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Abstract: This paper addresses the issue of square-rooting in the Unscented Kalman Filtering
(UKF) methods. Since their discovery the UKF is considered to be among the most valued
state estimation algorithms because of its outstanding performance in numerous real-world
applications. However, the main shortcoming of such a technique is the need for the Cholesky
decomposition of predicted and filtering covariances derived in all time and measurement update
steps. Such a factorization is time-consuming and highly sensitive to round-off and other errors
committed in the course of calculation, which can result in losing the covariance’s positivity and,
hence, in failing the Cholesky decomposition. The latter problem is usually overcome via square-
root filtering implementations, which propagate not the covariance itself but only its square root
(Cholesky factor). Unfortunately, negative weights arising in applications of the UKF schemes
to large stochastic systems preclude from designing conventional square-root UKF methods. So,
we resolve it with a hyperbolic QR factorization used for yielding J-orthogonal square roots.
Our novel square-root filter is grounded in the Euler-Maruyama discretization of order 0.5. It is
justified theoretically and examined and compared numerically to the conventional (non-square-
root) UKF in an aircraft’s coordinated turn scenario with ill-conditioned measurements.

Keywords: Continuous-discrete nonlinear stochastic model, unscented Kalman filter,
square-root implementation, radar tracking, maneuvering target, ill-conditioned measurements.

1. INTRODUCTION

Many state estimation tasks rely on continuous stochastic
systems with discrete measurements, which take the form

dX(t) = F
(
X(t)

)
dt+GdW (t), t > 0, (1)

Zk = h(Xk) + Vk, k ≥ 1. (2)

The process model (1) is supposed to be an Itô-type
Stochastic Differential Equation (SDE), in which the un-
known stochastic process X(t) represents the state of the
plant of size n at time t, the known nonlinear vector-
function F : Rn → Rn describes its dynamic behavior,
the diffusion matrix G is assumed to be time-invariant
and of size n×n in the driving noise used, and the random
disturbance {W (t), t > 0} is a multivariate Wiener process
with independent zero-mean Gaussian increments dW (t)
having a covariance of the form Qdt of size n×n where the
matrix Q is positive definite and fixed in time. The initial
state can also be a Gaussian variable X(0) ∼ N (X̄0,Π0)
with mean X̄0 and covariance Π0 > 0 in SDE (1). Next,
the discrete-time measurement model (2) with k being
a discrete time index (i.e. Xk means X(tk)) establishes
a nonlinear in general link h : Rn → Rm between the
⋆ The authors acknowledge the financial support of the Portuguese
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projects UIDB/04621/2020 and UIDP/04621/2020 of CEMAT/IST-
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distribution of the stateXk in the dynamic process at hand
and its measurement Zk of size m corrupted by a zero-
mean Gaussian variable {Vk, k ≥ 1} with its covariance
Rk > 0 at every sampling instant tk. The measurement
information Zk arrives uniformly and with the sampling
rate δ = tk − tk−1 in our setting. This time interval δ
is also known as the sampling period in filtering theory.
Furthermore, all realizations of the noises dW (t), Vk and
the initial stateX(0) are taken from mutually independent
Gaussian distributions. The continuous-discrete state esti-
mation scenarios are often encountered in practical mod-
eling and motivated in Jazwinski (1970); Särkkä (2007).

In 1995, Julier et al. (1995) gave rise a new class of state
estimation algorithms termed the Unscented Kalman Fil-
ter (UKF), which were found to be a successful alternative
to the traditional Extended Kalman Filter (EKF) in state
and parameter estimation and machine learning tasks by
Julier et al. (2000); Julier and Uhlmann (2004); Wan and
Van der Merwe (2001) and many others. Certainly, some
more advanced EKF versions elaborated in Gustafsson and
Hendeby (2012) can be comparable and even outperform
the UKF, but these are beyond the scope of our study.

At the heart of all UKF-based techniques lies the notion of
Unscented Transform (UT). Following Julier et al. (1995,
2000); Julier and Uhlmann (2004), this notion refers to
a method for evolution of the mean and covariance of a
random variable X of size n, whose first two moments X̂
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and PX are supposed to be known, under a sufficiently
smooth nonlinear transformation F (X) also of size n. In
other words, it computes asymptotically sound estimates
to the mean and covariance of the n-dimensional random
variable Y := F (X) provided that all higher moments of
the distribution X can be neglected, as explained below.

