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1. INTRODUCTION

Time delays are frequently used in technical systems
to model the features of the information transmission
and actuator constraints. Appearance of a time delay is
usually related with a degradation of the quality of the
transients (Dugard, 1998; Gu et al., 2003; Richard, 2003),
while a large delay can lead to instability of the systems.
There are two main frameworks to deal with stability anal-
ysis of time-delay systems using Lyapunov-Razumikhin
functions (Hale and Lunel, 2013; Teel, 1998; Myshkis,
1995; Mao, 1996) and Lyapunov-Krasovskii functionals
(Dugard, 1998; Gu et al., 2003; Hale and Lunel, 2013).
The latter approach is necessary and sufficient (Pepe and
Jiang, 2006), and it can be used to establish the stability
conditions (Moon et al., 2001; Wu et al., 2004); whereas the
former method is typically applied for analysis of delay-
independent stability (Fridman and Shaked, 2003; Jiao
and Shen, 2005). It should be pointed out that usually the
asymptotic stability is considered when using Lyapunov-
Razumikhin functions. These observations leave a space
for improvements of the Lyapunov-Razumikhin approach.

Switched systems are a widely distributed subclass
of hybrid dynamics. There are plenty of analysis and
design results obtained for such a kind of systems (El-
Farra et al., 2005; Zhao and Dimirovski, 2004; Zhao et al.,
2015; Fainshil et al., 2009; Zhai et al., 2007; Liberzon
and Morse, 1999; Hespanha and Morse, 1999). Almost
these results are derived under (average) dwell-time con-
dition imposed on the commutation logic. A prerequisite
to use the dwell-time approaches is that the exponential
stability of each subsystem should be achieved (Efimov
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et al., 2008). Such a constraint imposes additional obstruc-
tions for utilization of Lyapunov-Razumikhin approach
for analysis of switched time-delay systems. In Yan and
Özbay (2008), the delay-independent asymptotic stability
of switched linear time-delay systems was addressed using
Lyapunov-Razumikhin criterion integrated with minimum
dwell time. In Ren and Xiong (2019), for stochastic sys-
tems an average dwell-time switching was studied via
the Lyapunov-Krasovskii approach and only asymptotic
stability under a dwell-time switching was analyzed via
Lyapunov-Razumikhin functionals. The work Jiang et al.
(2013) considered the asymptotic stability of switched
time-delay systems, where an average dwell-time switching
law was integrated with small-gain conditions. Further-
more, the input-to-state stability (ISS) under presence of
unstable subsystems was discussed in Jiang et al. (2016)
(the authors used Lyapunov functions and small-gain con-
ditions for stability analysis, but it is not in the framework
of Lyapunov-Razumikhin approach).

Following the existing literature, this paper first
presents a Lyapunov-Razumikhin criterion on ISS of non-
linear time-delay systems. It is verified that the corre-
sponding systems without input exhibit exponential sta-
bility (in terms of Lyapunov-Razumikhin functions). Using
this result, ISS of switched nonlinear time-delay systems is
explored. For the systems without input, the exponential
stability is reached and an average dwell time switching
rule is provided. The remainder of the paper is organized
as follows. Section 2 introduces the preliminaries, Section
3 presents an extension of ISS Lyapunov-Razumikhin con-
ditions, the main results are formulated in Section 4, one
example is provided in Section 5, and Section 6 concludes
the paper.

Notation: Let < (or <+), <n (or <n+), <n×m be
the sets of (nonnegative) real numbers, n-dimensional
(nonnegative) vectors and n × m matrices, respectively.
The Euclidean norm |x| and ∞-norm of a vector x =
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(x1, . . . , xn)T ∈ <n are defined as |x| = (
∑n
i=1 x

2
i )

