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1. INTRODUCTION

The problem of model reduction involves finding a sim-
plified model of a dynamical system while preserving de-
sired properties (e.g. stability, steady state behaviour).
Several approaches for model reduction have been devel-
oped. These approaches include moment matching, see
Antoulas et al. (1990), Gallivan et al. (2004), Astolfi
(2010), Scarciotti and Astolfi (2015), Schulze et al. (2016),
Scarciotti and Astolfi (2017), balanced truncation, see
Scherpen (1993), Scherpen (1996), Gray and Mesko (1997),
Gugercin and Antoulas (2004), and Hankel operators, see
Kung and Lin (1981), Glover (1984), Safonov et al. (1990),
Fujimoto and Scherpen (2001), Dewilde and Van der Veen
(1998). Some of these methods have been applied to the
model reduction of linear time-varying (LTV) systems.
The systems considered range from systems with simple
time-variations, such as the moving load problem, in which
only the input matrix varies and/or the moving sensor
problem, in which only the output matrix varies, see Fis-
cher et al. (2015), Stykel and Vasilyev (2016), to more com-
plicated plants, in which all system matrices may vary with
time. One of the approaches for more complicated time-
variations is balancing for LTV systems, see Varga (2000),
Lall and Beck (2003), Sandberg and Rantzer (2004), Lang
et al. (2016).

An important tool which has been used in the devel-
opment of reduced-order models and in the solution of
the generalized realization problem for LTI systems is the
Loewner matrix, see Mayo and Antoulas (2007), which is
closely related to the Hankel matrix, see Fiedler (1984)
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and Belevitch (1970). This matrix was used for the first
time to solve rational interpolation problems in Antoulas
and Anderson (1986). The Loewner matrix has a special
structure and can be factored into two other important
matrices: the tangential generalized controllability matrix
and the tangential generalized observability matrix. These
matrices together can be used to construct linear frequency
domain or state-space models as in Antoulas et al. (2014).
In light of the time-domain definition of moments in Astolfi
(2010), Schulze et al. (2016) has shown that the Loewner
framework in Mayo and Antoulas (2007) can be inter-
preted as a special case of a two-sided moment-matching
procedure. Simard and Astolfi (2019) has introduced new
objects, the left- and right-Loewner matrices, which al-
low a new state-space (time-domain) interpretation of the
Loewner matrices as the input and output gains of a
suitably transformed conceptual experimental setup. Note
that the Loewner matrices have typically been interpreted
using frequency domain tools. This new interpretation
opens up an avenue for more sophisticated usage of the
ideas and tools conveyed by the Loewner matrices for LTI
systems.

In this paper we utilize this new state-space interpretation
to generalize the Loewner method for model reduction
from LTI systems to LTV systems. This is accomplished by
introducing time-varying generalizations of the Loewner
matrices, called Loewner functions, which are then used
to construct a model which can produce the exact same
left- and right-Loewner functions.

The structure of the paper is as follows. In Sections 2
and 3 we introduce the notation used and we recall
preliminary results regarding Loewner matrices and the
construction of an interpolating system. In Section 4
we define time-varying generalizations of the Loewner
matrices. In Section 5 a conceptual experimental setup
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is introduced, and we perform a transformation exposing
the “Loewner functions” of the system. In Section 6 the
concept of “Loewner equivalence” is defined, and then a
model is constructed (using the original system’s Loewner
functions) which “interpolates” the Loewner functions
produced by the original experimental setup. Finally, in
Section 7 we provide a demonstrative model reduction
example.

2. PRELIMINARIES

We use standard notation. The set of real numbers is
denoted by R. The set of complex numbers is denoted by
C. The set of vectors with complex entries with n rows is
denoted by Cn. The set of matrices with complex entries
with n rows and m columns is denoted by Cn×m. With
some abuse of notation L∞(−∞,∞) denotes the set of
matrix functions with domain R which are bounded in
the infinity norm. The spectrum of a square matrix A is
denoted σ(A).

