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Abstract: The paper deals with the estimation of noise parameters of a linear time-varying
system. In particular, the stress is laid on the state-space models, where the state and
measurement noises are described by the Gaussian sum probability density functions. The
recently introduced measurement difference method for the estimation of higher-order moments
of the state and measurement noises is revised and, subsequently, extended for estimation of
the parameters of the noise Gaussian sum densities with a special focus on the densities with
two-components. The theoretical results are discussed and illustrated in a numerical example.
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1. INTRODUCTION

Knowledge of a system state-space model is a key pre-
requisite for modern optimal algorithms in the areas of
the state estimation, system identification, fault detection,
and automatic control. An incorrect model may result in
significant deterioration of underlying algorithms output
quality or even in their failure.

The state-space model is designed to consistently describe
a combination of deterministic and stochastic influences
affecting behaviour of the system quantities. While the
deterministic part of the model often arises from the first
principles based on physical, chemical, or biological laws
governing the system behaviour, the description of the
stochastic part is often difficult to find by the modelling
and has to be identified using the measured data.

From the seventies, a significant research interest has been
focused on the design of the methods for estimation of the
properties of the stochastic part of the state-space model,
i.e., state and measurement noise properties (Mehra, 1970;
Bélanger, 1974; Odelson et al., 2006; Särkkä and Num-
menmaa, 2009; Duńık et al., 2017). Particularly, the stress
was laid on the estimation of the covariance matrices 1

of the noises, assuming their zero mean. Unfortunately,
knowledge of the first two moments is not sufficient for
noises complete description if they are not Gaussian (e.g.,
heavy-tailed or asymmetric densities) (Kost et al., 2018).

In (Kost et al., 2018), therefore, a method estimating noise
higher-order moments and potentially parameters of the
state and measurement noise probability density functions
(PDFs) has been proposed. The proposed method, further

1 The popularity of the methods estimating the noises’ covariance
matrices, assuming known (typically zero) mean, stems from the fact
that a vast majority of the modern signal processing and decision
making algorithms either (i) require the first two moments only
(independently of their distribution) or (ii) assume the Gaussian
distribution of the noises, for which the means and covariance
matrices are sufficient statistics.

denoted as the measurement difference method (MDM),
has been designed for the linear time-varying (LTV) state-
space model, where the noises are described by Student’s
t-distribution or skew Student’s t-distribution. The Stu-
dent’s t-distribution type of the PDF is extensively stud-
ied and used in the area of the object tracking using a
time-of-flight based ultra-wideband distance measurement
(Nurminen et al., 2018; Roth et al., 2013). Unfortunately,
no other non-Gaussian noise PDF has been considered.

The goal of this paper is to extend applicability of the
MDM for estimation of moments and consequently param-
eters of the state and measurement noises described by the
Gaussian sum (GS) PDFs. The GS PDF is a universal
density used in wide range of signal processing, control,
and detection algorithms from the following reasons:

• Analytical solution: Majority of optimal signal pro-
cessing, control, and detection algorithms designed
for linear Gaussian models (LGM) are straightfor-
wardly extensible for linear Gaussian sum mod-
els (LGSM); for example analytical solution to the
Bayesian recursive relations for the LGM results in
the Kalman filter (KF), whereas the solution for the
LGSM results in the Gaussian sum filter, which can
be understood as a bank of parallel KFs (Anderson
and Moore, 1979),

• Accurate model : A GS PDF can naturally be used for
the description of some physical phenomena (Cerón,
2017); e.g., measurement noise affecting radar altime-
ter measurement (Gustafsson et al., 2002),

• Approximate model : Any PDF can be arbitrarily well
approximated by a GS PDF (Williams and Maybeck,
2003; Hanebeck et al., 2003; Duńık et al., 2018b).

The rest of the paper is organised as follows. In Section 2,
the state-space model is defined and the goal of the paper
is particularised. Section 3 deals with an overview of the
MDM method. In Sections 4 and 5, a transformation of
moments and parameters of a random variable with a
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GS PDF is considered. A numerical evaluation is given in
Section 6 and concluding remarks are drawn in Section 7.

2. SYSTEM DEFINITION AND PROBLEM
FORMULATION

Let the following discrete-time state-space model of an
LTV stochastic dynamic system with additive noises

xk+1 = Fkxk + wk, k = 0, 1, 2, . . . , τ, (1)

zk = Hkxk + vk, k = 0, 1, 2, . . . , τ, (2)

be considered, where the vectors xk ∈ Rn(x) and zk ∈
Rn(z) represent the immeasurable state of the system and
the known measurement at time instant k, respectively.
The state and measurement matrices Fk ∈ Rn(x)×n(x) and
Hk ∈ Rn(z)×n(x) are known and bounded ∀k. The system
state is assumed to be observable ∀k. Neither the initial
condition x0 nor the initial condition PDF are known.

The variables wk ∈ Rn(x) and vk ∈ Rn(z) are state and
measurement white noises with the GS PDFs

pw(wk;αw) =

Nw∑
i=1

β(i)
w N{wk; w̄(i),Q(i)}, (3)

pv(vk;αv) =

Nv∑
i=1

β(i)
v N{vk; v̄(i),R(i)}, (4)

where the notation N{wk; w̄(i),Q(i)} means the Gaussian
PDF of a random variable wk with the mean w̄(i) and

the covariance matrix Q(i), β
(i)
w is a weight of the i-th GS

component satisfying
∑Nw

i=1 β
(i)
w = 1, and αw is a set of all

GS PDF (3) parameters defined as

αw , {Nw, β
(1)
w , w̄(1),Q(1), . . . , w̄(Nw),Q(Nw)}. (5)

The set of parameters in (4) is defined analogously as

αv , {Nv, β
(1)
v , v̄(1),R(1), . . . , v̄(Nv),R(Nv)}. (6)

The sets of parameters αw and αv are unknown as well as
the moments of the state and measurement noises.

