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1. INTRODUCTION

The study of systems subject to abrupt changes in their
structure has taken a lot of effort in the control literature
in the past decades. The situations in which those changes
arise due to failures in real-time applications are of special
concern, since that could lead to performance degradation
and, in a critical scenario, instability. One approach to
deal with those situations relies in the so-called Markov
jump linear systems (MJLS), that are a class of switched
systems whose switching rule is a Markov chain (see Costa
et al. (2013), Dragan et al. (2013), and the references
therein). An interesting application of MJLS is found in
Active Fault-Tolerant Control Systems (AFTCS), see for
instance, Aberkane et al. (2008), Mahmoud et al. (2003),
and the references therein, in which the failure process is
modeled by a Markov chain and the controller switches
according to the estimates provided by a fault-detection
and isolation (FDI) device.

An usual assumption employed in MJLS control design is
that the Markov chain θ (or mode of operation) can be
perfectly measured, which yields to the so-called mode-
dependent case and arguably leads to “simpler” problems
to be solved, see, for instance, Cardeĺıquio et al. (2014).
However there are applications in which θ is hard to
obtain, e.g., in Networked Control Systems (NCS), see,
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for instance, Gonçalves et al. (2010), or in AFTCS, in
which that assumption would be equivalent to consider
that we know perfectly when and where the fault occurred
in the system. Considering the NCS, some aproaches have
been proposed such as the mode-independent and cluster
cases, see, for instance, Val et al. (2002) and Morais
et al. (2016), in which there is only one controller for
all modes of operation, or a smaller set of controllers for
some distinguishable modes of operation. In the context of
AFTCS though, the aforementioned problem of using the
information coming from a FDI device to actively switch
the controller is appealing.

In this work, we study the design of mixed H2/H∞ state-
feedback controllers considering that the failure process θ

cannot be measured, but instead there is a detector θ̂ that
provides to the controller the only information on the un-
derlying process. For that we rely on the model presented
in Stadtmann and Costa (2017) and Stadtmann and Costa
(2018) dubbed exponential hidden Markov model that em-
ulates the behavior of a FDI device. Our contributions are
as follows:

• We propose new linear matrix inequalities (LMIs)
design conditions for a stabilizing state-feedback con-

troller that switches according to θ̂ so that theH2 and
H∞ norms of the closed-loop system are bounded by
given constants.

• We briefly discuss some of the aforementioned ob-
servation cases, that is, the mode-dependent and -
independent formulations. We show in the illustrative
example that our conditions can get very close to
the optimal H2 control in the case where the failure
process can be perfectly measured.
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It is worth noting that there are alternative observation
models employed in the literature such as the one used
in Aberkane et al. (2008) and Mahmoud et al. (2003) that
does not consider simultaneous jumps of the Markov chain
and the detector as done in the exponential hidden Markov
model of Stadtmann and Costa (2017); the ε−model
of Rodrigues et al. (2019) that requires the study of

rate of jumps of θ̂; and the continuous-time formulation
formulation of the detector approach of Costa and Fragoso
(1995) presented in Fragoso and Costa (2004). Besides that
this paper can also be viewed as the partial information
counterpart of the mixed H2/H∞ state-feedback control
presented in (Costa et al., 2013, Chapter 9) for the case in
which the Markov chain can be perfectly measured, as well
as a continuous-time version of Oliveira and Costa (2017)
and Oliveira and Costa (2018). It is also worth noting that
a similar formulation for discrete-time MJLS, known in
the literature as asynchronous control, was studied in, for
instance, in Shen et al. (2019), Wu et al. (2017), and the
references therein.

This work is organized as follows. We introduce the nota-
tion in Section 2 and the problem formulation in Section
3, where the system and the controller structure are intro-
duced, as well as the basic definitions such as the mean-
square stability and the H2 and H∞ norms. The main
results are presented in Section 4 in which we study a
sufficient condition for obtaining the desired bounds on
the H2 and H∞ norms for a given controller by means of
an extended bounded-real lemma, and the mixed H2/H∞
LMI design condition. We present an Illustrative Example
in Section 5 in which we are able to control an MJLS with
two unstable subsystems, and briefly discuss the behavior
of the costs by changing the detector rates. We present our
final remarks in Section 6.