1
2 and

|x|∞ = max1≤i≤n |xi|, respectively. If it is not stated
explicitly, |x| represents one of the norms introduced be-
fore for x ∈ <n, or an absolute value for x ∈ <. For
a continuous function φ : [a, b] → <n, a, b ∈ <, its
uniform norm is defined as ‖φ‖ = supt∈[a,b] |φ(t)|2; the
space of such functions we will denote as C[a,b]. For a
Lebesgue measurable function of time u : <+ → <m
define the norm ||u||∞ = ess supt≥0|u(t)|2 and the space
of u with ||u||∞ < +∞ we further denote as Lm∞. A
continuous function α : <+ → <+ belongs to class K if
it is increasing and α(0) = 0, and α ∈ K∞ if it belongs to
the class K and is also unbounded. A continuous function
β : <+ × <+ → <+ belongs to KL class if β(·, x) is a
K class function and β(x, ·) is decreasing to zero for any
fixed x ∈ <+. For a locally Lipschitz continuous function
V : <n → <+, its upper directional Dini derivative is de-

fined as: D+V (x)v = lim sup
h→0+

V (x+hv)−V (x)
h for any x ∈ <n

and v ∈ <n.

2. PRELIMINARIES

Consider a class of nonlinear time-delay systems (Gu
et al., 2003):

dx(t)

dt
= f(xt, u(t)), t ≥ 0, (1)

where x(t) ∈ <n and xt ∈ C[−d,0] is the state function,
xt(s) = x(t + s), −d ≤ s ≤ 0 and d > 0 is a finite delay;
u(t) ∈ <m is the external input, u ∈ Lm∞; f : C[−d,0] ×
<m → <n is a continuous function, f(0, 0) = 0, and
such that existence and uniqueness of solutions in forward
time for the system (1) is ensured. Denote such a unique
solution satisfying the initial condition x0 ∈ C[−d,0] with
the input u ∈ Lm∞ by x(t, x0, u), and xt(s, x0, u) = x(t +
s, x0, u) for −d ≤ s ≤ 0, which is defined on some interval
[−d, T ).

Definition 1. (Teel, 1998; Pepe and Jiang, 2006) The sys-
tem (1) is called practical ISS, if there exist q ≥ 0, β ∈ KL
and γ ∈ K such that

|x(t, x0, u)| ≤ max{β(‖x0‖, t), γ(||u||∞), q} ∀t ≥ 0

for all x0 ∈ C[−d,0] and all u ∈ Lm∞. If q = 0 then (1) is
called ISS.

There exist two methods evaluating ISS property of the
system (1) based on a Lyapunov-Razumikhin function or a
Lyapunov-Krasovskii functional. The former approach can
be formulated as follows:

Theorem 2. (Teel, 1998) If there exists a locally Lipschitz
continuous Lyapunov-Razumikhin function V : <n → <+

such that

(i) for some α1, α2 ∈ K∞, and all x ∈ <n:

α1(|x|) ≤ V (x) ≤ α2(|x|);
(ii) for some α, γx, γu ∈ K and r ≥ 0, with γx(s) < s for
all s > 0:

max{γx
(

max
θ∈[−d,0]

V (ϕ(θ))

)
, γu(|u|), r} < V (ϕ(0))⇒

D+V (ϕ(0)) f(ϕ, u) ≤ −α(|ϕ(0)|)
for all ϕ ∈ C[−d,0] and all u ∈ <m, then the system (1) is
practically ISS, and it is just ISS if r = 0.

In the following, we introduce the notion of average
dwell time switching.

Definition 3. (Hespanha and Morse, 1999) For a right-
continuous signal σ : <+ → <+ and t1 ≥ t0 ≥ 0, let
Nσ(t0, t1) denote the number of discontinuities of σ in the
interval (t0, t1). If

Nσ(t0, t1) ≤ N0 +
t1 − t0
τ

holds with τ > 0 and N0 ≥ 1, then τ is called the average
dwell time of the signal σ. If N0 = 1 then τ is called the
dwell time of σ.

