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Abstract: This paper deals with the autopilot design for a 155-mm dual-spin projectile
equipped with a course correction fuze (CCF). This class of projectiles is subject to high
nonlinearities and to strongly coupled dynamics between its pitch and yaw channels. To
overcome these difficulties a Nonlinear Dynamic Inversion (NDI) based autopilot is proposed.
This autopilot possesses a cascade structure where an inner loop linearises the nonlinear system
dynamics and an outer loop enables to impose the desired system closed-loop dynamics. The
configuration of a dual-spin projectile requires the development of two separate control loops,
one for the roll channel and another for the pitch/yaw channels. The pitch/yaw controller is
developed under a Time Scale Separation (TSS) scheme. This not only helps to accelerate the
design of the control laws but also to achieve a satisfactory level of robustness. The autopilots
are also validated with a nonlinear 7-DOF simulation.
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1. INTRODUCTION

Standard artillery shells lack precision being essentially
non-guided weapons following a ballistic trajectory. The
result is poor performance in the presence of incorrect
launch parameters or external disturbances and cost in-
crease due to the high number of firing rounds required
to hit a target. The requirements for this type of ammuni-
tion increasingly demand an improvement in accuracy and
range in order to avoid any undesired outcome on the bat-
tlefield. Therefore, the development of guided projectiles
has become an important field of research in recent years.

Various mechanisms have been proposed to correct the
trajectory of a projectile during flight, for example, jet
thrusters (Davis et al. (2009)) or aerodynamic control
surfaces (Fresconi et al. (2012); Theodoulis and Wernert
(2017)). The latter solution presents various advantages,
for instance, it can provide with continuous control over
the projectile and its physical fundamentals are well-
known. In addition, a projectile equipped with control
surfaces presents with similarities with respect to missiles,
hence easing the development of a control system.

The nose-located guidance module contains all necessary
hardware (sensors, actuators, etc.) and provides with all
the commands necessary to correct the trajectory and
hit a target. The control system itself guarantees closed-
loop stability and makes the system track acceleration
commands in a rapid and stable way.

Previous work for guided projectile control system design
was mainly based on linear control theory, requiring to
develop multivariable robust control laws and apply gain-
scheduling techniques (Theodoulis et al. (2013, 2015); Sève
et al. (2017b)).

The overall design process is hence time-consuming since
performance and robustness properties must be checked
for a large number of operating points. A dual-spin guided
projectile is characterized by strongly nonlinear dynamics
and therefore a natural approach to address the control
design problem is via a purely nonlinear controller. Such
an approach allows for rapid control law prototyping since
just a single (nonlinear) controller would be valid over the
whole flight envelope. Still, relatively few works based on
nonlinear control theory for these systems exist (Lee et al.
(2014); Yuanchuan et al. (2017); Sung et al. (2019)).

This paper proposes a Nonlinear Dynamic Inversion
(NDI)-based controller for the autopilot design. NDI is a
multivariable control technique, widely used in industry,
that follows a rather straightforward design procedure.
It is necessary to develop only one (nonlinear) controller
for the whole flight envelope, thus avoiding the need for
any gain-scheduling. Besides, the use of NDI allows for
the desired closed-loop dynamics of the system to be
established directly during controller design. Examples in
the literature where NDI was successfully implemented
may be found, from missiles to re-entry aerospace vehicles
(Menon and Yousefpor (1996); da Costa et al. (2003)).
Despite its obvious advantages, an NDI controller presents
some drawbacks, usually its lack of robustness. This is here
addressed through a Time Scale Separation (TSS) scheme,
helping to simplify the developed control law but also to
improve the system robustness (Menon et al. (1997)).

The paper is organized as follows: Section 2 presents the 7-
DOF nonlinear model for the projectile dynamics, Section
3 addresses the autopilot design for both the roll channel
and pitch/yaw channels, and Section 4 provides with the
nonlinear simulation results for validation.
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2. AIRFRAME MODELING

This section shortly presents the dual-spin projectile con-
figuration and the underlying nonlinear flight dynamics
equations required for control design.