2. NOTATION

The real Euclidean space of dimension n is represented by
Rn, and the space of real matrices of dimension n × m,
by B(Rn,Rm). We represent by B(Rn,Rm) the space of

m×n real matrices with B(Rn) , B(Rn,Rn). The identity
matrix of size n× n is given by In (or simply I), (· · · )′ is
the transpose operator and, for a square matrix G, we set
Her(G) , G+G′, and Tr(·) is the trace operator. Given

positive integers N and M , we set N , {1, . . . , N}, M ,
{1, . . . ,M}, and V ⊆ N ×M . The linear space composed
by all sequence of matrices V = (Vik ∈ B(Rn,Rm); (i, k) ∈
V ) is represented by Hn,m, and for ease of notation we set

Hn , Hn,n and Hn+ , {V ∈ Hn : Vik ≥ 0, (i, k) ∈ V }.
Given V,S ∈ Hn+, we write that V ≥ S if Vik−Sik ≥ 0 for
all (i, k) ∈ V . Similarly we define the set Mn,m , {Mk ∈
B(Rn,Rm), k ∈ M }, Mn , Mn,n, and Mn+ accordingly.
We fix the probability space as (Ω,F , IP ) and represent by
Lr2(Ω,F , IP ) (or simply Lr2) the set of square integrable
stochastic processes x = {x(t) ∈ Rn, t ∈ R+} with x(t)
Ft-measurable for each t ∈ R+.

3. PROBLEM FORMULATION

We consider the following MJLS in the probability space
(Ω,F , IP ) equipped with the filtration {Ft},

G :

{
ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t) + Jθ(t)w(t)
z(t) = Cθ(t)x(t) +Dθ(t)u(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, z(t) ∈ Rq, and w(t) ∈ Rr.
θ(t) is a homogeneous Markov chain taking values in N
with transition rate matrix Λ , [λij ] and θ(0) is a random
variable in N . We also consider that x(0) = 0.

The main goal is to design the following controller

K : u(t) = Kθ̂(t)x(t) (2)

that depends only on an observed variable θ̂(t) taking
values in M . The closed-loop system is obtained by
plugging (1) and (2) yielding to

GK :

{
ẋ(t) = Aθ(t)θ̂(t)x(t) + Jθ(t)w(t)

z(t) = Cθ(t)θ̂(t)x(t)
(3)

where

Aθ(t)θ̂(t) = Aθ(t) +Bθ(t)Kθ̂(t) (4)

Cθ(t)θ̂(t) = Cθ(t) +Dθ(t)Kθ̂(t) (5)

By setting the stochastic process as Z(t) , (θ(t), θ̂(t)), we
consider that

IP (Z(t+ h) = (j, l) | Z(t) = (i, k))

=

{
ν(i,k)(j,l)h+ o(h), (j, l) 6= (i, k)

1 + ν(i,k)(i,k)h+ o(h), (j, l) = (i, k)

where

ν(i,k)(j,l) =

 αkjlλij , j 6= i, l ∈M ,

qikl, j = i, l 6= k,
λii + qikk, j = i, l = k,

(6)

where
∑
l∈M αjl = 1, λij ≥ 0 for all i 6= j, qikl ≥

0, l 6= k, λii = −
∑
j 6=i λij , qikk = −

∑
l 6=k q

i
kl. As

studied in Stadtmann and Costa (2017), we get that λij
represents the transition rate of θ(t), and αkjl and qikl
models simultaneous and spontaneous jumps of θ̂(t). We
also define the invariant set for Z(t) by V ⊆ N ×M so
that IP (Z(t) ∈ V ) = 1 whenever Z(0) ∈ V .