3. ISS WITH GIVEN DECADE RATE

The drawback of Theorem 2 is that the form of the
functions β and γ, which appear in Definition 1, is not
evaluated. In order to use the dwell-time stability condi-
tions (Hespanha and Morse, 1999; Efimov et al., 2008), we
need to establish the shape of the function β, and for this
purpose the following extension of Theorem 2 is developed:

Lemma 4. If there exists a locally Lipschitz continuous
Lyapunov-Razumikhin function V : <n → <+ such that

(i) for some α1, α2 ∈ K∞ and all x ∈ <n:

α1(|x|) ≤ V (x) ≤ α2(|x|);
(ii) for some γ′ < 1, α′ ≥ − ln γ′

d , γu ∈ K and r ≥ 0:

max{γ′ max
θ∈[−d,0]

V (ϕ(θ)) , γu(|u|), r} < V (ϕ(0))⇒

D+V (ϕ(0)) f(ϕ, u) ≤ −α′V (ϕ(0))

for all ϕ ∈ C[−d,0] and all u ∈ <m, then the system (1) is
practically ISS, and for all x0 ∈ C[−d,0], all u ∈ Lm∞ and
all t ≥ 0:

|x(t, x0, u)|

≤ α−11 ◦max{exp

(
ln γ′

d
t

)
α2 (‖x0‖) , γu(||u||∞), r}.

Proof. Since all conditions of Theorem 2 are satisfied with
α(s) = α′α1(s) and γx(s) = γ′s, then the system (1) is
practically ISS, and we have only to demonstrate that the
proposed upper bound on |x(t, x0, u)| is valid.

For any x0 ∈ C[−d,0] and any u ∈ Lm∞, the correspond-
ing solution x(t, x0, u) is defined for all t ≥ 0. Then the
time domain of the solution existence <+ = T1 ∪ T2 ∪ T3,
where

max{γ′ max
θ∈[−d,0]

V (x(t+ θ)) , γu(|u(t)|), r} ≥ V (x(t))

for all t ∈ T1 ∪ T2, with

γ′ max
θ∈[−d,0]

V (x(t+ θ)) > max{γu(|u(t)|), r}

for all t ∈ T1 and otherwise for all t ∈ T2:

γ′ max
θ∈[−d,0]

V (x(t+ θ)) ≤ max{γu(|u(t)|), r}.

Consequently,

max{γ′ max
θ∈[−d,0]

V (x(t+ θ)) , γu(|u(t)|), r} < V (x(t))

for all t ∈ T3. Since x(t) is a continuous function of time,
and the same property is satisfied for V (x(t)), the sets T1
and T3 are concatenated by disjoint open intervals of the

time, i.e. Ti =
⋃Ji
j=1(tji,s, t

j
i,e) where Ji > 0 is (possibly

infinite) quantity of these intervals in Ti, i = 1, 3.
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By construction V (x(t)) ≤ max{γu(||u||∞), r} for all
t ∈ T2.

Next, for any j = 1, . . . , J1 and the corresponding
interval (tj1,s, t

j
1,e) ⊂ T1, for all t ∈ (tj1,s, t

j
1,e) there exists

θt = min{ϑ ∈ [−d, 0] : V (xt(ϑ)) = max
θ∈[−d,0]

V (xt(θ))},

where we introduce the minimum over ϑ ∈ [−d, 0] to
resolve the non-uniqueness issue. Note that the inequality
θt ≤ −εxt is satisfied for some εxt ∈ (0, d] dependent on
xt, since the maximum is calculated under the restriction
that γ′maxθ∈[−d,0] V (x(t+ θ)) ≥ V (x(t)) with γ′ < 1.
Thus,

V (x(t)) < γ′V (xt(θt)) = exp (ln γ′)V (xt(θt))

≤ exp

(
− ln γ′

θt
d

)
V (xt(θt)) .

Recursively applying this estimate, i.e.,

V (xt(θt)) < exp

(
− ln γ′

θt+θt
d

)
V (xt+θt(θt+θt)) ,

we obtain

V (x(t)) ≤ exp

(
− ln γ′

θt + θt+θt
d

)
V (xt+θt(θt+θt)) ,

and by induction,

V (x(t)) ≤ exp

(
ln γ′

d
(t− tj1,s)

)
max

θ∈[−d,0]
V
(
xtj1,s

(θ)
)

(2)

for all t ∈ (tj1,s, t
j
,1e) (i.e., for t sufficiently close to tj1,s it

could be t + θt < tj1,s and maxθ∈[−d,0] V
(
xtj1,s

(θ)
)

has to

be used).