2.1 System Concept

The development of a new guided projectile system is
usually quite a long process that implies a high cost.
For this reason, a more intelligent approach followed to
develop guided projectiles while maintaining a low-cost
development is to modify existing ballistic projectiles and
convert them into guided weapons. This project is con-
ducted under this context, where a 155mm spin-stabilized
projectile is modified to integrate a Roll-Decouple Course
Correction Fuze (CCF) (Theodoulis and Wernert (2017)).
The resulting configuration is known as a dual-spin projec-
tile (Costello and Peterson (2000)) and allows for the use
of existing ammunition, thus helping to reduce production
costs. The overall structure consists of two parts, the main
body, which spins at a high rate in order to guarantee the
stability of the system, and a forward part or fuze where
the various control surfaces are integrated. These more
precisely consist of a pair of rotating canards, which make
possible to aerodynamically control the roll and pitch/yaw
(lateral) channels.

2.2 Nonlinear Mathematical Model

The projectile equations of motion are traditionally writ-
ten using a specific Body-Fixed Roll (BFR) frame (Wern-
ert et al. (2010)). Using a conventional frame B that would
roll along with the body presents some drawbacks for a
spin-stabilized projectile. Due to the high body spin rate
(around 250Hz), the simulation step would have to be
small enough to capture its roll dynamics. This ultimately
results in a total simulation time which can be quite long
and also the accumulated numerical errors may be larger.

A BFR reference frame though is characterized by not
experiencing a roll motion and helps to overcome the above
issues. The details on how the nonlinear flight dynamics
equations can be written using such a reference frame are
omitted but can be found in Sève et al. (2017a).

Fig. 1. Dual-spin projectile concept.

For control design purposes, it is more convenient to use as
states the variables (V, α, β) instead of the linear velocities
(u, v, w). Therefore, assuming no wind disturbances and by
performing appropriate transformations, the 7DoF trans-
lational and angular nonlinear flight dynamics equations
can be represented as (for more details refer to Sève et al.
(2017a)):V̇α̇

β̇

 =

[
0
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The externally-applied forces to the projectile can be
written as:[
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The forces are distinguished by their aerodynamic and
gravitational (G) contributions. The aerodynamic forces
can be represented in terms of: body effects due to lift/drag
(B), control surfaces (C) and Magnus effect (M).

The aerodynamic moments acting on the guided projectile
can be also represented as a combination of similar aero-
dynamic effects (B), control surfaces (C), Magnus effect
(M), and in addition roll/pitch/yaw damping (D) and the
friction between the main body and fuse (F).
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Given the projectile symmetry, it is possible to define that:
CY β = −CNα, CY δ = CNδ, Cnβ = −Cmα and Cnr = Cmq.

All the above aerodynamic coefficients are usually tabu-
lated as a function of the aerodynamic angles, Mach num-
ber, etc. whereas the dependence on the dynamic pressure
q and projectile dimensions (S, d) and mass/moment of
inertia also appears.
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3. AUTOPILOT DESIGN

3.1 Roll Autopilot

The roll controller is used to establish a specific angular
configuration for the fuze determined by the angle φf . The
control is performed by the canards mounted on the fuze.
First, it is necessary to present the equations which define
the fuze roll dynamics:[

φ̇f
ṗf

]
=

[
pf + r tan θ

(LC,f + Lf−a)I−1xx,f

]
(5)

where Lf−a is the friction moment between the forward
and aft part of the projectile and is given by:

Lf−a = qSdCA sgn(pa − pf )(Ks +Kv|pa − pf |) (6)

The roll dynamics can be simplified since |pf | � |r tan θ|:[
φ̇f
ṗf

]
=

[
pf

(LC,f + Lf−a)I−1xx,f

]
(7)

It can be observed that these equations correspond to
a single-input single-output (SISO) nonlinear system of
second order. The output of the system is φf and the
control input is δp. These equations can be represented in
a more convenient way to apply the input-output feedback
linearization method used to linearize the system.