Remark 1. (Detector rates). For the case of simultaneous

jump of θ(t) and θ̂(t), we get that αkjl is the probability

of θ̂(t+) = l given that θ(t+) = j, θ(t−) = i, θ̂(t−) = k.

That is, by setting IP (θ̂(t + h) = l | θ(t + h) = j, Z(t) =
(i, k)) = αkjl + r(h) with limh→0 r(h) = 0, we get for j 6= i
that

IP (Z(t+ h) = (j, l) | Z(t) = (i, k))

= (αkjl + r(h))IP (θ(t+ h) = j | θ(t) = i)

= (αkjl + r(h))(λijh+ o(h)) = αkjlλijh+ o(h).

Conversely qikl can be viewed as the transition rate of

spontaneous jumps of θ̂(t) whenever θ(t) = i. We have
for l 6= k that

IP (Z(t+ h) = (i, l) | Z(t) = (i, k))

= (qiklh+ o(h))(IP (θ(t+ h) = i | θ(t) = i))

= (qiklh+ o(h))(1− λiih+ o(h)) = qiklh+ o(h).

2

Remark 2. According to Stadtmann and Costa (2018)
we can retrieve some interesting cases presented in the
literature such as
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• The mode-dependent case (M = N , qikl = 0, αkjj = 1,

and αkjl = 0 for j 6= l, with invariant set V = {(i, i) ∈
N ×N });

• The mode-independent case (M = {1}, qikl = 0, and
α1
j1 = 1);

• No mutual jumps: αkjk = 1 and αkjl = 0 for k 6= l. 2

In the following we set Qi , [qikl], and Ak , [αkjl]. We also
introduce the next technical assumption on the transition
rates, used in Section 4.

Assumption 1. ν(i,k)(i,k) 6= 0 for all (i, k) ∈ V . 2

Assumption 1 imposes that there exists at least one
element in ν(i,k)(j,l) > 0 for (i, k) 6= (j, l) ∈ V . Effectively it
avoids the so-called absorbing states in the Markov chain,
see, for instance Leon-Garcia (2008).

We introduce next the concept of internal mean-square
stability (iMSS) adapted from Costa et al. (2013).

Definition 1. The system (3) is said to be iMSS with
w = 0 if limt→∞E(‖x(t)‖2) = 0 for arbitrary x(0) and

(θ(0), θ̂(0)). 2

We get that if (3) is iMSS and w ∈ Lr2, then x , {x(t), t ≥
0} ∈ Ln2 , see, for instance, (Costa et al., 2013, Theorem
3.27).

We now present conditions for accessing the iMSS of (3).
For that we define the operator T ∈ Hn such that

Tik(P) , Her(A′ikPik) +
∑

(j,l)∈V

ν(i,k)(j,l)Pjl (7)

for P ∈ Hn. We have the following lemma adapted from
Costa et al. (2013).

Lemma 3. The system (3) is iMSS if and only if there
exists P ∈ Hn+ such that

P > 0, T (P) < 0. (8)

2

The set of admissible controllers is described as follows.

K , {K as in (2) : such that (8) holds}. (9)

We now introduce the concept of H2 norm of (3) for a
fixed K ∈ K, adapted from Stadtmann and Costa (2017).

Definition 2. Given that K ∈ K and x(0) = 0, the H2

norm of (3) is given by

‖GK‖22 ,
r∑
s=1

∑
(i,k)∈V

µik‖zs,(i,k)‖22,

where zs,(i,k)(k) is the output of (3) for w(t) = vsδ(t),
vs is the s−th element of the standard basis of Rr; and

IP ((θ(0), θ̂(0)) = (i, k)) = µik, for all (i, k) ∈ V . 2

Following Costa et al. (2013) and Stadtmann and Costa
(2017), the H2 norm of (3) for a fixed K ∈ K is given by

‖GK‖22 =
∑

(i,k)∈V

µikTr(J
′
iP̄ikJi), (10)

where P̄ ∈ Hn+ is the unique solution of the following
coupled Lyapunov equations,

T (P̄) + C = 0, (11)

for C , (Cik, (i, k) ∈ V ), C ∈ Hn+, Cik , C ′ikCik.