Finally, for any j = 1, . . . , J3 and the corresponding
interval (tj3,s, t

j
3,e) ⊂ T3, for all t ∈ (tj3,s, t

j
3,e), we have

D+V (x(t)) f(xt, u(t)) ≤ −α′V (x(t))

by the conditions of the lemma and, consequently,

V (x(t)) ≤ exp
(
−α′(t− tj3,s)

)
V (x(tj3,s)).

Since α′ ≥ − ln γ′

d we obtain that the estimate (2) is

satisfied for all t ∈ (tji,s, t
j
,i,e) with i = 1, 3.

By definition V (x(0)) ≤ maxθ∈[−d,0] V (x0(θ)), then
combining the estimates derived for T1, T2 and T3 we get
that the relation
V (x(t)) ≤

max{exp

(
ln γ′

d
t

)
max

θ∈[−d,0]
V (x0(θ)) , γu(||u||∞), r}, (3)

for any x0 ∈ C[−d,0] and any u ∈ Lm∞, is satisfied for t = 0,
and let t′ > 0 be a time instant such that (3) is true for
all t ∈ [0, t′) and at t = t′ it is violated for the first time,
i.e.

V (x(t′)) >

max{exp

(
ln γ′

d
t′
)

max
θ∈[−d,0]

V (x0(θ)) , γu(||u||∞), r}.

Obviously, exp
(

ln γ′

d t
)

maxθ∈[−d,0] V (x0(θ)) is a strictly

decreasing function of time t ≥ 0, and always there is
Tx0,u ≥ 0 such that

exp

(
ln γ′

d
t

)
max

θ∈[−d,0]
V (x0(θ)) ≤ max{γu(||u||∞), r}

for all t ≥ Tx0,u. Therefore, for t′ ∈ [0, Tx0,u)

max{γu(||u||∞), r} < exp

(
ln γ′

d
t′
)

max
θ∈[−d,0]

V (x0(θ))

< V (x(t′))

and V (x(t)) ≤ exp
(

ln γ′

d t
)

maxθ∈[−d,0] V (x0(θ)) for all

t ∈ [max{0, t′ − d}, t′), then latter condition leads to
V (x(t′)) > γ′maxθ∈[−d,0] V (x(t′ + θ)). Hence,

max{γ′ max
θ∈[−d,0]

V (x(t′ + θ)) , γu(|u(t)|), r} < V (x(t′))

(4)

and, consequently,

D+V (x(t′)) f(xt′ , u(t′)) ≤ −α′V (x(t′)) , (5)

which means that (3) cannot be violated due to α′ ≥ − ln γ′

d
and the estimate (3) has to be also preserved at the instant
t′. If t′ > Tx0,u + d, then

V (x(t)) ≤ max{γu(||u||∞), r},

exp

(
ln γ′

d
t

)
max

θ∈[−d,0]
V (x0(θ)) ≤ max{γu(||u||∞), r}

for all t ∈ [t′−d, t′), these facts imply that the relation (4)
holds, then again (5) is valid and (3) cannot be violated
at t′. Finally, let Tx0,u ≤ t′ ≤ Tx0,u + d, then

exp

(
ln γ′

d
t′
)

max
θ∈[−d,0]

V (x0(θ)) < max{γu(||u||∞), r}

< V (x(t′))

and V (x(t′)) > γ′maxθ∈[−d,0] V (x(t′ + θ)) , which again
leads to (4) and impossibility of violation of (3) at the
instant t′ due to (5). The same arguments can be applied
further for all t ≥ t′, and the required upper estimate on
the solutions of (1) follows.