First, for a given random vector X of size n with mean X̂
and covariance matrix PX , one calculates a set of 2n + 1
deterministically selected vectors called Sigma Points (SP)

X0 := X̂, Xi := X̂ +
√
3SXei, Xi+n := X̂ −

√
3SXei, (3)

i = 1, 2, . . . , n, where ei denotes the i-th unit coordinate
vector in Rn (i.e. the i-th column in the identity matrix
of size n) and SX stands for the covariance matrix Square
Root (SR). Below, the concept of SR refers to a square
matrix of size n that satisfies the following condition:

PX = SXS⊤
X (4)

where S⊤
X denotes the transposed version of the SR SX .

Note that the SR presentation (4) of covariance PX is not
unique and any product SXQ with an orthogonal factor
Q gives another SR. Historically, the SR SX is commonly
taken to be the lower triangular Cholesky factor. Theoret-
ically, the Cholesky covariance factorization always exists
and can be fulfilled because of the positive definiteness of
covariance matrices utilized in stochastic modeling.

Second, the SP-set (3) is supplied with scalars w
(m)
i and

w
(c)
i , 0, 1, . . . , 2n, which are referred to as UT weights.

Here, we deal with their classical parametrization

w
(m)
0 = w

(c)
0 := (3− n)/3, w

(m)
i = w

(c)
i := 1/6, i = 1, . . . , 2n.

(5)
Certainly, other SP-sets and UT parameterizations are
possible and surveyed in Menegaz et al. (2015). However,
we restrict ourselves to their particular case (3) and (5)
considered in this paper. The main property of the UT is
that it calculates the given mean and covariance as follows:

X̂=

2n∑
i=0

w
(m)
i Xi and PX =

2n∑
i=0

w
(c)
i (Xi− X̂)(Xi− X̂)⊤. (6)

Third, the UT based on the SP-set (3) and weights (5) with
condition (6) computes the mean and covariance of the
transformed random variable Y := F (X) by the formulas

Ŷ ≈
2n∑
i=0

w
(m)
i F (Xi), PY ≈

2n∑
i=0

w
(c)
i (F (Xi)− Ŷ )(F (Xi)− Ŷ )⊤.

(7)
Eqs (7) underlie any UKF employed in practice. Note that
these formulas enjoy the true approximation of the first
three moments in the Taylor expansion of the mean vector
Ŷ and covariance matrix PY around the given mean X̂ for
any Gaussian-distributed random variableX, as evidenced
by Julier et al. (1995, 2000); Julier and Uhlmann (2004);
Wan and Van der Merwe (2001). That is why the UKF
grounded in such an UT outperforms usually the classical
EKF, which enjoys only the first order of approximation to
the mean and covariance, in treating nonlinear continuous-
discrete Gaussian systems of the form (1) and (2).

Nevertheless, the mentioned UKF suffers severely from the
problem of negative UT weights, which are encountered in
parametrization (5) for state estimation scenarios of large

size, i.e. when n > 3. Julier et al. (2000) indicate that
this can lead to indefinite covariance matrices arisen. Note
that the non-positivity of computed covariance halts im-
mediately any Cholesky-based UKF because the Cholesky
factorization of nonpositive argument matrix may not be
fulfilled and, hence, SP-set (3) is not available then. Such a
covariance positivity lost may also stem from round-off op-
erations of finite-digit arithmetic and other disturbances.

The best and commonly accepted solution to the issue of
this covariance matrix positivity lost, which is encountered
in a number of KF implementations and may result in a
disastrous outcome, lies in square-rooting the filters them-
selves, as elaborated in Andrews (1968); Arasaratnam and
Haykin (2009); Arasaratnam et al. (2010); Bellantoni and
Dodge (1967); Dyer and McReynolds (1969); Kaminski
et al. (1971); Wan and Van der Merwe (2001). It implies
that, instead of the covariance matrix PX , its SR SX from
formula (4) must be evaluated and propagated in the time
and measurement update steps of such filters. The latter
resolves completely the issue of symmetry and positivity of
the covariances computed in practice because the product
SXS⊤

X is always symmetric and positive semi-definite.