2.1 Noise Statistics and Parameters Estimation

For more than five decades, an extensive research interest
has been devoted to the estimation of the properties of
the state and measurement noises. Mainly, the stress was
laid on the estimation of the covariance matrices (Duńık
et al., 2017). These methods are traditionally divided into
four groups (Mehra, 1970): correlation methods, maximum
likelihood methods, covariance matching methods, and
Bayesian methods.

Rather marginal attention has been, however, devoted to
the estimation of higher-order moments and parameters
of non-Gaussian noise PDFs. In (Kost et al., 2018), the
MDM 2 has been proposed for moments and parameters
estimation assuming Student’s t-distribution of the noises.

2.2 Goal of the Paper

The goal of the paper is to extend the applicability of the
MDM to the estimation of the sets of parameters αw and

2 The MDM belongs into the correlation methods.

αv of the state and measurement noise of the LGSM (1)–

(4) on the basis of the measured data zτ , [z0, z1, . . . , zτ ]
and known matrices Fk and Hk, ∀k.

The MDM consists of the following three successive steps

(i) Design of a linear measurement predictor and sta-
tistical analysis of the measurement prediction error
(MPE),

(ii) Sample-based estimation of the MPE moments and
estimation of the noise moments,

(iii) Computation of the noise parameters αw and αv in
(3) and (4), respectively.

In the following sections, the first two steps are briefly
reviewed, as they basically remain the same as in the
Student’s t-distribution case thoroughly discussed in (Kost
et al., 2018). The third step is described in detail.

3. MEASUREMENT PREDICTION, MPE ANALYSIS,
AND NOISE MOMENT ESTIMATION

The MDM (Kost et al., 2018) is based on the statistical
analysis of the estimate error of a linear measurement
predictor. Design of the MDM, therefore, starts with the
definition of an augmented measurement vector and its
one-step prediction. Then, the statistical properties of the
MPE are determined and noise moments are estimated.

3.1 Augmented Measurement Vector and its Prediction

Consider the LGSM model (1), (2), available measure-
ments zτ , and the parameter L selected such that the
observability matrix

OLk ,


Hk

Hk+1Fk

...

Hk+L−1FL−1
k

 ∈ RLn(z)×n(x), (7)

is full rank 3 ∀k and FMk ∈ Rn(x)×n(x) is defined as

FMk ,
∏M
i=1Fk+M−i=Fk+M−1 . . .Fk+1Fk.

Then, the augmented measurement vector ZLk can be
expressed as

ZLk = OLk xk + ΓLkWL
k + VL

k , (8)

where k = 0, . . . , τ − L + 1, and the vectors and matrices
ZLk ∈ RLn(z), WL

k ∈ RLn(x), VL
k ∈ RLn(z), ΓLk ∈

RLn(z)×Ln(x) are defined by

ZLk ,

 zk
zk+1

...
zk+L−1

,WL
k ,

 wk
wk−1

...
wk+L−1

,VL
k ,

 vk
vk+1

...
vk+L−1

,

ΓLk ,


0n(z)×n(x) 0n(z)×n(x) ··· 0n(z)×n(x) 0n(z)×n(x)

Hk+1 0n(z)×n(x) ··· 0n(z)×n(x) 0n(z)×n(x)

Hk+2Fk+1 Hk+2 ··· 0n(z)×n(x) 0n(z)×n(x)

...
...

. . .
...

...

Hk+L−1FL−2
k+1

Hk+L−1FL−3
k+2

··· Hk+L−1 0n(z)×n(x)

,
and the notation 0n stands for the zero matrix of indicated
dimension.

3 The full rank matrix OL
k always exists as the system state is

supposed to be observable, i.e., the state xk is observable from the
augmented measurement vector ZL

k .
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A one-step prediction of ZLk (8) can be written as

ẐLk = OLkFk−1

(
OLk−1

)†
ZLk−1, (9)

where (OLk−1)† =
(
(OLk−1)TOLk−1

)−1
(OLk−1)T ∈ Rn(x)×Ln(z)

is the pseudoinverse of the matrix OLk−1.

3.2 Augmented measurement vector prediction error

The augmented measurement vector prediction error
(AMPE) is defined as

Z̃Lk =ZLk − ẐLk , k = 1, . . . , τ − L+ 1. (10)

By substitution of (8) and (1) into (9), the AMPE (10)
reads

Z̃Lk = AkEk, (11)

where

Ek =
[
(WL+

k−1)T (VL+

k−1)T
]T
∈RL

+(n(x)+n(z)), (12)

Ak =
[
A(w)
k A(v)

k

]
∈RLn(z)×L+(n(x)+n(z)), (13)

with L+ = L+ 1,

A(w)
k =

[
ILn(z)

ILn(z)

]T [
OLk , ΓLk

][
−OLkFk−1

(
OLk−1

)†
ΓLk−1,0Ln(z)×n(x)

] ,
A(v)
k =

[
ILn(z)

ILn(z)

]T [
0Ln(z)×n(z), ILn(z)

][
−OLkFk−1

(
OLk−1

)†
,0Ln(z)×n(z)

] .
The symbol In ∈ Rn×n denotes the identity matrix.