Let α1(|x|) = a1|x|b and α2(|x|) = a2|x|b for some
positive constants a1, a2, b in Lemma 4, then the exponen-
tial ISS of the system (1) is covered. The only additional
restriction is imposed in Lemma 4 with respect to Theorem
2, which allows us to evaluate an exponential convergence

rate, is α′ ≥ − ln γ′

τ (the chosen form of functions α(s)
and γx(s) is common in Gu et al. (2003)). Such a mod-
ification is not restrictive. Similar Lyapunov-Razumikhin
conditions for exponential stability of nonlinear time-delay
systems (Myshkis, 1995) and stochastic nonlinear time-
delay systems (Mao, 1996) were established, respectively.

Remark 5. It is worth to highlight an important aspect
of the Lyapunov-Razumikhin approach. Consider the for-
mulation of Lemma 4. The rate of convergence, which is
achievable in the system if the condition

max{γ′ max
θ∈[−d,0]

V (ϕ(θ)) , γu(|u|), r} < V (ϕ(0))

is satisfied, is straightforward to derive under the Lyapunov-
Razumikhin framework. It is given by the formulation of
the method, since in such a case

D+V (ϕ(0)) f(ϕ, u) ≤ −α′V (ϕ(0)) .

However, it is also necessary to substantiate that a similar
rate of convergence is valid when this condition is not
satisfied, i.e. when t ∈ T1 ∪ T2, and

max{γ′ max
θ∈[−d,0]

V (ϕ(θ)) , γu(|u|), r} ≥ V (ϕ(0)) .

This constitutes the core of the proof of Lemma 4.
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For the system (1) with u(t) = 0 and r = 0, the
exponential practical ISS presented in Lemma 4 is reduced
to the exponential stability:

Corollary 6. If there exists a locally Lipschitz continuous
Lyapunov-Razumikhin function V : <n → <+ such that

(i) for some α1, α2 ∈ K∞ and all x ∈ <n:

α1(|x|) ≤ V (x) ≤ α2(|x|);
(ii) for some γ′ > 1 and α′ ≥ ln γ′

d :

max
θ∈[−d,0]

V (ϕ(θ)) < γ′V (ϕ(0))⇒

D+V (ϕ(0)) f(ϕ, 0) ≤ −α′V (ϕ(0))

for all ϕ ∈ C[−d,0], then for all x0 ∈ C[−d,0] and all t ≥ 0
the solutions of the system (1) with u(t) = 0 admit the

estimate: |x(t, x0, 0)| ≤ α−11

(
exp

(
− ln γ′

d t
)
α2 (‖x0‖)

)
.

In this work we will also be interested in the unstable
case. We have to restrict ourselves by studying only
forward complete systems (i.e., the systems as in (1) that
for any x0 ∈ C[−d,0] and any u ∈ Lm∞ admit solutions
x(t, x0, u) defined for all t ≥ 0). A Razumikhin-type
condition for forward completeness (1) is given below:

Lemma 7. If there exists a locally Lipschitz continuous
Lyapunov-Razumikhin function V : <n → <+ such that

(i) for some α1, α2 ∈ K∞ and all x ∈ <n:

α1(|x|) ≤ V (x) ≤ α2(|x|);
(ii) for some α00 > 0, γu ∈ K, and r ≥ 0:

max{ max
θ∈[−d,0]

V (ϕ(θ)), γu(|u|), r} < V (ϕ(0))

⇒ D+V (ϕ(0)) f(ϕ, u) ≤ α00V (ϕ(0)),

for all ϕ ∈ C[−d,0] and all u ∈ <m, then solutions of the
system (1) for all x0 ∈ C[−d,0], all u ∈ Lm∞ and all t ≥ 0
admit an upper estimate:

|x(t, x0, u)| ≤ α−11 ◦max{exp (α00t)α2 (‖x0‖) , γu(||u||∞), r}.

In Lemma 4, the Lyapunov-Razumikhin approach is
presented to check ISS property for the system (1). Lemma
7 is a counterpart of Lemma 4, which provides an upper
estimate on increasing rate of the states.

