0

ρ
− nδ.

If we now set n ≥ 2N0

δρ , we obtain

(V ◦x)(ti)∫
(V ◦x)(ti+n)

1

ϕ(s)
ds ≥ N0

ρ
> 0. (13)

Analogously to Dashkovskiy and Mironchenko (2013),
we show that from this condition we can conclude that
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(V ◦ x)(t) goes to zero for increasing t. Hence, we fix r > 0
and define the function F : (0,∞)→ R

F (q) :=

∫ q

r

1

ϕ(s)
ds.

F is strictly increasing for all q ∈ (0,∞) because ϕ is
positive. The image of F is an open interval of the form
(−∞,M) for some constant M ∈ R ∪ {∞} since

lim
q→0

∫ q

r

1

ϕ(s)
ds =

∫ ψ(r)

r

1

ϕ(s)
ds+

∫ ψ2(r)

ψ(r)

1

ϕ(s)
ds+ . . .

=

∞∑
k=0

∫ ψk+1(r)

ψk(r)

1

ϕ(s)
ds

≤
∞∑
k=0

(
−1

ρ
− δ
)
.

The last term goes to minus infinity. We have used in
the first line that a > ψ(a) > 0 for all a > 0 as ψ is
a P-function. By ψk, we mean the k-times composition
ψ ◦ · · · ◦ ψ, where ψ0(a) = a. The upper bound is open
as F is strictly increasing. Therefore, F is invertible and
F−1 : (−∞,M)→ (0,∞) is also an increasing function.

Substitution into (10) returns

F ((V ◦ x)(t))− F ((V ◦ x)(ti)) ≤ t− ti
for all t ∈ [ti, ti+1) which is equivalent to

F ((V ◦ x)(t)) ≤ F ((V ◦ x)(ti)) + t− ti ∀t ∈ [ti, ti+1).

We show that this inequality is true for all t > ti by
applying the fact that ψ(a) < a. Accordingly, the jumps
are always stabilizing the system and by only considering
the flow, we obtain the upper bound

F ((V ◦ x)(t)) ≤ F ((V ◦ x)(ti)) + t− ti ∀t > ti (14)

for the behavior of the system.

After substituting F in (13), we obtain

F
(
(V ◦ x)

(
t(k+1)n

))
≤ F ((V ◦ x)(tkn))− N0

ρ
,

where k ∈ N0. By induction, we get

F ((V ◦ x)(tkn)) ≤ F ((V ◦ x)(t0))− kN0

ρ
. (15)

Combining (14) and (15) results in

F ((V ◦ x)(t)) ≤ F ((V ◦ x)(t0))− kN0

ρ
+ t− tkn

≤ F ((V ◦ x)(t0))− kN0

ρ
+
n+N0

ρ

for all t ∈ [tkn, t(k+1)n). Additionally, we used (12) here.
As N(t, t0) ≤ (k + 1)n for such t ∈ [tkn, t(k+1)n), the
restriction for admissible jump sequences (5) yields

k ≥ 1

n
(ρ · (t− t0)−N0)− 1. (16)

Therefore, we have

F ((V ◦ x)(t))

≤ F ((V ◦ x)(t0))− kN0

ρ
+
n+N0

ρ

≤ F ((V ◦ x)(t0))− N0

n
(t− t0) +

N2
0

nρ
+
n+ 2N0

ρ
.

Note that F might not be invertible for every value of the
right hand side. We circumvent this issue by only inverting

a domain where −N0

n (t− t0)+
N2

0

nρ + n+2N0

ρ is negative. We

achieve this by choosing

t ≥ t :=
n2

N0ρ
+
N0 + 2n

ρ
+ t0.