It can be seen, that the matrix Ak in (11) is a function of
the known model matrices Fk and Hk, thus, Ak is known
as well. The AMPE (11) is, therefore, a linear function of
the state and measurement noises stacked in the vector Ek,
of which statistical properties are sought.

Note 1: Whereas, the form of the AMPE (10) is suitable
for the prediction error computation on the basis of the
measured data, the form (11) can be used for the following
AMPE statistical analysis.

3.3 Raw Moments of AMPE

The AMPE Z̃Lk (11) is a stochastic process depending
linearly on the state and measurement noises. As such,
all AMPE moments (either raw or central) are linear
functions of state and measurement noise moments (Kost
et al., 2018). In particular, the m-th raw moment of the
AMPE (11) at time k is given by

bm
k = E

[(
Z̃Lk

)⊗m]
= A⊗

m

k E
[
E⊗

m

k

]
, (14)

where bm
k ∈ R(Ln(z))m and the notation A⊗m

stands for

m-th Kronecker power. As the matrix Ak (and thus A⊗
m

k )
is known, the m-th raw moment of the AMPE (14), in the
vector form, is a linear function of the m-th “pure” raw
moments of the state and measurement noises

Mm
w , E[w⊗

m

k ],∀k, (15)

Mm
v , E[v⊗

m

k ],∀k, (16)

and of the “cross” raw moments of the state and measure-
ment noises, which can be described by a known polyno-
mial function of the lower-order moments, i.e.,

Mm
wv , f(M1

w,M
1
v, . . . ,M

m−1
w ,Mm−1

v ). (17)

The elements of the vectors Mm
w (15), Mm

v (16), and Mm
wv

(17) form the vector E
[
E⊗

m

k

]
, however, because of the

structure of Ek (12), the vector E
[
E⊗

m

k

]
in (14) contains

multiple copies of the vectors (15)–(17).

Defining the vector θ̆θθ
m
, [(Mm

w)T, (Mm
v )T, (Mm

wv)T ]T∈Rn(θ̆θθ
m

)

so that it contains a single copy of the unknown m-th
moments, the AMPE m-th moment (14) reads

Ăm
k θ̆

m
= bm

k , (18)

where the matrix Ăm
k ∈ R(Ln(z))m×n(θθθm) is

Ăm
k =

(
A⊗

m

k

)
Ψm

= [Am
w,k,Am

v,k,Am
wv,k] (19)

and the duplication matrix Ψm ∈ N(L+(n(x)+n(z)))m×n(θ̆θθ
m

)

is designed to fulfil

E
[
Ẽ⊗

m

k

]
= Ψmθ̆

m
. (20)

Thus, the matrices Am
w,k,Am

v,k,Am
wv,k are known. Design

of the duplication matrix is discussed and illustrated in
(Duńık et al., 2018a; Kost et al., 2018).

The linear equation (18) can be written for all possible
time instants k in the following convenient form

Amθm = bm −Am
wvMm

wv, (21)

with

θθθm = [(Mm
w )T , (Mm

v )T ]T , (22)

Am=
[
(Am

1 )
T
,(Am

2 )
T
,· · ·,

(
Am
τ−L+1

)T ]T
, (23)

Am
wv =

[(
Am

wv,1

)T
,
(
Am

wv,2

)T
,· · ·,

(
Am

wv,τ−L+1

)T ]T
, (24)

bm=
[
(bm

1 )
T
, (bm

2 )
T
, · · · ,

(
bm
τ−L+1

)T ]T
, (25)

where Am
k = [Am

w,k,Am
v,k].

Note 2: An m-th cross-moment Mm
wv (17), for m > 1,

can be written as a function of lower-order noise moments
i.e., of {Mi

w}m−1
i=1 and {Mi

v}m−1
i=1 . For example, M2

wv is a
function of the noises’ first-order moments M1

w and M1
v.

Then, the m-th AMPE moment is a linear function of the
unknown elements of the “pure” m-th noise moments.

3.4 AMPE and Noise Moments Estimation

The matrices Am and Am
wv in (21) are functions of the

known system matrices Fk and Hk, ∀k, and of the known
duplication matrix Ψm, only. If the vector bm (25) were
available, then the unknown moments gathered in θm (21)
could be estimated by the least-squares (LS) method. The
vector bm, summarising the AMPE moments, is, however,
unknown (as it depends on the sought noise moments
(14)). Nevertheless, it can be estimated from the measured
data zτ . Based on the AMPE moments estimates, the
sought noise moments θm are found.

The AMPE and noise moments estimation follows the
procedure for m = 1, 2, . . . ,mmax:
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(i) The AMPE moments for one time instant k, sum-
marised in the vector bm

k (14), are estimated on the

basis of the AMPE sequence {Z̃Lk }
τ−L+1
k=1 (10) as

b̂m
k =

(
Z̃Lk

)⊗m

. (26)

(ii) The AMPE moments ∀k, summarised in the vector
bm (25), are estimated as

b̂m =

[(
b̂m

1

)T
,
(
b̂m

2

)T
, · · · ,

(
b̂m
τ−L+1

)T]T
. (27)

(iii) Based on the estimate b̂m (27) and (21), the LS
optimum estimate of the m-th moment of the noises
is given by

θ̂
m

=[(M̂m
w )T,(M̂m

v )T ]T=(Am)†
(
b̂m−Am

wvM̂m
wv

)
, (28)

where M̂m
wv is a function of the previously computed

lower-order moment estimates {θ̂
i
}m−1
i=1 (for m > 1

as discussed in Note 2).