Remark 8. Note that if the condition (ii) of Lemma 7 is
replaced with

max{ max
θ∈[−d,0]

V (ϕ(θ)), γu(|u|), r} > V (ϕ(0))

⇒ D+V (ϕ(0)) f(ϕ, u) ≥ α00V (ϕ(0)),
(6)

then we obtain a Razumikhin-type condition on instability
of (1) with at least exponential growth of V (x(t)).

4. MAIN RESULTS

Consider the following switched time-delay systems:

dx(t)/dt = fσ(t)(xt, u(t)), t ≥ 0, (7)

where x(t) ∈ <n and xt ∈ C[−d,0] is the state, xt(s) = x(t+
s) for s ∈ [−d, 0] with a delay d > 0; x0 ∈ C[−d,0] is the
initial condition; u(t) ∈ <m is the input, u ∈ Lm∞; σ(t)
is a right-continuous switching signal taking values in a
finite set S = {1, 2, . . . ,M} for some integer M > 1; for
each i ∈ S, fi : C[−d,0] ×<m → <n is a nonlinear function
that guarantees the unique existence of solutions of (7) in

forward time; fi(0, 0) = 0.
Our objective is to formulate Razumikhin-type condi-

tions of ISS in (7) for a class of switching signals admitting
an average dwell time property:

Theorem 9. If there exist locally Lipschitz continuous
Lyapunov-Razumikhin functions Vi : <n → <+ for all
i ∈ S such that

(i) for some α1i, α2i ∈ K∞ and all x ∈ <n:

α1i(|x|) ≤ Vi(x) ≤ α2i(|x|);
(ii) for some γ1 ∈ K, γ0 < 1, α0 > − ln γ0

d , all ϕ ∈ C[−d,0]
and all u ∈ <m:

max{γ0 max
θ∈[−d,0]

Vi(ϕ(θ)), γ1(|u|)} ≤ Vi(ϕ(0))

⇒ D+Vi(ϕ(0))fi(ϕ, u) ≤ −α0Vi(ϕ(0));

(iii) for some λ ≥ γ−10 , all j 6= i ∈ S and all x ∈ <n:

Vi(x) ≤ λVj(x), (8)

then the system (7) is exponentially ISS provided that the
switching signal σ yields a dwell time bigger than d and
the average dwell time τ >

(
1− lnλ

ln γ0

)
d.

Proof. Consider a time sequence 0 = t0 ≤ t1 ≤ · · · ≤
tm ≤ t < tm+1, where ti, i = 1, . . . ,m+ 1 is the switching
time instant, with σ(ti) ∈ S being active in the interval
[ti, ti+1). Since all conditions of Lemma 4 are satisfied for
r = 0, then for all t ∈ [tm, tm+1):

Vσ(tm) (x(t))

≤ max
(
e

ln γ0
d (t−tm) max

θ∈[−d,0]
Vσ(tm)(x(tm + θ)), γ1(||u||∞)

)
.

Taking into account the relation (8) between Vσ(tm) and
Vσ(tm−1) we obtain:

Vσ(tm) (x(t)) ≤ max
{
λe

ln γ0
d (t−tm)×

max
θ∈[−d,0]

Vσ(tm−1)(x(tm + θ)), γ1(||u||∞)
}
.

In addition,

max
s∈[−d,0]

Vσ(tm) (x(t+ s))

≤ max
{
λe

ln γ0
d max{0,t−d−tm}×

max
θ∈[−d,0]

Vσ(tm−1)(x(tm + θ)), γ1(||u||∞)
}
.

Iterative repeating these steps gives (9). By definition,
m = Nσ(t0, t) ≤ N0 + t−t0

τ , note also that

λe
ln γ0
d (t−tm) = λN(tm,t)e

ln γ0
d (t−tm), . . . ,

λm−1e
ln γ0
d (t−tm+

∑2

i=m
max{0,ti−d−ti−1})

≤ λN(t1,t)e
ln γ0
d (t−tm+

∑3

i=m
max{0,ti−d−ti−1}),

and if ti > ti−1 + d (the dwell time is bigger than d), then

λme
ln γ0
d (t−tm+

∑1

i=m
max{0,ti−d−ti−1})