The paper Simard and Astolfi (2019) (see also Mayo and
Antoulas (2007)) considers a plant described by equations
of the form 1

ẋ = Ax+Bu, (1)

y = Cx, (2)

with state x(t) ∈ Cn, input u(t) ∈ Cm, and output y(t) ∈
Cp, and matrices A, B, C of appropriate dimensions.
To pose a two-sided tangential interpolation problem one
must introduce left tangential data and right tangential
data. The right tangential data can be described in matrix
form as

Λ = diag[λ1, . . . , λρ] ∈ Cρ×ρ,

R = [r1 . . . rρ] ∈ Cm×ρ,

W = [w1 . . . wρ] ∈ Cp×ρ,
and the left tangential data can be described in matrix
form as

M = diag[µ1, . . . , µv] ∈ Cv×v,

L =

`1...
`v

 ∈ Cv×p, V =

v1...
vv

 ∈ Cv×m.

The following assumptions hold for the LTI system (1)-(2),
and the tangential data.

Assumption 1. The triple (A,B,C) is a minimal realiza-
tion of the system (1)-(2).

Assumption 2. The matrices A, Λ, and M have no com-
mon eigenvalues, that is

σ(A) ∩ σ(Λ) = ∅, σ(A) ∩ σ(M) = ∅, σ(M) ∩ σ(Λ) = ∅.
Given the transfer matrix H(s) = C(sI − A)−1B, the
tangential data pertaining to system (1)-(2) are such that

wi = H(λi)ri, i = 1, . . . , ρ, (3)

vj = `jH(µj), j = 1, . . . , v. (4)

Given the left and right tangential data, the goal of the
two-sided tangential interpolation problem is to construct
an interpolating system with transfer function H̃(s) for

1 All signals are assumed to be complex valued for ease of presenta-
tion. Therefore all matrices and functions can be complex valued.

which conditions analogous to (3)-(4) hold. A tool that can
be used for constructing such an interpolant is the Loewner
matrix. The Loewner matrix, L, is defined as the unique
(by Assumption 2) solution to the Sylvester equation

LΛ−ML = LW − V R,
and the shifted Loewner matrix, σL, is defined as the
unique (by Assumption 2) solution to the Sylvester equa-
tion

σLΛ−MσL = LWΛ−MVR.

Because the transfer matrix H(s) generates the data in
the Loewner matrix, the shifted Loewner matrix is the
Loewner matrix associated with the transfer matrix sH(s).
These matrices can also be expressed as

L = −Y X, σL = −Y AX,
where Y and X are the unique solutions to the Sylvester
equations

Y A+ LC = MY, AX +BR = XΛ.

The matrix Y is referred to as the tangential generalized
observability matrix, and the matrix X is referred to as the
tangential generalized controllability matrix. Furthermore,
we have that V = Y B and W = CX. A very useful
construct for the purposes of this paper developed in
Simard and Astolfi (2019) is that of the left- and right-
Loewner matrices, defined as the unique (by Assumption
2) solutions to

ML` − L`Λ = V R, LrΛ−MLr = LW,

and the shifted left- and shifted right-Loewner matrices
defined as the unique (by Assumption 2) solutions to

MσL` − σL`Λ = MVR, σLrΛ−MσLr = LWΛ.

This results in

L = L` + Lr, σL = σL` + σLr,
and

σL` = ML`, σLr = LrΛ.
These objects lend themselves to a state-space interpreta-
tion of the Loewner matrices, which have typically been
interpreted as frequency domain objects. To see this, con-
sider two systems constructed from the left and right
tangential data pertaining to (1)-(2):

ζ̇r = Λζr + ∆, v = Rζr,

and

ζ̇` = Mζ` + Lχ, η = ζ`,

with states ζr(t) ∈ Cρ and ζ`(t) ∈ Cv, inputs ∆(t) ∈ Cρ
and χ(t) ∈ Cp, and outputs v(t) ∈ Cm and η(t) ∈ Cv.
Consider the interconnected system resulting from the
interconnection equations v = u and χ = y. This has the
state-space representationζ̇rẋ

ζ̇`

 =

 Λ 0 0
BR A 0
0 LC M

ζrx
ζ`

+

I0
0

∆, (5)

η = [0 0 I]

ζrx
ζ`

 . (6)

Consider now the coordinates transformationζrzc
z`

 =

 I 0 0
−X I 0

L` Y I

ζrx
ζ`

 ,
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yielding the new state-space representationζ̇rżc
ż`

 =

Λ 0 0
0 A 0
0 0 M

ζrzc
z`

+

 I
−X
L`

∆,

η = [Lr −Y I]

ζrzc
z`

 .
Thus, the Loewner matrices can be interpreted as the
input and output “gains” of three systems running in
parallel and producing the exact same output as (5)-(6).