Note 3: By an extension of the proof in (Kost et al., 2018),

it is possible to show that the noise moment estimates θ̂
m

converge to the true value and the variance of the estimates
goes to the zero with increasing number of data τ .

4. COMPUTATION OF GAUSSIAN SUM
PARAMETERS FROM MOMENTS

In this section, the computation of the GS PDF set of
parameters from the respective moments is discussed and
illustrated. The computation is detailed for the measure-
ment noise vk only; for the state noise wk the calculations
are analogous.

4.1 GS PDF Parameter Computation

The GS PDF pv(vk;αv) (4) depends on the set of parame-
ters αv (6), which consists of the number of GS terms Nv,

the weights {β(i)
v }Nv

i=1, the means {v̄(i)}Nw
i=1, and the covari-

ance matrices {R(i)}Nv
i=1. Consequently, all the moments

Mm
v (16) nonlinearly depend on the parameters, i.e.,

Mm
v = gm

v (αv), (29)

where gm
v (·) is a known function.

Theoretically, given the true moments Mm
v ,m = 1, 2, . . . ,

mmax, the set of parameters αv can be computed from the
system of mmax nonlinear equations (29). However, such
system of equations may not have a unique solution even
for mmax →∞.

4.2 Two-Component GS PDF Parameter Computation

The attention has been, thus, focused on a solution to
(29), ∀m, for αv subject to certain assumptions on the
computed set of parameters. Typically, the proposed solu-
tions are developed for a two-component GS PDF, i.e., for
Nv = 2, where the sought set

αv = {β(1)
v , v̄(1),R(1), v̄(2),R(2)} (30)

consists of 5 unknown parameters as β
(2)
v = 1 − β

(1)
v .

The assumption of two-component GS PDF pv(vk;αv) is
adopted in this paper as well.

4.3 State-of-the-Art Solutions

The fundamental solution to the two-component GS PDF
set of parameters (30) computation, denoted as the method
of moments (MoM), was proposed by Pearson in 1894.
The MoM was, however, proposed for a scalar 4 random
variable only and is based on the analytical solution to
a suitably reformulated system of nonlinear equations for
mmax ≥ 5 (Cerón, 2017).

Various extensions of the MoM have been proposed since
focusing on the parameter estimation for a vector variable.
The proposed solutions are, however, tied with rather
stringent assumptions (Cerón, 2017), typically related to
the known means v̄(1) and v̄(2) (or at least certain elements
of the both means). The remaining parameters, including

β
(1)
v ,R(1),R(2), can be found from (29) analytically for
mmax = 3 (Cerón, 2017).

However, the assumption of known means is too restrictive
for many practical applications, and, thus, in the following
part, two solutions relaxing this assumption are developed.
The solutions are detailed for two-dimensional variable vk,
i.e., n(v) = 2, but it can be straightforwardly extended for
a dimension n(v) ≥ 3.

4.4 Proposed Full Solution

The proposed full solution computes the full set of 5
unknown parameters of αv (30). It means, for two dimen-
sional random variable, the solution computes 11 unique
elements of the parameters in αv (one unknown weight,
each of the means has two unknown elements, each of the
covariance matrices has three unknown elements).

The full solution stems from a solution to the system of
5 matrix equations for the raw moments Mm

v (29),m =
1, . . . , 5, of the GS PDF pv(vk;αv). The matrix equations
result in 20 scalar equations for unique elements of the raw
moments Mm

v . The scalar moment equations are derived
and summarised in (31)–(43), where the time index k is
omitted, i.e., v = vk, and the following shorthand notation
is used; vi for the i-th element of the vector v, Ri,j for an
element of the matrix R at i-th row and j-th column,

B
(1)
v = β

(1)
v , B

(2)
v = 1 − β

(1)
v ,

∑
for sum over i = 1, 2,

and mi,j
v , E[(v1)i(v2)j ] represents an element of m-

th raw moment Mm
v with m = i + j. It can be seen

that the higher-order raw moment elements (31)–(43) of
the GS PDF pv(vk;αv) are nonlinear functions of sought
parameters αv (30). Given the moments Mm

v or mi,j
v , the

sought parameters can be determined using a numerical
solution to (31)–(43) (e.g., using the MATLAB routine
lsqnonlin). Although a theoretical proof of convergence
is still an open problem 5 , thorough numerical simulations
have shown, that a numerical solution to the system of
equations (31)–(43) converges to true αv.

It is worth noting that the solution is based on 5 matrix
moment equations (for Mm

v ) resulting in 20 scalar moment
equations (for mi,j

v ) for computation of 11 unknown GS

4 The MoM developed by Pearson is suitable not only for the scalar
models but also for vector models with independent noise elements.
5 Besides special cases, the conditions for convergence of estimated
GS PDF parameters have not been provided yet (Cerón, 2017).
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m1,0
v =