φ̈f = (LC,f + Lf−a)I−1xx,f (8)

y = φf (9)

The input-output feedback linearization approach requires
to differentiate the output until the control input appears:

y = φf
dt−−→ ẏ = φ̇f

dt−−→ ÿ = φ̈f = (LC,f +Lf−a)I−1xx,f (10)

and hence Equation (10) can be represented as:

ÿ = f(x) + g(x)u (11)

where u is the control input of the system. In order to
linearize the input-output map, the control input u is
selected as:

u =
1

g(x)
[v − f(x)] (12)

where:

g(x) = qSdClδ (13)

f(x) = qSdCA sgn(pa − pf )(Ks +Kv|pa − pf |) (14)

Therefore, the control input u = δp is given by:

δp =
1

qSdClδ
(v − qSdCA sgn(pa − pf )(Ks +Kv|pa − pf |))

(15)
Using the control signal above, the input-output map is
hence linearized, and the original system becomes a chain
of two integrators:

ÿ = φ̈f = v (16)

Finally, the virtual control v can be set to satisfy de-
sired (linear) closed-loop dynamics according to design
requirements. It must be underlined that the feedback
linearization procedure requires the knowledge of various
states of the projectile such as the roll rates pa and pf .
Selecting v according to a PD structure gives:

v = Kp(φc − φm)−Kdφ̇m (17)

and the closed-loop transfer function becomes:

φm
φc

=
Kp

s2 + sKd +Kp
(18)

Fig. 2. Closed-loop roll angle step response.

For an ideal inversion, the system closed-loop response
must correspond to this transfer function. The gains
Kp,Kd can be easily computed from the equivalent second
order system with Kd = 2ξωn and Kp = ω2

n. Establishing
an optimal damping ratio of ξ = 0.781 for an overshoot
of 2 %, it is possible to minimize the settling time for any
natural frequency. Finally, by selecting ωn = 14.2 rad/s,
it is possible to obtain a settling time of ts = 0.25 s.
The gains of the controller using the previous values are
computed as Kd = 22.22 and Kp = 202.4.

The controller is validated using a nonlinear simulation
for a step response with reference amplitude of 45 deg (see
Fig. 2). It can be observed that the system response is
almost the same as that of the reference model. There is a
relatively small delay at the beginning of the response that
is a consequence of the actuator dynamics, being neglected
in the design procedure for simplicity.

3.2 Lateral Autopilot

Inner Loop: The lateral (pitch-yaw) dynamics are very
strongly coupled due to the very high main body spin
rate, it is though possible to linearize and decouple the
dynamics through NDI control by using a single controller
for each channel. Due to the complexity of the equations,
a TSS scheme is here employed by assuming natural time
scales in the system; hence it is possible to distinguish
between fast and slow dynamics. The slow dynamics
relates to the body aerodynamic angles α and β whereas
the fast dynamics to the body rates q and r (see Fig. 3).

Following the general control structure outlined in Fig. 3,
the control design starts with the inner loop (i.e. the fast
dynamics). The fast dynamics states are the body rates
[q, r]′ and the inputs for this system are the control signals
[δq, δr]

′. The nonlinear design equations can be obtained
from Eq. (2) by additionally considering that the products
of q and r are negligible compared to the other terms. The
following simplified expressions are then obtained:

Fig. 3. NDI and TSS structure for Pitch-Yaw channels.
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q̇ = −Ixx,a
Iyy

par +
M

Iyy
(19)

ṙ =
Ixx,a
Izz

paq +
N

Izz
(20)

Since the outputs of this system are also the body
rates, these equations can be used directly when applying
the input-output feedback linearization method. Using a
shorthand notation, this process can be represented as:

y1 = q
dt−−→ ẏ1 = q̇ = f1(x) + g1(x)δq (21)

y2 = r
dt−−→ ẏ2 = ṙ = f2(x) + g2(x)δr (22)

The variables [q̇d, ṙd]
′ represent the desired dynamics and

the control commands can be then computed as:

δq,c =
1

g1(x)
[q̇d − f1(x)] (23)

δr,c =
1

g2(x)
[ṙd − f2(x)] (24)

where the functions g1, g2 are:

g1 =
qSd

Iyy
Cmδ (25)

g2 = −qSd
Izz

Cmδ (26)

and the functions f1, f2 are:

f1 =
qSd

2IyyV
(Cmqdq − 2Ixx,aV par + 2CmααV + Cnpαβpad)

(27)

f2 =
qSd2

2IzzV
(Cmqdr + 2Ixx,aV paq − 2CmαβV + Cnpααpad)