= λNσ(t0,t)e
ln γ0
d (t−t0−Nσ(t0,t)d)

and

λe
ln γ0
d (t−tm) = λN(tm,t)e

ln γ0
d (t−tm−(N(tm,t)−1)d), . . . ,

λm−1e
ln γ0
d (t−tm+

∑3

i=m
max{0,ti−d−ti−1})

= λN(t1,t)e
ln γ0
d (t−t1−(Nσ(t1,t)−1)d).
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Vσ(tm) (x(t)) ≤ max
{
λe

ln γ0
d (t−tm) max

θ∈[−d,0]
Vσ(tm−1)(x(tm + θ)), γ1(||u||∞)

}
≤ max

{
λ3e

ln γ0
d (t−tm+

∑m−1

i=m
max{0,ti−d−ti−1}) max

θ∈[−d,0]
Vσ(tm−3)(x(tm−2 + θ)),

max{1, λe
ln γ0
d (t−tm), λ2e

ln γ0
d (t−tm+max{0,tm−d−tm−1})}γ1(||u||∞)

}
≤ · · ·
≤ max

{
λme

ln γ0
d (t−tm+

∑2

i=m
max{0,ti−d−ti−1}) max

θ∈[−d,0]
Vσ(t0)(x(t1 + θ)),

max{1, λe
ln γ0
d (t−tm), . . . , λm−1e

ln γ0
d (t−tm+

∑3

i=m
max{0,ti−d−ti−1})}γ1(||u||∞)

}
≤ max

{
λme

ln γ0
d (t−tm+

∑1

i=m
max{0,ti−d−ti−1}) max

θ∈[−d,0]
Vσ(t0)(x(t0 + θ)),

max{1, λe
ln γ0
d (t−tm), . . . , λm−1e

ln γ0
d (t−tm+

∑2

i=m
max{0,ti−d−ti−1})}γ1(||u||∞)

}
.

(9)

Due to restrictions imposed on the dwell time there is
% > 0 such that ln γ0

d (1 − d
τ ) + lnλ

τ ≤ −%, then for all
i = 1, . . . ,m:

λN(ti,t)e
ln γ0
d (t−ti−(N(ti,t)−1)d)

≤ λN0e− ln γ0(N0−1)e−%(t−ti) ≤ λN0e− ln γ0(N0−1),

hence,

Vσ(tm) (x(t)) ≤ λN0e− ln γ0(N0−1)×

max
{
e−%(t−t0) max

θ∈[−d,0]
Vσ(t0)(x(t0 + θ)), γ1(||u||∞)

}
.

Noting that α1(|x|) ≤ Vσ(tm)(x) and max
θ∈[−d,0]

Vσ(t0)(x(t0 +

θ)) ≤ α2(‖ϕ0‖), where α1(s) = min
1≤i≤M

{α1i(s)} and

α2(s) = max
1≤i≤M

{α2i(s)}, then

|x(t)| ≤ α−11

(
λN0e− ln γ0(N0−1)×

max
{
e−%(t−t0)α2(‖x0‖), γ1(||u||∞)

})
,

which implies the desired ISS property for (7).

Remark 10. In Jiang et al. (2013, 2016), the asymptotic
stability and ISS of switched time-delay systems were
addressed by virtue of the average dwell-time switching
method and some additional small-gain conditions. In
Theorem 9, an additional exponential-kind estimate on the
rate of convergence of solutions of the switched system is
calculated.

Assume that u(t) = 0, then Theorem 9 reduces to the
exponential stability of the system (7):

Corollary 11. If there exist locally Lipschitz continuous
Lyapunov-Razumikhin functions Vi : <n → <+ for all
i ∈ S such that

(i) for some α1i, α2i ∈ K∞ and all x ∈ <n:

α1i(|x|) ≤ Vi(x) ≤ α2i(|x|);
(ii) for some γ0 > 1, α0 >

ln γ0
d , all ϕ ∈ C[−d,0]:

max
θ∈[−d,0]

Vi(ϕ(θ)) ≤ γ0Vi(ϕ(0))

⇒ D+Vi(ϕ(0))fi(ϕ, 0) ≤ −α0Vi(ϕ(0));

(iii) (8) holds for some λ ≥ γ0, all j 6= i ∈ S and all x ∈ <n,

then solutions of the system (7) with u(t) = 0 admit an
estimate |x(t)| ≤ α−11

(
λN0eln γ0(N0−1)e−%(t−t0)α2(‖x0‖)

)
provided that the switching signal σ yields a dwell time

bigger than d and the average dwell time with τ >
(
1 +

lnλ
ln γ0

)
d.