∑
B(i)

v v̄
(i)
1 , m0,1

v =
∑

B(i)
v v̄

(i)
2 , (31)

m2,0
v =

∑
B(i)

v

(
(v̄

(i)
1 )2 + R

(i)
1,1

)
, m0,2

v =
∑

B(i)
v

(
(v̄

(i)
2 )2 + R

(i)
2,2

)
, m1,1

v =
∑

B(i)
v

(
v̄

(i)
1 v̄

(i)
2 + R

(i)
1,2

)
, (32)

m3,0
v =

∑
B(i)

v

(
(v̄

(i)
1 )3 + 3R

(i)
1,1v̄

(i)
1

)
, m0,3

v =
∑

B(i)
v

(
(v̄

(i)
2 )3 + 3R

(i)
2,2v̄

(i)
2

)
, (33)

m2,1
v =

∑
B(i)

v

(
(v̄

(i)
1 )2v̄

(i)
2 + R

(i)
1,1v̄

(i)
2 + 2R

(i)
1,2v̄

(i)
1

)
, m1,2

v =
∑

B(i)
v

(
(v̄

(i)
2 )2v̄

(i)
1 + R

(i)
2,2v̄

(i)
1 + 2R

(i)
1,2v̄

(i)
2

)
, (34)

m4,0
v =

∑
B(i)

v

(
(v̄

(i)
1 )4 + 6R

(i)
1,1(v̄

(i)
1 )2 + 3(R

(i)
1,1)2

)
, m0,4

v =
∑

B(i)
v

(
(v̄

(i)
2 )4 + 6R

(i)
2,2(v̄

(i)
2 )2 + 3(R

(i)
2,2)2

)
, (35)

m3,1
v =

∑
B(i)

v

(
(v̄

(i)
1 )3v̄

(i)
2 + 3R

(i)
1,1v̄

(i)
1 v̄

(i)
2 + 3R

(i)
1,2(v̄

(i)
1 )2 + 3R

(i)
1,1R

(i)
1,2

)
, (36)

m1,3
v =

∑
B(i)

v

(
v̄

(i)
1 (v̄

(i)
2 )3 + 3R

(i)
2,2v̄

(i)
1 v̄

(i)
2 + 3R

(i)
1,2(v̄

(i)
2 )2 + 3R

(i)
2,2R

(i)
1,2

)
, (37)

m2,2
v =

∑
B(i)

v

(
(v̄

(i)
1 )2(v̄

(i)
2 )2 + 4R

(i)
1,2v̄

(i)
1 v̄

(i)
2 + R

(i)
2,2(v̄

(i)
1 )2 + R

(i)
1,1(v̄

(i)
2 )2 + R

(i)
1,1R

(i)
2,2 + 2(R

(i)
1,2)2

)
, (38)

m5,0
v =

∑
B(i)

v

(
(v̄

(i)
1 )5+10R

(i)
1,1(v̄

(i)
1 )3+15(R

(i)
1,1)2v̄

(i)
1

)
,m0,5=

∑
B(i)

v

(
(v̄

(i)
2 )5+10R

(i)
2,2(v̄

(i)
2 )3+15(R

(i)
2,2)2v̄

(i)
2

)
, (39)

m4,1
v =

∑
B(i)

v

(
(v̄

(i)
1 )4v̄

(i)
2 + 6R

(i)
1,1(v̄

(i)
1 )2v̄

(i)
2 + 4R

(i)
1,2(v̄

(i)
1 )3 + 3(R

(i)
1,1)2v̄

(i)
2 + 12R

(i)
1,1R

(i)
1,2v̄

(i)
1

)
, (40)

m1,4
v =

∑
B(i)

v

(
v̄

(i)
1 (v̄

(i)
2 )4 + 6R

(i)
2,2v̄

(i)
1 (v̄

(i)
2 )2 + 4R

(i)
1,2(v̄

(i)
2 )3 + 3(R

(i)
2,2)2v̄

(i)
1 + 12R

(i)
2,2R

(i)
1,2v̄

(i)
2

)
, (41)

m3,2
v =

∑
B(i)

v

(
(v̄

(i)
1 )3(v̄

(i)
2 )2 + 3R

(i)
1,1v̄

(i)
1 (v̄

(i)
2 )2 + 6R

(i)
1,2(v̄

(i)
1 )2v̄

(i)
2 + R

(i)
2,2(v̄

(i)
1 )3 + 3R

(i)
1,1R

(i)
2,2v̄

(i)
1

+ 6(R
(i)
1,2)2v̄

(i)
1 + 6R

(i)
1,1R

(i)
1,2v̄

(i)
2

)
, (42)

m2,3
v =

∑
B(i)

v

(
(v̄

(i)
1 )2(v̄

(i)
2 )3 + 3R

(i)
2,2(v̄

(i)
1 )2v̄

(i)
2 + 6R

(i)
1,2v̄

(i)
1 (v̄

(i)
2 )2 + R

(i)
1,1(v̄

(i)
2 )3 + 3R

(i)
2,2R

(i)
1,1v̄

(i)
2

+ 6(R
(i)
1,2)2v̄

(i)
2 + 6R

(i)
2,2R

(i)
1,2v̄

(i)
1

)
, (43)

PDF parameters of αv. Although, the first 4 matrix
moment equations result in a sufficient number of 14
scalar moment equations (31)–(38), the corresponding
GS PDF parameters estimate may not converge to the
true parameters. This observation leads to a conclusion,
that for the estimate convergence, is necessary to solve
overdetermined system of equations.

Note 4: If the state or measurement noise PDF is Gaus-
sian (which is a limit case of the GS PDF), then the vector
of parameters is determined by the first two moments.

Note 5: The system of equations (31)–(43) was derived
using a comparison of the GS PDF a central and raw mo-
ment and an application of Isserlis’ theorem. An exemplary
derivation is given in Appendix A.

4.5 Proposed Efficient Partial Solution

Solution to the system of equations (31)–(43) is a nu-
merical optimisation over 11 dimensional space, which
may be a computationally demanding procedure. Under
certain reasonable assumptions, it is, however, possible to
significantly reduce the complexity by a combination of an
analytical and a numerical solution to (31)–(43).