Following Mayo and Antoulas (2007), given L, σL, V , and
W associated to (5)-(6), an interpolating system of the
form (1)-(2) which produces identical Loewner matrices
can be constructed. This interpolant is given by

ṙ = L−1σLr − L−1V ur, yr = Wr,

with state r(t) ∈ Cρ, input ur(t) ∈ Cm, and output
yr(t) ∈ Cp.

3. PROBLEM FORMULATION

In this paper we consider linear time-varying systems of
the form

ẋ = A(t)x+B(t)u, (7)

y = C(t)x, (8)

with state x(t) ∈ Cn, input u(t) ∈ Cm, output y(t) ∈ Cp,
and time-varying matrices A(t), B(t), C(t) of appropriate
dimensions. The following assumption holds throughout
this paper.

Assumption 3. The triple (A(t), B(t), C(t)) describes a
minimal realization for every t ∈ R.

The goal of this work is to extend the interpolation meth-
ods based on the use of Loewner matrices for LTI systems
to LTV systems by introducing the notion of “Loewner
functions”, which generalize the notion of Loewner ma-
trices. This goal is accomplished by utilizing the state-
space interpretation of the Loewner matrices developed in
Simard and Astolfi (2019).

4. THE TIME-VARYING LOEWNER OBJECTS

Before presenting the main results we define time-varying
generalizations of the tangential generalized controllability
and observability matrices, and of the Loewner matrices.
Consider matrix functions of time Λ : R → Cρ×ρ,
M : R → Cv×v, R : R → Cm×ρ, and L : R → Cv×p.
Then the tangential generalized controllability function,
X(·), and the tangential generalized observability function,
Y (·), for the system (7)-(8) are defined as the unique (by
Behr et al. (2018)) solutions to the Sylvester ODEs

dX

dt
= A(t)X(t)−X(t)Λ(t) +B(t)R(t), X(t0) = X0, (9)

and

dY

dt
= M(t)Y (t)−Y (t)A(t)−L(t)C(t), Y (t0) = Y0, (10)

where X0 and Y0 are chosen to be any initial conditions
such that X(·) ∈ L∞(−∞,∞) and Y (·) ∈ L∞(−∞,∞).
Additionally, for all t we define the functions

V (t) := Y (t)B(t), W (t) := C(t)X(t),

as time-varying generalizations of the matrices V and W .
The time-varying Loewner function is then defined for all
t as

L(t) := −Y (t)X(t). (11)

We now define the left Loewner function, L`(t), and the
right Loewner function, Lr(t), as the unique (by Behr et al.
(2018)) solutions to the ODEs

dL`

dt
= M(t)L`(t)− L`(t)Λ(t)− V (t)R(t), L`(t0) = L`0,

(12)
and

dLr

dt
= M(t)Lr(t)− Lr(t)Λ(t) + L(t)W (t), Lr(t0) = Lr0,

(13)
where L`0 and Lr0 are chosen to be any initial conditions
such that L`0 + Lr0 = −Y0X0. By (9), (10), and (11) we
have that

dL
dt

= M(t)L(t)− L(t)Λ(t) + L(t)W (t)− V (t)R(t). (14)

Furthermore, by (12), (13), and (14), we have that, for all
t,

L(t) = L`(t) + Lr(t). (15)

Finally, for all t we define the shifted Loewner matrices as

σL`(t) := M(t)L`(t), σLr(t) := Lr(t)Λ(t),

σL(t) := σL`(t) + σLr(t). (16)

Note that in the case in which Λ(·) and M(·) are constant
matrices (i.e. Λ(t) = Λ, M(t) = M , for all t), then we
obtain the ODEs

dσL`

dt
= M

dL`

dt
= MσL`(t)− σL`(t)Λ−MV (t)R(t),

dσLr

dt
=
dLr

dt
Λ = MσLr(t)− σLr(t)Λ + L(t)W (t)Λ,

dσL
dt

= MσL(t)− σL(t)Λ + L(t)W (t)Λ−MV (t)R(t),

which can be used to determine the shifted Loewner
functions independently from the Loewner functions.