Within the above UKF, the search for an SR solution is
a nontrivial task because of the negativity of the weights

w
(m)
0 and w

(c)
0 in parametrization (5) when n > 3. So,

Arasaratnam and Haykin (2009) count the unavailability
of an SR solution in the UKF with negative weights among
three most important reasons for devising their Cubature
Kalman Filtering (CKF). It worthwhile to mention that
an attempt for constructing the SR-UKF was fulfilled by
means of the one-rank Cholesky factor update in Wan and
Van der Merwe (2001). Unfortunately, that filter does not
solve the issue of the covariance positivity lost because it
demands the positivity of the downdating matrix, anyway.
That is why Arasaratnam and Haykin (2009) call the latter
state estimator as a pseudo SR version of the UKF.

Below, we present an actual SR solution within the UKF
rooted in the SP-set (3) and weights (5), which is expected
to succeed in treating both continuous-discrete stochastic
scenarios with stiff SDE models (1) discussed by Ku-
likov and Kulikova (2017b,c, 2018a,b) and those with ill-
conditioned measurements (2), as studied in Kulikov and
Kulikova (2017d, 2018c). This solution employs the Euler-
Maruyama (EM) discretization, which is a popular method
for implementation of the UKF as evidenced by Kulikov
and Kulikova (2018a); Knudsen and Leth (2019), etc. In
addition, our square-rooting technique uses the concept
of J-orthogonal transforms implemented by hyperbolic
QR factorizations because of potential negativity of some
weights in parametrization (5). Note that J-orthogonal
QR decompositions are commonly utilized in the realm
of H∞ filtering and other tasks with indefinite inner prod-
ucts. Here, we stick to the J-orthogonal QR factorization
of Bojanczyk et al. (2003), which combines the House-
holder reflections and hyperbolic rotations and considered
to be numerically robust and efficient. That technique is
used for square-rooting the EM-based DD-UKF presented
by Kulikov and Kulikova (2018a). The performance of
our novel J-orthogonal Square-Root Discrete-Discrete Un-
scented Kalman Filtering (JSR-DD-UKF) method and its
superiority to the non-SR predecessor is assessed and con-
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firmed within the target tracking scenario of Arasaratnam
et al. (2010), in which an aircraft executes a coordinated
turn, but employed with ill-conditioned measurements.

2. J-ORTHOGONAL SQUARE-ROOT DD-UKF

For yielding this state estimator, we have to square-root
the time and measurement update steps in the EM-based
DD-UKF designed by Kulikov and Kulikova (2018a). We
consider first the time update step in the JSR-DD-UKF.

2.1 The Time Update Step in the JSR-DD-UKF

As we already mentioned above, our new filter enjoys the
EM-based discretization of strong convergence order 0.5.
With use of an equidistant mesh consisting of L − 1
equally spaced subdivision nodes (with a user-supplied
prefixed quantity L) introduced in each sampling interval
[tk−1, tk] of size δ, the EM method casts SDE (1) into the
corresponding discrete-time stochastic system of the form

X l+1
k−1 = X l

k−1 + τF
(
X l

k−1

)
+GW̃ l

k−1 (8)

where the drift function F (·) and diffusion matrix G come

from SDE (1), and where the discretized noise W̃ l
k−1 ∼

N (0, τQ). We emphasize that equation (8) gives the L-step
discretization scheme and, hence, its step size is τ = δ/L.

Our further intention is to establish mean and covariance
time-propagation methods for the nonlinear stochastic
process (8). In other words, given the mean X̂ l

k−1|k−1 and

covariance SR Sl
k−1|k−1 of the random variable X l

k−1 (i.e.

P l
k−1|k−1 = [Sl

k−1|k−1][S
l
k−1|k−1]

⊤), we have to advance

a step in our discretized process model and compute the
mean X̂ l+1

k−1|k−1 and covariance SR Sl+1
k−1|k−1 of the random

variableX l+1
k−1 derived by equation (8) whose time-updated

covariance satisfies P l+1
k−1|k−1 = [Sl+1

k−1|k−1][S
l+1
k−1|k−1]

⊤.

In line with the UKF algorithm, we set first the SP-matrix

X l
k−1|k−1 :=

[
X l

1,k−1|k−1 . . . X l
2n,k−1|k−1 X l

0,k−1|k−1

]
(9)

whose columns are the SP defined by formulas (3) in which

X̂ = X̂ l
k−1|k−1 and SX = Sl

k−1|k−1. We recall that the

mean X̂ l
k−1|k−1 and covariance SR Sl

k−1|k−1 are assumed

to be known at time tlk−1 := tk−1 + lτ , l = 0, 1, . . . , L− 1.