Compared to the state-of-the-art solution requiring knowl-
edge of both means, the efficient solution requires only one
mean, e.g., v̄(1). Then, the set of 4 unknown parameters is

αv = {β(1)
v ,R(1), v̄(2),R(2)}. (44)

and it contains 9 unique elements of unknown parameters.
Such GS PDF is particularly useful in modelling noise
behaviour with two modes; a nominal mode is represented
by the first term of the GS centred at zero, i.e., v̄(1) =
02×1, (but with unknown covariance matrix R(1) and

weight β
(1)
v ), an outlier mode is represented by the second

term with unknown mean v̄(2) and covariance matrix R(2)

describing a “rare-normal” behaviour of the noise. As
an example, application of this two-dimensional and bi-
modal GS PDF noise model can be found in the radar
altimeter based terrain-aided navigation, where the first
mode describes the measurement noise while flying over
terrain without trees (terrain modelled properly without
any bias) and the second mode while flying over the terrain
with trees (terrain modelled incorrectly as the trees are not
modelled in the terrain map) (Schön et al., 2005).

The efficient partial solution is based on the observa-
tion, that the unknown parameters R(1), v̄(2),R(2) can
be uniquely (and analytically) determined from the first
three matrix moment equations leading to (31)–(34) un-

der assumption of the known weight β
(1)
v . The weight

is, however, unknown and, thus, the equations (31)–(34)

are analytically solved for multiple choices of β
(1)
v spec-

ified by the grid points {β(1)
v,n}Nn=1. From the resulting

N candidates of R
(1)
n , v̄

(2)
n ,R

(2)
n , such parameters are se-

lected, which lead to fourth order moments closest to true
m4,0

v ,m0,4
v , . . . ,m2,2

v . Particularly, the computation of αv

(44) is as follows:

(i) Define an equally distributed grid covering the region

where the weight β
(1)
v can lie, i.e., determine N grid

points {β(1)
v,n}Nn=1 such that 0 < β

(1)
v,1 < β

(1)
v,2 < . . . <

β
(1)
v,N < 1. Number of the points is driven by required

accuracy and available computational power.
(ii) Repeat the following steps for n = 1, 2, . . . , N :

• Recall v̄(1) = 02×1 is known, select the grid

point β
(1)
v,n for given n, and compute B

(1)
v,n =

β
(1)
v,n, B

(2)
v,n = 1− β(1)

v,n.
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• Compute elements of the n-th candidate mean

v̄
(2)
n = [v̄

(2)
1,n; v̄

(2)
2,n]T from (31) as

v̄
(2)
1,n=

(
m1,0

v

)/(
B(2)

v,n

)
, v̄

(2)
2,n=

(
m0,1

v

)/(
B(2)

v,n

)
. (45)

• Compute elements of the n-th candidate covari-

ance matrix R
(2)
n =

[
R

(2)
1,1,n R

(2)
1,2,n

R
(2)
1,2,n R

(2)
2,2,n

]
from (33),

(34) as

R
(2)
1,1,n =

(
m3,0

v −B(2)
v,n(v̄

(2)
1,n)3

)/(
3v̄

(2)
1,nB

(2)
v,n

)
, (46)

R
(2)
2,2,n =

(
m0,3

v −B(2)
v,n(v̄

(2)
2,n)3

)/(
3v̄

(2)
2,nB

(2)
v,n

)
, (47)

R
(2)
1,2,n =

m2,1
v −B

(2)
v,n

(
(v̄

(2)
1,n)2v̄

(2)
2,n+R

(2)
1,1,nv̄

(2)
2,n

)
2v̄

(2)
1,nB

(2)
v,n

. (48)

• Compute elements of the n-th candidate covari-

ance matrix R
(1)
n =

[
R

(1)
1,1,n R

(1)
1,2,n

R
(1)
1,2,n R

(1)
2,2,n

]
from (32) as

R
(1)
1,1,n =

m2,0
v −B

(2)
v,n((v̄

(2)
1,n)2+R

(2)
1,1,n)

B
(1)
v,n

, (49)

R
(1)
2,2,n =

m0,2
v −B

(2)
v,n((v̄

(2)
2,n)2+R

(2)
2,2,n)

B
(1)
v,n

, (50)

R
(1)
1,2,n =

m1,1
v −B

(2)
v,n(v̄

(2)
1,nv̄

(2)
2,n+R

(2)
1,2,n)

B
(1)
v,n

. (51)

• Compute the n-th candidate of 4-th order mo-
ments elements, further denoted as m̌4,0

v,n, m̌
0,4
v,n,

m̌3,1
v,n, m̌

1,3
v,n, and m̌2,2

v,n according to (35)–(38),

where v̄(1) = 02×1, v̄(1) is substituted with

v̄
(1)
n , R(1) with R

(1)
n , R(2) with R

(2)
n , and B

(1)
v =

β
(1)
v,n, B

(2)
v =1− β(1)

v,n.
• Compute a distance between the n-th candidate

of 4-th order moments and given (true) 4-th
order moments as

dn =

∣∣∣∣∣∣∣∣ [ m̌4,0
v,n m̌0,4

v,n m̌3,1
v,n m̌1,3

v,n m̌2,2
v,n ]

T

−
[
m4,0

v m0,4
v m3,1

v m1,3
v m2,2

v

]T ∣∣∣∣∣∣∣∣ , (52)

where the notation ‖·‖ denotes a vector norm.
(iii) Select optimal candidate GS PDF parameters index

according to

n∗ = arg min
n
dn (53)

and determine sought GS PDF parameter set as

αv = {β(1)
v,n∗ ,R

(1)
n∗ , v̄

(2)
n∗ ,R

(2)
n∗ }. (54)

4.6 Properties of Proposed Solutions

The full solution computes the whole set of five parameters
(30) on the basis of five moment matrix equations using a
numerical optimisation over 11 dimensional space.