5. THE CONCEPTUAL EXPERIMENTAL SETUP

Similarly to Simard and Astolfi (2019), in this section we
construct a conceptual experimental setup to develop sys-
tem theoretic interpretations of the time-varying Loewner
functions corresponding to the matrix functions Λ(·), R(·),
M(·), L(·), and the plant (7)-(8). To accomplish this, we
begin by constructing two LTV systems using Λ(·), R(·),
M(·), and L(·), namely

ζ̇r = Λ(t)ζr + ∆, v = R(t)ζr, (17)

and

ζ̇` = M(t)ζ` + L(t)χ, η = ζ`, (18)

with states ζr(t) ∈ Cρ and ζ`(t) ∈ Cv, inputs ∆(t) ∈ Cρ
and χ(t) ∈ Cp, and outputs v(t) ∈ Cm and η(t) ∈ Cv.
Consider now the interconnected system consisting of the
plant (7)-(8) along with the systems (17)-(18), resulting
from the interconnection equations v = u and χ = y. This
yields the state-space realization
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ζ̇rẋ
ζ̇`

 =

 Λ(t) 0 0
B(t)R(t) A(t) 0

0 L(t)C(t) M(t)

ζrx
ζ`

+

I0
0

∆, (19)

η = [0 0 I]

ζrx
ζ`

 , (20)

with state
[
ζ>r , x

>, ζ>`
]>

, input ∆, and output η. Simi-
larly to the LTI experimental setup in Simard and Astolfi
(2019), the time-varying Loewner objects are somehow en-
coded in the interconnected system (19)-(20). To show how
these functions are related to the interconnected system
we select a specific set of coordinates. We expose these
functions in Theorem 1.

Theorem 1. Consider the system (19)-(20). The coordi-
nates transformationζrzc

z`

 :=

 I 0 0
−X(t) I 0

L`(t) Y (t) I

ζrx
ζ`


is such that the system in the new coordinates is described
by the equationsζ̇rżc

ż`

 =

Λ(t) 0 0
0 A(t) 0
0 0 M(t)

ζrzc
z`

+

 I
−X(t)

L`(t)

∆,

η = [Lr(t) −Y (t) I]

ζrzc
z`

 .
Proof. The proof follows by direct calculation. Starting
with zc = x−X(t)ζr we have

żc = ẋ− dX

dt
ζr −X(t)ζ̇r

= A(t)zc −X(t)∆

+
(
B(t)R(t) +A(t)X(t)−X(t)Λ(t)− dX

dt

)
ζr,

which, by (9), becomes

żc = A(t)zc −X(t)∆.

Next we consider z` = ζ` + Y (t)x+ L`(t)ζr. This yields

ż` = ζ̇` +
dY

dt
x+ Y (t)ẋ+

dL`

dt
ζr + L`(t)ζ̇r

= M(t)z` + L`(t)∆

+
(
L(t)C(t) + Y (t)A(t)−M(t)Y (t) +

dY

dt

)
x

+
(
V (t)R(t) + L`(t)Λ(t)−M(t)L`(t) +

dL`

dt

)
ζr,

which, by (10) and (12), yields

ż` = M(t)z` + L`(t)∆.
Finally,

η = ζ` = z` − Y (t)x− L`(t)ζr

=
(
− Y (t)X(t)− L`(t)

)
ζr − Y (t)zc + z`,

which, by (11) and (15), becomes

η = Lr(t)ζr − Y (t)zc + z`,

concluding the proof. 2

Theorem 1 lends itself to a system theoretic interpretation
of the time-varying Loewner functions: the Loewner func-
tions and the observability/controllability functions can
be viewed as the input and output “gains” of three LTV
systems connected in parallel and such that the resulting
input/output behaviour coincides with that of (19)-(20).

6. LOEWNER EQUIVALENT MODELS

In this section we develop an LTV system, reminiscent
of that presented in Mayo and Antoulas (2007), which
interpolates the Loewner functions generated from (7)-
(8). However, as we are no longer using frequency domain
tools, we must define what we mean by an interpolant
when referring to LTV systems, for which conditions (3)-
(4) hold little meaning.

Definition 1. (Loewner Equivalence). Let Σ and Σ be
two systems admitting:

• left- and right-Loewner functions L`(·), Lr(·), and
L̄`(·), L̄r(·), respectively,

• tangential generalized observability and controllabil-
ity matrices Y (·), X(·), and Ȳ (·), X̄(·), respectively.