Then, the estimate

(V ◦ x)(t) ≤ F−1
(
F ((V ◦ x)(t0))− N0

n

(
t− t

))
(17)

holds for all t ≥ t.
The solution x of (1) is piecewise bounded by its flow
ẋ(t) = Ax(t) + f(t, x(t), u(t)), which is robustly forward
complete and Lipschitz on bounded subsets ofX. We apply
Lemma 4.6 by Mironchenko and Wirth (2018) here to show
that V ◦ x ≤ α2(‖x‖) is bounded for t ∈

[
t0, t

]
by a

function which is a K-function in the initial condition.
From this and (17) we can define a KL-function β̃ =

β̃((V ◦ x)(t0), t− t0) such that

(V ◦ x)(t) ≤ β̃((V ◦ x)(t0), t− t0) (18)

is satisfied as long as V (x(t)) ≥ χ(‖u‖∞).

Until now, we only dealt with the case V (x(t)) ≥ χ(‖u‖∞).
Now let us define the set

A1 := {x ∈ X |V (x) < χ(‖u‖∞)} .
and investigate the behavior when the trajectory leaves
A1. We fix an initial condition (t0, x0). For all t which
satisfy x(t) /∈ A1 the stability relation (18) is fulfilled. So,
we investigate t∗ := inf{t ∈ [t0,∞] |x(t) ∈ A1}. Then

‖x(t; t0, x0, u)‖ ≤ β(‖x0‖ , t− t0) (19)

holds for t ∈ [t0, t
∗], β(r, s) := α−11

(
β̃(α2(r), s)

)
, where

β ∈ KL. In case t∗ = ∞, (19) holds for t ∈ [t0,∞). But,
then x(t)→ 0 for t→∞ follows immediately.

We define the sets

A2 := {x ∈ X |V (x) ≤ max{α3(‖u‖∞) , χ(‖u‖∞)}} ,
A3 := {x ∈ X |V (x) ≤ γ̃(‖u‖∞)} ,

where γ̃ ∈ K∞,

γ̃(s) = max
{
α3(s) , χ(s) , β̃ (max{α3(s) , χ(s)} , 0)

}
.

We now show that any trajectory starting in A1 remains
in A3. Obviously, A1 ⊂ A2 ⊂ A3. All trajectories that
leave A1 by jump are bounded by (4) and do not leave A2.
Trajectories leaving A1 by flow have to cross the boundary
∂A1. In both cases there must be a t′ ∈ [t0,∞) such
that x(t′) ⊂ A2 \ A1. Therefore, we can apply (18) with
t = t0 = t′. By construction, all the trajectories that leave
A1 will stay in A3. We define γ ∈ K∞, γ := α−11 ◦ γ̃ such
that

‖x(t; t0, x0, u)‖ ≤ γ(‖u‖∞) (20)

is satisfied for all t > t∗. Adding up the right-hand sides
of (19) and (20), we obtain the desired result

‖x(t; t0, x0, u)‖ ≤ β (‖x0‖ , t− t0) + γ(‖u‖∞)

for all t ≥ t0. 2

4. DISCUSSION

Next, we provide several remarks and comments to com-
pare our result with existing ones in the literature.
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Remark 8. As the present paper is inspired by and adopts
parts of the proof of Feketa and Bajcinca (2019a), we want
to point out some key differences. Most importantly, the
present paper addresses unstable continuous dynamics and
stabilizing jumps rather than stable flows and destabilizing
jumps. Furthermore, we discuss the impulsive control
systems on Banach spaces, thus covering the case of
infinite-dimensional spaces, as well, which is not regarded
by Feketa and Bajcinca (2019a).

In particular, with (5) we relax the limit-based definition
of the class of impulse sequences given in Equation (5)
by Feketa and Bajcinca (2019a), as it turns out that the
requested uniformity restriction therein can be impossibly
fulfilled by infinite sequences. We show it as follows: Let
us assume the limit exists and equals ρ. We choose two
sequences (τn)n∈N and (sn)n∈N where

τn = tn +
1

2n
, sn = tn −

1

2n
.

The sequences are chosen such that N(τn, sn) ≥ 1 for each
n. Then

ρ = lim
t→∞

sup
s∈[t0,t]

∣∣∣∣N(t, s)

t− s

∣∣∣∣ ≥ lim
n→∞

∣∣∣∣N(τn, sn)

τn − sn

∣∣∣∣ ≥ lim
n→∞

1

2 1
2n

,

where the last term goes to infinity. This is a contradiction.