Remark 12. In Theorem 9 and Corollary 12, it is required
that all subsystems are ISS and exponentially stable,
respectively. In Lemma 7, an upper bound estimate of
the state of the system is provided. Combining Theorem
9, Corollary 12, and Lemma 7, the ISS and exponentially
stability of the system (7) with part stable subsystems and
part unstable (or, bounded) subsystems can be obtained.

5. ILLUSTRATIVE EXAMPLE

This section provides one example to illustrate the
obtained results. Consider the system (7) with two stable
subsystems:

ẋ1(t) = −3x1(t) +

∫ 0

−0.5
x1(t+ s)ds,

ẋ2(t) = 2x1(t)− 3x2(t) +

∫ 0

−0.5
x2(t+ s)ds,

and

ẋ1(t) = −4x1(t) +

∫ 0

−0.5
x1(t+ s)ds,

ẋ2(t) = x1(t)− 4x2(t) +

∫ 0

−0.5
x2(t+ s)ds.

Choose V1(x(t)) = 1
2 (x21(t) + x22(t)) and V2(x(t)) =

1
4 (x21(t) + x22(t)), then λ = 2 and τ ≥ 1. We have

V̇1(x(t)) ≤ −7

4
x21(t)− 7

4
x22(t) +

1

4
x21(t+ s) +

1

4
x22(t+ s),

and

V̇2(x(t)) ≤ −13

8
x21(t)− 13

8
x22(t) +

1

8
x21(t+ s) +

1

8
x22(t+ s).

Supposing that Vi(x(t + s)) ≤ 2Vi(x(t)) for γ0 = 2,
that is, x21(t + s) + x22(t + s) ≤ 2(x21(t) + x22(t)). Choose

α0 = 3
2 ≥

ln γ0
d = 1.3863. It follows that

V̇1(x(t)) ≤ −5

4
(x21(t) + x22(t)) ≤ −3

2
V1(x(t)),

V̇2(x(t)) ≤ −11

8
(x21(t) + x22(t)) ≤ −3

2
V2(x(t)).

From the above derivation, the conditions of Theorem 9
hold. Figs. 1 and 2 show the simulations of the states of the
subsystems without switching and the state of the system
with average dwell time switching.
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Fig. 1. The simulations of the states of the subsystems

Fig. 2. The simulations of the states under the average
dwell time switching

6. CONCLUSION

An estimate approach is presented for the decay rate of
ISS nonlinear time-delay systems by virtue of Lyapunov-
Razumikhin method. The exponential ISS of switched non-
linear systems is explored for average dwell-time switching
laws without additional restrictions on used Lyapunov
functions. Further relaxation of the requirements imposed
on the switched signal can be considered in future research.
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Yan, P. and Özbay, H. (2008). Stability analysis of
switched time delay systems. SIAM Journal on Control
and Optimization, 47(2), 936–949.

Zhai, D., An, L., Dong, J., and Zhang, Q. (2007). Switched
adaptive fuzzy tracking control for a class of switched
nonlinear systems under arbitrary switching. IEEE
Transactions on Fuzzy Systems, 26(2), 585–597.

Zhao, J. and Dimirovski, G. (2004). Quadratic stability of
a class of switched nonlinear systems. IEEE Transac-
tions on Automatic Control, 49(4), 574–578.

Zhao, X., Zheng, X., Niu, B., and Liu, L. (2015). Adap-
tive tracking control for a class of uncertain switched
nonlinear systems. Automatica, 52, 185–191.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2021