(28)

The control laws given above allow for decoupling and
linearization of the projectile dynamics. The remaining
control problem now is limited to properly imposing the
desired inner closed-loop dynamics. This can be done using
the so-called three-loop autopilot structure (Lee et al.
(2014)) as:

q̇d = Kp

(
Ki

s
eq − qm

)
(29)

ṙd = Kp

(
Ki

s
er − rm

)
(30)

where eq = qc − qm and er = rc − rm represent the body
rates errors. For an ideal inversion, q̇m = q̇d and ṙm = ṙd
and hence the closed-loop response is computed as:

ym
yc

=
KpKi

s2 +Kps+KpKi
(31)

The inner rate controller gains are computed in a similar
way as for the roll controller, with KpKi = ω2

n and
Kp = 2ξωn.

Outer Loop: Concerning the slower outer loop dynamics
the simplified nonlinear equations are obtained from Eq.
(1) by considering small angles and the product of small
terms negligible as:

α̇ = q +
1

mV
Z (32)

β̇ = −r +
1

mV
Y (33)

Fig. 4. Controller structure for fast dynamics control.

Before applying the feedback linearization approach, it is
necessary to define the inputs of the system, which are
selected to be the body rates [q, r]′ whereas the outputs
are the normal and lateral accelerations [nz, ny]′:

nz =
qS

mg

[
−CNαα−

(
pad

2V

)
CY pαβ − CNδδq

]
(34)

ny =
qS

mg

[
CY ββ +

(
pad

2V

)
CY pαα+ CY δδr

]
(35)

Following the input-output feedback linearization proce-
dure, it is necessary to differentiate the outputs until the
control input appears. Using matrix notation, this process
can be represented by:

y =

[
y1
y2

]
=

[
nz
ny

]
dt−−→
[
ẏ1
ẏ2

]
=

[
ṅz
ṅy

]
=

[
f11
f22

]
+

[
g11 g12
g21 g22

][
q
r

]
(36)

The outputs need to be derivated only once since α̇ and
β̇ depend directly on the inputs [q, r]′. The functions fi
and gi depend on the states, controls and some of the
state derivatives. These expressions are calculated using
MATLAB Symbolic Toolbox in order to avoid potential
computation errors.

Continuing with the dynamic inversion process, Eq. (36)
can be used to compute the control inputs:[

qc
rc

]
=

[
g11 g12
g21 g22

]−1 [
ṅz,d − f11
ṅy,d − f22

]
(37)

where ṅi,d represent the desired dynamics. The matrix
composed of the terms gij is square (equal number of
inputs and outputs) and is easily invertible. This inversion
allows for us to efficiently decouple and also linearize the
projectile dynamics. Applying the control laws in Eq. (37),
the original system is reduced to two decoupled systems,
being each one represented by a single integrator:[

ẏ1
ẏ2

]
=

[
ṅz
ṅy

]
=

[
ṅz,d
ṅy,d

]
(38)

The same controller applied to both pitch-yaw channels
needs to be designed since the projectile aerodynamic
properties are (almost) symmetric. By considering an ideal
inversion, the control structure in Fig. 4 is proposed in
order to impose the desired closed-loop dynamics. This
structure is known as 2-DOF controller since it adds a
feedforward control to the commanded signal and helps
to improve the transient response at high frequencies.
Selecting the gains in Fig. 4 as fc = 0.5 and fi = 0.25, the
closed-loop response will depend only on the gain Kb, thus
resulting in a simple first order system (Ducard (2009)):

ym
yc

=
Kb/2

s+Kb/2
=

1

τs+ 1
(39)
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Fig. 5. Closed-loop load factor step response.

The time constant is selected as τ = 0.125 resulting in
a settling time around ts = 0.5s Hence, the gain of the
controller is computed as Kb = 16.

The closed-loop step response as obtained from the non-
linear simulator is shown in (see Fig. 5). From this figure
it can be observed how the projectile is able to successfully
track the commanded normal acceleration. It is also im-
portant to note that the NDI controller is able to decouple
quite satisfactorily the pitch from the yaw dynamics since
the coupling effects are quickly attenuated. Furthermore,
it can be observed that the normal acceleration presents
a response almost like the reference model. There is a
small delay at the beginning but this was expected due
to actuator dynamics being neglected in the design phase.