While with the new sequence definition (5), the proof steps
remain similar, we emphasize that our proof in the present
paper covers more details, e.g., in how to get from (13) to
(18). Therefore, it is expected (and, in fact, it can be shown
by following the lines of proof of our Theorem 7) that the
main result of Feketa and Bajcinca can be adopted to:

Theorem 9. Let there exist a candidate ISS-Lyapunov
function for the impulsive differential equation (1) with
rates −ϕ ∈ P, ψ ∈ P and constants ρ,N0 > 0 such that

N(t, s) ≤ ρ · (t− s) +N0 (21)

holds for all t > s ≥ t0. If for some δ > 0 and all a > 0∫ ψ(a)

a

− 1

ϕ(s)
ds ≤ 1

ρ
− δ (22)

is true, then the impulsive system (1) is ISS.

Note that here the flow is restricted to be stable.

Remark 10. While the restrictions for the jump sequence
(5) and (21) are inherited with a slight modification from

−dN(t, s)− (c− λ)(t− s) ≤ µ
with c, d ∈ R and µ, λ > 0, which was introduced by
Hespanha et al. (2008), the main difference in the present
paper refers to the nonlinearity of the Lyapunov rate
functions (see also Feketa and Bajcinca, 2019a). Indeed,
Hespanha et al. address average DTC for linear rate
functions of the form ϕ(s) = −cs and ψ(s) = e−ds only.
We show the advantage of nonlinear rates in Example 14.

Remark 11. Let the conditions of Theorem 9 hold, where

τ := sup
a>0

∫ ψ(a)

a

− 1

ϕ(s)
ds.

Theorem 9 claims that impulsive system (1) is ISS, if for
some ρ ∈ (0, 1τ ) and some N0 > 0 the condition (21)
is fulfilled, although impulses might cause destabilizing
effects. Thus, 1

τ can be interpreted as an upper bound
to the average frequency of destabilizing jumps ρ, while
the parameter N0 represents the maximum number of
additional jumps above average on an arbitrary interval.

Similarly, let (1) have stable jumps such that ψ(a) < a
holds for all a > 0. We further define

τ := inf
a>0

∫ ψ(a)

a

− 1

ϕ(s)
ds.

If there are ρ > 1
τ and N0 > 0 that fulfill condition

(5), then, despite the potentially destabilizing flow, the
impulsive system (1) is ISS. Here, 1

τ is a lower bound on the
average frequency of jumps ρ and N0 defines a lower bound
on the number of jumps under average on any interval.

By substituting the linear rate functions ϕ(s) = −cs and
ψ(s) = e−ds in the above equations, we obtain τ =

∣∣d
c

∣∣,
which matches the outcome of Hespanha et al. (2008).

Remark 12. Condition (5) restricts the admissible impulse
sequences, i.e., the maximum interval without impulses is

sup
i∈N
{ti − ti−1} = lim

ε→0
sup
i∈N
{(ti − ε)− ti−1}

≤ lim
ε→0

sup
i∈N

{
N(ti − ε, ti−1) +N0

ρ

}
=
N0

ρ
(23)

as N(ti − ε, ti−1) = 0 for sufficiently small parameters
ε > 0. This is not a lack of generality of the theorem, it is
rather inherently impossible to extend the result to impul-
sive control systems with unstable flows and unrestricted
intervals without jumps. Indeed, ISS is by Definition 2 a
uniform property with regard to initial time as function β
only depends on t− t∗. In arbitrarily large regions without
jumps the flow cannot be bounded uniformly in time.
This means that there cannot be a strictly falling function
β(r, · ) which bounds the trajectories of such a system.

An option to obtain stability results for that kind of
jump sequences might be the introduction of a notion of
pointwise ISS such that function β is also dependent on
the initial time. Then, convergence is a pointwise property
in the initial time. That must be subject of further studies.