Then Σ and Σ are called Loewner equivalent at
(Λ(·), R(·),M(·), L(·)) if there exists Y (t0), X(t0), Ȳ (t0),
and X̄(t0), with Y (t0)X(t0) = Ȳ (t0)X̄(t0), such that
L`(t0) = L̄`(t0) and Lr(t0) = L̄r(t0) imply L`(t) = L̄`(t)
and Lr(t) = L̄r(t), for all t ∈ R.

We say that an LTV system interpolates the Loewner
functions of another system at (Λ(·), R(·),M(·), L(·)) when
the two systems are Loewner equivalent at the given
(Λ(·), R(·),M(·), L(·)). That is, for the same Λ(·), R(·),
M(·), L(·), the interpolating system produces the exact
same left- and right-Loewner functions. We can now define
what a reduced order model is in the Loewner sense.

Definition 2. (Reduced Order Model). Let Σ and Σ be
two systems of order n and v, respectively. Σ is called a
reduced order model of Σ in the Loewner sense if Σ and
Σ are Loewner equivalent at (Λ(·), R(·),M(·), L(·)) and
v < n.

Considering Theorem 1 it is easy to see that (provided
suitable stability conditions hold) any system which pro-
duces the same left-Loewner and right-Loewner functions
as (19)-(20) has input/output behaviour that differs only
in the transient response (i.e. the response related to A(·)
and Ā(·)).
We now construct an LTV system which produces the
same Loewner functions as (19)-(20). This model, which is
equivalent to (19)-(20) in the Loewner sense, is constructed
using the Loewner functions generated by (19)-(20).

Theorem 2. Consider the connected system (19)-(20) with
ρ = v (i.e. L(·) is square). Let L`(·), Lr(·), σL(·), V (·), and
W (·) be the associated Loewner functions, with L(t) non-
singular for all t ≥ t0. Define the system

˙︷ ︸︸ ︷
(L(t)r)− L̇r(t)r = Lr(t)ṙ +

˙︷ ︸︸ ︷
(L`(t)r) = L(t)ṙ + L̇`(t)r

= σL(t)r − V (t)ur, (21)

yr = W (t)r, (22)
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with state r(t) ∈ Cρ, input ur(t) ∈ Cm, and output yr(t) ∈
Cp. Then the system (21)-(22) is Loewner equivalent to the
system (7)-(8) at (Λ(·), R(·),M(·), L(·)).
Remark 3. The left- and right-Loewner functions are nec-
essary for the definition of the Loewner equivalent model
(21)-(22); this contrasts with the LTI case in which the left-
and right-Loewner matrices are not directly used in the
Loewner equivalent model, see Mayo and Antoulas (2007)
and Simard and Astolfi (2019).

Proof. Let X̄(·), Ȳ (·), V̄ (·), W̄ (·), L̄`(·), L̄r(·), L̄(·),
σL̄`(·), σL̄r(·), σL̄(·) be the time-varying Loewner objects
associated with the system (21)-(22) interconnected with
the generators (17)-(18) by the equations v = ur and
χ = yr. Recall that there could be multiple sets of valid
Loewner functions for this system, however in this proof
we choose a particular set. In order to prove the result
we show that, for all t, X̄(t) = I, Ȳ (t) = −L(t), W̄ (t) =
W (t), V̄ (t) = V (t), and finally that L̄`(t) = L`(t) and
L̄r(t) = Lr(t) are a set of time-varying Loewner objects
belonging to L∞(−∞,∞). We start by rearranging (21)-
(22) so that

ṙ = L(t)−1
(
σL(t)− dL`

dt

)
r − L(t)−1V (t)ur, yr = W (t)r.

The generalized controllability function of the interpolat-
ing model is the solution to

dX̄

dt
= L(t)−1

(
σL(t)− dL`

dt

)
X̄(t)− X̄(t)Λ(t)

− L(t)−1V (t)R(t), X̄(t0) = I. (23)

Subbing (12) and (16) into (23) yields

dX̄

dt
=
(
Λ(t)X̄(t)− X̄(t)Λ(t)

)
+ L(t)−1

(
X̄(t)− I

)
,

which is solved by the L∞(−∞,∞) function X̄(t) = I
for all t. The generalized observability function of the
interpolating model is the solution to

dȲ

dt
= M(t)Ȳ (t)− Ȳ (t)L(t)−1

(
σL(t)− dL`

dt

)
− L(t)W (t), Ȳ (t0) = −L(t0). (24)

Subbing (12) and (16) into (24) yields

dȲ

dt
= M(t)Ȳ (t)− Ȳ (t)Λ(t)

− Ȳ (t)L(t)−1V (t)R(t)− L(t)W (t),

which, by (14), is solved by the L∞(−∞,∞) function
Ȳ (t) = −L(t) for all t. We therefore have, for all t,

W̄ (t) = W (t)X̄(t) = W (t),

V̄ (t) = −Ȳ (t)L(t)−1V (t) = V (t),

L̄(t) = −Ȳ (t)X̄(t) = L(t).