The partial efficient solution computes the reduced set of
four parameters (44) on the basis of four moment ma-
trix equations using a combined analytical and numerical
optimisation over one dimensional bounded space. This
solution is, thus, more computationally feasible, but at the
expense of the generality.

5. ESTIMATION OF GAUSSIAN SUM PARAMETERS
FROM ESTIMATED MOMENTS

The solutions discussed in the previous section compute
the noise GS PDF set of parameters under the assumption

of given noise (higher-order) moments. The noise moments
are, however, generally not known, but they can be es-
timated by the method reviewed in Section 3 and used
instead of the true ones. The final algorithm of the MDM
for the parameter estimation of the noise GS PDF reads:

(i) Measure data zk,∀k.
(ii) Based on the known system matrices Fk,Hk,∀k esti-

mate mmax moments of the state and measurement
noise according to the algorithm given in Section 3,
i.e., determine M̂m

w , M̂m
v for m = 1, . . . ,mmax.

(iii) Estimate the GS PDF sets of parameters αw and
αv according to the solutions proposed in Section 4,
where the true moments Mm

w , Mm
v are substituted

with their estimates M̂m
w , M̂m

v .

Note 6: The proposed candidate selection in Section 4.5
is based on the comparison of “expected” candidate 4-
th moments with observed ones. Besides, the 4-th order
moments, other higher-order moments can be used as well.
However, the GS PDF candidate can also be selected on
the basis of empirical PDFs as follows

• Estimate candidate parameters for the state and
measurement noises.
• Based on the candidate noise GS PDFs generate

noises’ samples and compute “expected” samples of
the AMPE according to (11). The samples form the
candidate AMPE empirical distribution.
• Compare the candidate AMPE empirical distribu-

tion with the measured empirical distribution, which
is given by the measurement-based AMPE samples
(10). Select such candidate AMPE empirical distribu-
tion which is, in some sense, closest to the measured
empirical distribution.

This approach can also be used in the proposed full
solution as a verification of the estimated parameters αv.

6. NUMERICAL ILLUSTRATION

In this section, the performance of the developed MDM
is illustrated. Let the time-varying LGSM (1), (2) with
n(x) = 1, n(z) = 2 defined as

Fk = 0.9 + 0.1 sin(5k/τ),Hk =

[
2 + sin(13k/τ)

cos(9k/τ)

]
, (55)

be considered with k = 0, . . . , τ with τ = 105 and τ = 106.

For the simulation purposes, the state noise is Gaussian

pw(wk;αw) = N{wk; w̄, Q}, (56)

with the mean w̄ = 1 and the variance Q = 1, i.e., the set
of parameters is αw = {w̄, Q} and the measurement noise
vk = [vk,1,vk,2]T is described by the bi-modal GS PDF
(4) with

αv = {β(1)
v , v̄(1),R(1), v̄(2),R(2)}, (57)

where the parameters are β
(1)
v = 0.8, v̄(1) =

[
4
−3

]
, R(1) =

[ 3 0.5
0.5 2 ], v̄(2) = [ 6

7 ], R(2) = [ 4 2
2 4 ].

The sets of parameters αw and αv are estimated from the
measured data by the MDM, summarised in Section 5,
using the proposed full solution 6 .
6 MATLAB optimisation routine lsqnonlin was used with ran-
domly generated initial parameters.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2454



Table 1. True and estimated moments and parameters of the state noise wk.

m1,0
w m2,0

w m3,0
w m4,0

w m5,0
w w̄ Q

True 1 2 4 10 26 1 1

Avg. of est. (τ = 105) 1 2 3.999 10.003 26.012 1 1

Avg. of est. (τ = 106) 1 2 4 10.001 25.998 1 1

STD of est. (τ = 105) 0.004 0.034 0.118 0.628 2.74 0.004 0.032

STD of est. (τ = 106) 0.001 0.011 0.038 0.2 0.874 0.001 0.01

Table 2. True and estimated selected moments of the measurement noise vk.

m1,0
v m0,1

v m2,0
v m1,1

v m3,0
v m2,1

v m4,0
v m3,1

v m5,0
v m4,1

v

True 4.4 -1 23.2 -0.4 137.6 18.4 898.4 234 6358.4 2341.6

Avg. of est. (τ = 105) 4.399 -1 23.196 -0.403 137.575 18.369 898.257 233.739 6357.979 2340.359

Avg. of est. (τ = 106) 4.4 -1 23.199 -0.402 137.591 18.387 898.303 233.842 6355.802 2339.178

STD of est. (τ = 105) 0.031 0.014 0.295 0.098 2.693 0.762 27.854 8.023 317.64 90.45

STD of est. (τ = 106) 0.01 0.004 0.091 0.03 0.824 0.24 8.525 2.53 98.342 27.662

Table 3. True and estimated parameters of the measurement noise vk.