Remark 13. The theorems on average dwell-time given in
this paper include the equivalent results for fixed dwell-
time by Dashkovskiy and Mironchenko (2013). We show
this for ISS with stabilizing flows and potentially unstable
jumps. If we bound the interval between two consecutive
jumps by Tmin := infi∈N {ti − ti−1}, we can apply (21) to
fix the parameters N0 and ρ. We set N0 = 1. Then

Tmin = lim
ε→0

inf
i∈N
{ti − (ti−1 − ε)}

≥ lim
ε→0

inf
i∈N

{
N(ti, ti−1 − ε)−N0

ρ

}
=

1

ρ

holds as N(ti, ti−1 − ε) = 2 for sufficiently small ε > 0.
This gives exactly the dwell-time restriction∫ ψ(a)

a

− 1

ϕ(s)
ds ≤ Tmin − δ

which resembles Theorem 1 stated by Dashkovskiy and
Mironchenko (2013). Analogously, for ISS with stabilizing
jumps and possibly unstable flows we fix N0 = 1 and
obtain the upper bound Tmax := supi∈N {ti − ti−1} ≤ 1

ρ

from (23). If we substitute this estimate into (6), the
resulting restriction∫ ψ(a)

a

− 1

ϕ(s)
ds ≥ Tmax + δ, (24)

matches Dashkovskiy and Mironchenko (2013, Thm. 3).
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5. EXAMPLE

Theorem 7 provides relaxed conditions for finding a can-
didate Lyapunov function and rate functions compared
to linear rate functions ϕ, ψ in Hespanha et al. (2008).
Besides, our result generalizes Theorem 3 of Dashkovskiy
and Mironchenko (2013) with fixed dwell-time conditions.
This is illustrated by the following example.

Example 14. Let

ẋ = tanh
(√
|xu|

)
, ∀t ∈ [0,∞) \ S,

x =


1

2
(x−)3, if x− ∈ [−1, 1],

1

2
(x−)

1
3 , else,

∀t ∈ S
(25)

and S = {ti | i ∈ N}, where ti ∈
[
4
5 i− 0.35, 45 i+ 0.35

]
is

chosen independently equally distributed. Obviously, we
then have ρ = 5

4 .

Furthermore, we choose the Lyapunov function V (x) = |x|
and χ(s) = s of Definition 3, as well as rate functions
ϕ(s) = tanh(s) and ψ as defined by

ψ(s) =

{
ψ1(s), if s ∈ [−1, 1],

ψ2(s), else,

where ψ1(s) = 1
2s

3 and ψ2(s) = 1
2s

1
3 . Inequality (6)∫ 1

2a
3

a

− 1

tanh(x)
dx ≥ ln(e+ 1)− 1

2
≈ 0.81 >

4

5
=

1

ρ

for 0 < a ≤ 1 and∫ 1
2a

1
3

a

− 1

tanh(x)
dx ≥ ln(e+ 1)− 1

2
≈ 0.81 >

4

5
=

1

ρ

for a > 1, respectively, holds for all a > 0, which means
that system (25) is ISS. Condition (24) is not fulfilled
as Tmax = 1.5. As shown in Example 1 of Feketa and
Bajcinca (2019b), there are no linear rate functions for the
candidate Lyapunov function V (x) = |x| which guarantee
global asymptotic stability. Therefore, no statement of
ISS with linear rate functions can be made either. On
the other hand, finding a suitable candidate Lyapunov
function might be difficult or impossible. 2

6. CONCLUSION

The present paper provides sufficient ISS conditions for the
class of control impulsive systems in form of average DTC
expressed in terms of nonlinear Lyapunov rate functions
and a doubly parametrized sequence of jumps. It produces
a less conservative statement with regard to existing suf-
ficiency conditions defined in terms of average and fixed
DTC with linear and nonlinear candidate Lyapunov rate
functions, respectively. In particular, we demonstrate that
ISS fixed dwell-time conditions can be interpreted as a
special case of average dwell-time conditions in our setting.
Our work offers space for various extensions. One possibil-
ity is to investigate pointwise ISS for systems with un-
bounded jump-free interval lengths. Another perspective
is to extend the result to a setting with stochastic jump
times. However, these topics will be reported elsewhere.
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