The interpolating model’s left-Loewner function is the
solution to

dL̄`

dt
= M(t)L̄`(t)− L̄`(t)Λ(t)− V̄ (t)R(t),

L̄`(t0) = L`(t0), (25)

and the interpolating model’s right-Loewner function is
the solution to

dL̄r

dt
= M(t)L̄r(t)− L̄r(t)Λ(t) + L(t)W̄ (t),

L̄r(t0) = Lr(t0). (26)

It is now easy to see that, by (12) and (25), L̄`(t) = L`(t),
and, by (13) and (26), L̄r(t) = Lr(t), for all t. 2

Theorem 2 can be used to construct reduced order models
of the system (7)-(8) in the Loewner sense by simply
setting the dimension ρ < n.

Note that the fact that systems (7)-(8) and (21)-(22)
are Loewner equivalent at (Λ(·), R(·),M(·), L(·)) has an
important implication for the steady-state responses of
the systems connected with (17)-(18) provided that the
steady-state response is well-defined. Because the two sys-
tems are Loewner equivalent, by Theorem 1, the outputs
of the connected systems differ only in the free responses

associated to A(·) and to L(·)−1
(
σL(·) − dL`

dt

)
. Further-

more, if both (7)-(8) and (21)-(22) are asymptotically
stable systems, then they produce the same steady-state
behaviour when interconnected to systems (17)-(18).

7. MODEL REDUCTION EXAMPLE

In this section we use the tools developed in the previous
sections in a demonstrative example. Consider a time-
varying system of the form (7)-(8) defined by the equations

ẋ =

[
−1 sin(t)
0 −1

]
x+

[
1
1

]
u, y = [1 0]x. (27)

We would like to produce a reduced order model of this
system in the Loewner sense when the generators (17)-
(18) have the matrices Λ(t) = 0, R(t) = 1, M(t) = −3,
and L(t) = 1. By direct calculation, and setting the initial
conditions so that the experimental setup is initialized in
steady-state, the tangential generalized controllability and
observability functions are

X(t) =

[
1 +

sin(t)

2
− cos(t)

2
1

]
,

Y (t) =

[
−1

2

sin(t)

5
− cos(t)

10

]
,

which implies that

W (t) = 1 +
sin(t)

2
− cos(t)

2
,

V (t) = −1

2
+

sin(t)

5
− cos(t)

10
.

Similarly, the Loewner functions are

L(t) =
1

2
+

sin(t)

20
− 3 cos(t)

20
,

L`(t) =
1

6
+

cos(t)

20
− sin(t)

20
,

Lr(t) =
1

3
+

sin(t)

10
− cos(t)

5
,

and the shifted Loewner functions are

σL`(t) = −1

2
+

3 sin(t)

20
− 3 cos(t)

20
, σLr(t) = 0,

σL(t) = −1

2
+

3 sin(t)

20
− 3 cos(t)

20
.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5701



Using Theorem 2 we have that the system defined by the
equations, which are well-defined for all t,

ṙ = −

(
1− 2 sin(t)

5 + cos(t)
5

)
(

1 + sin(t)
10 −

3 cos(t)
10

)(r − ur),
yr =

(
1 +

sin(t)

2
− cos(t)

2

)
r,

is equivalent in the Loewner sense to the system (27) at
(Λ(·), R(·),M(·), L(·)), and is thus a reduced order model
in the Loewner sense 2 .

8. CONCLUSION

We have used a state-space interpretation of the Loewner
matrices for LTI systems, developed in Simard and Astolfi
(2019), in order to generalize the methods of model re-
duction using Loewner matrices to LTV systems. This has
been accomplished by introducing Loewner functions, the
time-varying generalization of Loewner matrices. We have
then shown how to construct an interpolating system using
the Loewner functions, and finally we have demonstrated
the application of the methods via an example.
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