Then, following Särkkä (2007), we organize coefficients (5)
in the form of the vector wm and matrix W as follows:

wm :=
[
1/6 . . . 1/6 (3− n)/3

]⊤
, (10)

W :=
(
I2n+1 − 1⊤ ⊗ wm

)
diag

{
1/6, . . . , 1/6, (3− n)/3

}
×

(
I2n+1 − 1⊤ ⊗ wm

)⊤
, (11)

where I2n+1 stands for the identity matrix of size 2n+ 1,

1 := [1, 1, . . . , 1]
⊤ ∈ R2n+1, diag

{
1/6, . . . , 1/6, (3 − n)/3

}
denotes the diagonal matrix with the given entries on
its main diagonal and ⊗ refers to the Kronecker tensor
product coded as the built-in function kron in MATLAB.
We point out that the SP X0,k|k−1 has been put into the
last column of matrix (9) as well as the entry (3−n)/3 has
been moved to the end of vector (10) and of the diagonal in

the diagonal matrix of formula (11) because of its potential
negativity and specific requirements of the hyperbolic QR
factorization code implemented. This is explained below.

Eventually, we modify the SP-matrix (9) to the form

Y l+1
k−1|k−1 :=

[
Y l+1
1,k−1|k−1 . . . Y l+1

2n,k−1|k−1 Y l+1
0,k−1|k−1

]
(12)

by the discretized drift function in equation (8), i.e.

Y l+1
i,k−1|k−1 := X l

i,k−1|k−1 + τF (X l
i,k−1|k−1). (13)

Following Kulikov and Kulikova (2018a), the UT propa-
gates the mean and covariance of the random variables
from the stochastic process (8) in line with the rule

X̂ l+1
k−1|k−1 =Y l+1

k−1|k−1wm, (14)

P l+1
k−1|k−1 =

[
Y l+1
k−1|k−1

]
W

[
Y l+1
k−1|k−1

]⊤
+τGQG⊤. (15)

Note that the mean evolution (14) takes its final form,
whereas that of covariance (15) is to be square-rooted.

First of all we need an SR of matrix (11). Moreover, taking
into account the negativity of the last entry (3−n)/3 when
n > 3, we replace it with its magnitude and arrive at the
modified coefficient matrix SR defined by the formula

|W|1/20 :=
(
I2n+1 − 1⊤ ⊗ wm

)
× diag

{√
1/6, . . . ,

√
1/6,

√
|3− n|/3

}
. (16)

Also, we determine the corresponding signature matrix

J := diag {1, . . . , 1, sgn{(3− n)/3}} (17)

where the function sgn{(3− n)/3} returns the sign of the
last diagonal entry in line with the rule: sgn{(3−n)/3} = 1
if n ≤ 3 and sgn{(3−n)/3} = −1 if n > 3. We remark that
formulas (11), (16) and (17) entail the obvious equality

W = |W|1/20 J |W|⊤/2
0 (18)

where |W|⊤/2
0 stands for the transpose of the SR |W|1/20 .

Next, we apply the Cholesky decomposition to the disc-
tretized process noise covariance for deriving its factoriza-
tion τQ = [

√
τQ1/2][

√
τQ1/2]⊤ and assembling the array

A :=
[√

τGQ1/2 Y l+1
k−1|k−1|W|1/20

]
. (19)

Array (19) and formulas (15) and (18) entail the identity

P l+1
k−1|k−1 ≡ AJA⊤ with J := diag{In,J }. (20)

Further, the concept of J-orthogonality is crucial in our
approach to square-rooting the covariance evolution equa-
tion (15). Higham (2003) defines a J-orthogonal matrix
as follows: A square matrix Θ of size n × n is said to be
J-orthogonal with a signature matrix J := diag{±1⊤} of
size n, i.e whose diagonal entries equal 1 or −1, when

Θ⊤JΘ = ΘJΘ⊤ = J. (21)