β
(1)
v v̄(1) v̄(2) R(1) R(2)

True 0.8 4 -3 6 7 3 0.5 2 4 2 4

Avg. of est. (τ = 105) 0.803 3.989 -2.988 6.061 7.078 3.04 0.493 2.025 3.901 1.865 3.848

Avg. of est. (τ = 106) 0.801 3.999 -2.997 6.015 7.02 3.002 0.497 2.005 3.975 1.965 3.957

STD of est. (τ = 105) 0.025 0.132 0.099 0.359 0.417 0.456 0.071 0.214 0.575 0.729 0.805

STD of est. (τ = 106) 0.012 0.065 0.039 0.165 0.178 0.224 0.029 0.089 0.264 0.326 0.315

Fig. 1. Illustration of the true GS PDF, its typical estimate, and the respective error.

The resulting estimates for M = 103 Monte-Carlo (MC)
simulations are shown in Tables 1–3. In Table 1, true and
estimated moments Mm

w ,∀m, and the set of parameter
αw of the state noise wk are given. The estimate quality
is characterised by two criteria:

• Average value of the MC estimates illustrating bi-
asedness of the MDM estimates,
• Standard deviation (STD) of the MC estimates.

Similarly, selected 7 moments elements and all parameters
of the measurement noise vk described by the GS PDF
are summarised in Tables 2 and 3, respectively. For the
sake of completeness, the GS PDF pv(vk;αv) (4) with
true parameters (57) is illustrated in Fig. 1 together
with the GS PDF pv(vk; α̂v), where α̂v is a “typical”

estimate of the set αv with the parameters β̂
(1)
v = 0.808,

7 First five moments of two-dimensional random variable result in
20 unique moment elements (please see (31)–(43)) out of which only
10 are given in Table 2 because of the space reasons.

ˆ̄v(1) =
[

3.984
−2.956

]
, R̂(1) = [ 3.125 0.486

0.486 2.108 ], ˆ̄v(2) = [ 6.089
7.119 ],

R̂(2) = [ 3.848 1.802
1.802 3.812 ]. In addition, the figure also visualise

a difference between these two GS PDFs.

The tables demonstrate that the MDM provides unbiased
estimates of the moments and parameters of the noise
density in the form of the Gaussian and GS PDF. The
estimates also converge to the true values with increasing
number of data τ .

Note 7: Tables 1 and 2 reveal that estimate STDs grow
with increasing order m. Therefore, the less estimated
moments is used for the parameter estimation, the lower
STD of the parameter estimate can be expected. Simula-
tions also indicate that the MDM with the partial efficient
solution to parameters computation reduces the STD of
the estimate STD almost by a factor of four (these results
not shown in the paper because of the space reasons).
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7. CONCLUDING REMARKS

The paper dealt with the estimation of the parameters of
the GS PDF assumed noises of linear time-varying state-
space models. The proposed solution extends applicability
of the measurement difference method, which estimates
the (higher-order) moments of the state and measure-
ment noise from the measured data. The extension of the
method lies in the explicit derivation of the relations and
techniques allowing transformation of the noise moments
into the noise parameters. The theoretical results were
thoroughly discussed and illustrated in a numerical sim-
ulation.
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Appendix A. DERIVATION OF GS PDF
HIGHER-ORDER RAW MOMENT

Because of lengthy and tedious derivation of higher-order
moment elements for the GS PDF, the final relations were
summarised only by (31)–(43). However, for the sake of
clarity a sketch of the derivation is given for 4-th order
raw moment element (36) defined as

m3,1
v =E[v3

1v2]=Ep(v)[v
3
1v2]=

Nv∑
i=1

β(i)
v EN (i)

v
[v3

1v2], (A.1)

where N (i)
v denotes N{vk; v̄(i),R(i)}. The derivation

starts from expansion of the i-th term central moment
counterpart of the GS PDF

EN (i)
v

[(v1 − v̄
(i)
1 )3(v2 − v̄

(i)
2 )] = EN (i)

v
[v3

1v2 − v3
1v̄

(i)
2

− 3v2
1v2v̄

(i)
1 + 3v2

1v̄
(i)
1 v̄

(i)
2 + 3v1v2(v̄

(i)
1 )2

− 3v1(v̄
(i)
1 )2v̄

(i)
2 − (v̄

(i)
1 )3v2 + (v̄

(i)
1 )3v̄

(i)
2 ], (A.2)

which can be further simplified to the form

EN (i)
v

[(v1 − v̄
(i)
1 )3(v2 − v̄

(i)
2 )] = EN (i)

v
[v3

1v2]− (v̄
(i)
1 )3v̄

(i)
2

− 3v̄
(i)
1 v̄

(i)
2 R

(i)
1,1 − 3(v̄

(i)
1 )2R

(i)
1,2. (A.3)

Application of Isserlis’ theorem to the central moment
(left-hand side of (A.3)) leads to

EN (i)
v

[(v1 − v̄
(i)
1 )3(v2 − v̄

(i)
2 )] = 3R

(i)
1,1R

(i)
1,2. (A.4)

Combination of (A.3) and (A.4) leads to the final form of
the i-th GS PDF 4-th order moment

EN (i)
v

[v3
1v2] = (v̄

(i)
1 )3v̄

(i)
2 + 3R

(i)
1,1v̄

(i)
1 v̄

(i)
2 + 3R

(i)
1,2(v̄

(i)
1 )2

+ 3R
(i)
1,1R

(i)
1,2. (A.5)

The weighted sum of (A.5) in (A.1), ∀i, results in (36).
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Duńık, J., Straka, O., Kost, O., and Havĺık, J. (2017).
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