4. SIMULATION RESULTS

This section presents the results obtained for a fully
guided flight, allowing us to assess the effectiveness of the
controllers proposed.

The projectile flight trajectory can be divided into two
parts: a ballistic and a guided phase (see Fig. 6). During
the ballistic phase (0 ≤ t < tguid), the projectile is
launched and all required actions to prepare the projectile
for the guided phase are carried out. Due to the harsh
initial conditions, during the interval (0 ≤ t < tstart)
the electronic components are switched off to avoid any
possible damage. Once the projectile transients have set-
tled down, the electronic components are activated at
tstart, and a new sub-phase can be established between
(tstart ≤ t < tswitch). During this part of the ballistic
flight, the objective is to reduce the fuze roll rate being
quite high due to the friction between the main body
and the fuze. Once the fuze roll rate is small enough, at
tswitch the roll autopilot is enabled and sets a determined
roll angle for the fuze. This sub-phase is defined between
(tswitch ≤ t < tguid). Finally at tguid, the guidance module
is activated and the lateral autopilot starts to work.

Fig. 6. Projectile flight trajectory.

During the guided phase lasting until the impact point
(tguid ≤ t < timpact), all required corrections provided by
the guidance laws have to be computed by the autopilot.

The nonlinear simulation results assuming nominal initial
conditions and no system uncertainties are given in Figures
7 and 8. The ballistic phase is illustrated in Fig. 7, where
the fuze roll angle, the angular rate and the control
deflection are shown. During the ballistic phase, before
starting the roll control it is necessary to decrease the fuze
rate pf (see Fig. 7b). This can be done setting a constant
deflection δp = 10 deg, at tstart = 20 s. Once the rate is
reduced enough to a threshold pf = 10π rad/s, the roll
control is activated. Finally, the fuze angle is maintained
by the roll autopilot to φf = 0 deg, and this configuration
is maintained during the whole guided phase.

The lateral guided phase is shown in Fig. 8, starting at
tguid = 30 s. It shows the load factors for the pitch/yaw
channels and the control deflection angles and rates. Dur-
ing this phase, the tracking performance of the load factors
is very tight, achieving a good precision at the impact
point (see Fig. 8a). Furthermore, the control deflections
shown in Fig. 8b are rather small along the flight trajec-
tory, allowing for a large margin until actuator position
saturation. In terms of rate deflections, despite the large
values at the beginning of the guidance, these remain at a
small value for most of the simulation (see Fig. 8c).

NDI is known to being dependent on an accurate system
model, however the proposed TSS approach still provides
with a certain robustness margin (see Menon et al. (1997)).
The system robustness was assessed by a Monte Carlo
simulation considering uncertainties on the aerodynamic
coefficients (totally 300 cases).

5. CONCLUSION & FUTURE WORK

In this paper, a nonlinear autopilot for a 155mm dual-
spin guided projectile was designed in order to deal with
its highly nonlinear and strongly coupled dynamics. The
roll channel autopilot was first designed according to NDI
control theory using an input-output feedback lineariza-
tion method. The linear controller used to set the desired
closed-loop dynamics was tuned based on simple settling
time and overshoot requirements. The lateral autopilot
design relies also on NDI-based control and a Time Scale
Separation (TSS) approach by distinguishing between two
time-scales. Both the inner (faster) and the outer (slower)
system dynamics were linearized and a linear controller
was similarly designed for each resulting system based also
on settling time and overshoot requirements.
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All controllers were evaluated using a guided flight nonlin-
ear simulation for nominal and uncertain conditions and
the results showed satisfactory tracking performance and
impact precision. Future work will focus on theoretically
assessing the system robustness under the TSS approach.
Furthermore, observers need to be added to access certain
system states necessary for the NDI-based controller.

Fig. 7. Nominal simulations: (a) nose roll angle, (b) nose
roll rate, (c) roll deflection angle.

Fig. 8. Nominal simulations: (a) pitch/yaw load factors,
(b) deflection angles, (c) deflection angle rates.
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