The J-orthogonality is vital in the hyperbolic QR factor-
ization used in our square-rooting method, below. As al-
ready said above, we apply the method of Bojanczyk et al.
(2003), which is implemented for J-orthogonal QR decom-
positions with signatures of the form J = diag{Ip,−Is},
i.e. when all positive entries are placed in the beginning
of its main diagonal and the remaining negative ones
complete it. That is why we have permuted rows and/or
columns in vector (10) and matrices (9), (11) and (12).
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This hyperbolic QR decomposition code applied to the
transposed matrix of array (19) with the signature matrix
from equation (20) returns the lower triangular post-array

R⊤ =
[
Sl+1
k−1|k−1 0

]
, (22)

which is of size n× (3n+1), with the notation 0 standing
for the zero-block of size n × (2n + 1). Finally, we read-

off the square block Sl+1
k−1|k−1 of size n, which constitutes

the requested time-updated covariance matrix SR because
formulas (19)–(22) prove the SR condition (4) as follows:

P l+1
k−1|k−1 ≡AJA⊤ = R⊤Q⊤JQR = R⊤JR

= [Sl+1
k−1|k−1][S

l+1
k−1|k−1]

⊤. (23)

The signature matrix J in (23) becomes the identity one
after multiplication of its negative part with zero entries
in post-array (22) and, hence, vanishes. This completes
the time update in the JSR-DD-UKF designed. For con-
venience of practical use, we summarize the time update
of this filter in the following condensed algorithmic form:

Given X̂k−1|k−1 and Sk−1|k−1 at time tk−1, compute the

predicted state mean X̂k|k−1 and covariance SR Sk|k−1 at

time tk. Set the local initial values X̂0
k−1|k−1 := X̂k−1|k−1

and S0
k−1|k−1 := Sk−1|k−1 and fulfil the L-step time-

update procedure with τ := (tk − tk−1)/L as follows:
For l = 0, 1, . . . , L− 1 do;
1) Assemble the SP-matrix (9);
2) Set the modified SP-matrix (12) with columns (13);

3) Compute the updated mean X̂ l+1
k−1|k−1 by formula (14);

4) Set the time-updated predicted covariance array (19);
5) Apply the J-orthogonal QR factorization of the trans-
posed array (19) with the signature J from formula (20);

6) Read-off the covariance SR Sl+1
k−1|k−1 in post-array (22).

We point out that the time-invariant coefficient vector
(10) and matrices (11) and (16) with signature (17) as
well as the disctretized-process-noise-covariance-Cholesky-
factorization τQ = [

√
τQ1/2][

√
τQ1/2]⊤ are computed only

once and before the state estimation run itself starts off.
The predicted state mean vector X̂k|k−1 := X̂L

k−1|k−1

and covariance matrix SR Sk|k−1 := SL
k−1|k−1 are further

utilized in the measurement update step of our novel JSR-
DD-UKF method as explained in the next section.

2.2 The Measurement Update Step in the JSR-DD-UKF

First of all we assemble the following predicted SP-matrix:

Xk|k−1 :=
[
X1,k|k−1 . . . X2n,k|k−1 X0,k|k−1

]
(24)

whose columns are the SP defined by formulas (3) in which

X̂ = X̂k|k−1 and SX = Sk|k−1. We recall that the mean

vector X̂k|k−1 and covariance matrix SR Sk|k−1 come from
the time update step elaborated in Sec. 2.1.

Then, the SP-matrix (24) is modified to the form

Zk|k−1 :=
[
Z1,k|k−1 . . . Z2n,k|k−1 Z0,k|k−1

]
(25)

with columns Zi,k|k−1 := h(Xi,k|k−1), i = 0, 1, . . . , 2n,
i.e. these are transformed by the measurement function
h(·) from the measurement model (2). The coefficient
matrix (11) and SP-matrices (24) and (25) contribute

to computation of the innovations, cross- and filtering
covariances in line with the following commonly-used rules:

Pzz,k|k−1 :=Zk|k−1WZ⊤
k|k−1 +Rk, (26)

Pxz,k|k−1 :=Xk|k−1WZ⊤
k|k−1, (27)

Pk|k = Pk|k−1 −WkPzz,k|k−1W⊤
k (28)

where Rk stands for the covariance of the measurement
noise in model (2) and the Kalman gain obeys the formula

Wk := Pxz,k|k−1P
−1
zz,k|k−1. (29)

It is commonly accepted to square-root all the covariance
matrices calculated by formulas (26)–(28) in the form of a
single coupled pre-array, which is assembled as follows:

B :=

[
R

1/2
k Zk|k−1|W|1/20

0 Xk|k−1|W|1/20

]
(30)

where R
1/2
k refers to the lower triangular Cholesky factor

(SR) of the measurement noise covariance, i.e. Rk =

R
1/2
k R

⊤/2
k . Similar to the time update presented in Sec. 2.1,

the above-mentioned hyperbolic QR decomposition code
is applied to the transposed matrix of pre-array (30) with
the signature matrix J := diag{Im,J }, in which Im is the
identity matrix of size m and J obeys formula (17). The
latter factorization returns the lower triangular post-array

R⊤ =

[
P

1/2
zz,k|k−1 0 0

P̄xz,k|k−1 Sk|k 0

]
, (31)

which is of size (m+ n)× (m+2n+1), with the notation
0 standing for zero-blocks of proper size and the matrix
P̄xz,k|k−1 denoting the modified cross-covariance. This
matrix allows the Kalman gain (29) to be amended to the
form

Wk = P̄xz,k|k−1P
−1/2
zz,k|k−1. (32)

We further read-off the lower triangular (m+n)×(m+n)-
block S in the outcome covariance post-array (31), i.e.

S :=

[
P

1/2
zz,k|k−1 0

P̄xz,k|k−1 Sk|k

]
, (33)

which contains the innovations covariance SR P
1/2
zz,k|k−1,

the modified cross-covariance P̄xz,k|k−1 and the filtering
covariance SR Sk|k. These are read-off from matrix (33).

Next, we find the measurement mean by the inner product

Ẑk|k−1 := Zk|k−1wm (34)

and complete this measurement update with calculating

X̂k|k = X̂k|k−1 +Wk(Zk − Ẑk|k−1). (35)

We recall that the predicted state mean X̂k|k−1 comes from
the time update elaborated in Sec. 2.1. For convenience of
practical use, we present this measurement update of JSR-
DD-URK in the following condensed algorithmic form:

Given the predicted state mean X̂k|k−1 := X̂L
k−1|k−1 and

covariance matrix SR Sk|k−1 := SL
k−1|k−1, compute the

filtering state mean X̂k|k and covariance matrix SR Sk|k
based on the measurement Zk fulfilled at time tk as follows:
1) Assemble the predicted SP-matrix (24);
2) Assemble the measurement-modified SP-matrix (25);
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3) Set the innovations and filtering covariance array (30);
4) Apply the J-orthogonal QR factorization of the trans-
posed array (30) with the signature J := diag{Im,J };
5) Compute the Kalman gain Wk by formula (32);

6) Compute the filtering mean X̂k|k by formulas (34), (35);
7) Read-off the filtering covariance SR Sk|k in array (33).

Further, we examine the novel JSR-DD-UKF technique
presented in Sec. 2.1 and 2.2 and compare it to its non-SR
predecessor published by Kulikov and Kulikova (2018a)
in severe conditions of tackling a radar tracking problem
of Arasaratnam et al. (2010), where an aircraft executes a
coordinated turn, but with an ill-conditioned measurement
function in our stochastic scenario described below.

3. AIR TRAFFIC CONTROL SCENARIO WITH
ILL-CONDITIONED MEASUREMENTS

The flight control scenario under consideration is a famous
one in nonlinear filtering theory, which has been published
with all particulars by Arasaratnam et al. (2010); Kulikov
and Kulikova (2016, 2017a), etc. So, the interested reader
is referred to the cited papers for more details. We simulate
the turning aircraft dynamics for 150 s and set its angular
velocity ω = 3◦/s. The performance of our novel SR filter
and its non-SR predecessor presented by Kulikov and Ku-
likova (2018a) is assessed in the sense of the Accumulated
Root Mean Square Errors in position (ARMSEp) and in
velocity (ARMSEv), which are defined as follows:

ARMSEp :=
[ 1

100K

100∑
mc=1

K∑
k=1

(
xtrue
mc (tk)− x̂mc

k|k
)2

+
(
ytruemc (tk)− ŷmc

k|k
)2
+

(
ztruemc (tk)− ẑmc

k|k
)2]1/2

,

ARMSEv :=
[ 1

100K

100∑
mc=1

K∑
k=1

(
ẋtrue
mc (tk)− ˆ̇xmc

k|k
)2

+
(
ẏtruemc (tk)− ˆ̇ymc

k|k
)2
+

(
żtruemc (tk)− ˆ̇zmc

k|k
)2]1/2

where xtrue
mc (tk), y

true
mc (tk), z

true
mc (tk) and ẋtrue

mc (tk), ẏ
true
mc (tk),

żtruemc (tk) stand for the aircraft’s position and velocity
simulated by the the Euler-Maruyama method with the
small step size τ := 0.0005 at time tk in the mc-th Monte
Carlo run (out of 100 independent simulations), x̂mc

k|k, ŷ
mc
k|k,

ẑmc
k|k and ˆ̇xmc

k|k,
ˆ̇ymc
k|k,

ˆ̇zmc
k|k denote the aircraft’s position and

velocity estimated by each filtering algorithm, k means
the particular sampling time tk and K refers to the total
number of samples in the simulation interval [0, 150 s]. The
sampling rate is limited to δ = 1 s in this flight control task.

In contrast to Arasaratnam et al. (2010), for provoking
numerical instabilities in the filters under examination, we
utilize the artificial measurement equation of the form

Zk =

[
1 1 1 1 1 1 1
1 1 1 1 1 1 1 + σ

]
Xk + Vk (36)

where the aircraft’s state Xk := [ xk ẋk yk ẏk zk żk ωk ]
⊤

is estimated at time tk and σ denotes a small positive real
number determining ill-conditioning of model (36). Here,
we address the cases of σ = 1.0e-01, 1.0e-02, . . . , 1.0e-10.
Also, each measurement Zk is supposed to be corrupted
by a normally distributed noise Vk ∼ N (0, Rσ) with the
covariance Rσ = σ2I2 depending on the ill-conditioning
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Fig. 1. The ARMSEp and ARMSEv observed in the target
tracking scenario with the measurement model (36).

parameter σ. Measurements (36) with the measurement
noise covariance matrix Rσ are typical means in numerical
stability studies of various KF including the continuous-
discrete and discrete-discrete methods presented by Dyer
and McReynolds (1969); Grewal and Andrews (2001); Ku-
likov and Kulikova (2017d, 2018c). These correspond to
the third reason of ill-conditioning elaborated by Grewal
and Andrews (2001) because the matrix inversions in the
Kalman gain computations (29) and (32) become increas-
ingly ill-conditioned in line with the vanishing scalar σ.

We abbreviate our novel SR filter to JSR-DD-UKF and
its non-SR predecessor published by Kulikov and Ku-
likova (2018a) to DD-UKF, respectively. These methods are
coded and run in MATLAB. The state estimators under
consideration enjoy L = 512 subdivision steps in each
sampling period. Parametrization (5) includes negative

weights, i.e. w
(m)
0 < 0 and w

(c)
0 < 0, in the target tracking

scenario in use. This serves for the effective examination of
JSR-DD-UKF and its valued comparison to DD-UKF in the
presence of the ill-conditioned measurement model (36).

Fig 1 exhibits that the SR filter and its non-SR predeces-
sor work identically and expose the same ARMSEp and
ARMSEv when the ill-conditioning parameter σ ≥ 1.0e-03,
i.e. when our air traffic control scenario is rather well-
conditioned. Then, we see that the non-SR DD-UKF fails
at σ = 1.0e-04 because its covariance matrix computed
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loses the positivity and, hence, the Cholesky factorization
may not be fulfilled. In contrast, the JSR-DD-UKF succeeds
in producing the decent state estimates for all the values
of the ill-conditioning parameter σ accepted in our case
study. This confirms the sound numerical robustness of
the filtering algorithm presented in Sec. 2 and establishes a
solid background for its successful applications in practice.

4. CONCLUSION

This paper has yielded a square-root version of the Euler-
Maruyama-based Discrete-Discrete Unscented Kalman
Filter designed by Kulikov and Kulikova (2018a). Tak-
ing into account the negativity of some UT weights in
continuous-discrete stochastic scenarios of large size, we
have applied the hyperbolic QR decomposition for devis-
ing our novel J-orthogonal square-root state estimator,
which has been examined in severe conditions of tackling
a radar tracking problem, where an aircraft executes a co-
ordinated turn, in the presence of ill-conditioned measure-
ments. The sound state estimation potential of this filter
has been proven theoretically and confirmed numerically
within the mentioned stochastic flight control scenario.
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