We introduce next the concept of H∞ norm for (3), taken
from De Farias et al. (2000).

Definition 3. Given that K ∈ K and x(0) = 0, the H∞
norm of (3), ‖GK‖∞, is defined as the smallest γ∞ such

that ‖z‖2 < γ∞‖w‖2, for all (θ(0), θ̂(0)) = (i, k) ∈ V and
0 6= w ∈ Lr2. 2

For achieving a given attenuation degree γ of theH∞ norm
of (3), we introduce the following extended bounded-real
lemma adapted from Stadtmann and Costa (2018).

Lemma 4. GivenK, we get thatK ∈ K with ‖GK‖∞ < γ∞
for x(0) = 0 if there exists P ∈ Hn+, Pik > 0, (i, k) ∈ V ,
such that

Her(PikAik) +
∑

(j,l)∈V

ν(i,k)(j,l)Pjl + C ′ikCik

+
1

γ2
∞
PikJiJ

′
iPik < 0 (12)

for all (i, k) ∈ V . 2

Considering the previous definitions, we are now able to
state our main goal, that is, finding controllers K ∈ K
such that a suitable upper bound for the H2 norm of (3)
is minimized for a given bound on the H∞ norm, that is,

inf
K∈K

γ2 : such that ‖GK‖2 < γ2 and ‖GK‖∞ < γ∞.

(13)

To achieve our goal we will discuss in the next section
a property of (12) that echoes the studied in Costa and
Marques (1998) and Oliveira and Costa (2017) for the
discrete-time MJLS with hidden observations. For that, we
recall the next auxiliary result presented in (Costa et al.,
2013, Theorem 3.25).

Lemma 5. Given that K ∈ K in (3), we have that if
S ≥ T ≥ 0 (S > T ≥ 0), as well as T (P) + S = 0
and T (P̄) + T = 0, then P ≥ P̄ ≥ 0 (P > P̄ ≥ 0). 2

4. MAIN RESULTS

In this section we present an auxiliary result that provides
a bound on both the H2 and H∞ norms of (3) by
exploiting the structure of (12). Furthermore by applying
LMI techniques on this auxiliary tool, we are able to obtain
the main design result of this paper shown in Theorem 7.

Lemma 6. Given K, γ2, and γ∞, if there exists P ∈ Hn+,
P > 0 such that (12) and∑

(i,k)∈V

µikTr(J
′
iPikJi) < γ2

2 (14)

jointly hold, then K ∈ K, ‖GK‖2 < γ2, and ‖GK‖∞ < γ∞.
2

Proof. Note that if (12) and (14) jointly hold, we get
from (12) that T (P) + C + J + V = 0, for V > 0, where

J , (Jik, (i, k) ∈ V ), J ∈ Hn+, Jik , PikJiJ
′
iPik ≥ 0 for

all (i, k) ∈ V , since JiJ
′
i ≥ 0. Thus it is direct that C+J+

V > C ≥ 0, and so from Lemma 5, we get that P ≥ P̄,
where P̄ is the solution of (11). It follows from simple
manipulations along with (10) and (14) that ‖GK‖22 =∑

(i,k)∈V µikTr(J
′
iP̄ikJi) ≤

∑
(i,k)∈V µikTr(J

′
iPikJi) <

γ2
2 . 2

It is clear that if K is considered as a variable in (12) and
(14), we would get a non-linear problem in the decision
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variables due to the products betweenK and P. Instead we
resort to the use of slack variables as employed in Morais
et al. (2016) and classical LMI techniques for obtaining a
convex formulation. Consider the following inequalities for
(i, k) ∈ V , ∑

(i,k)∈V

µikTr(Wik) < ς, (15)[
Wik •
Ji Xik

]
> 0, (16)

Hik +Her(ΨikΦik) < 0, (17)[
Z(ik),(jl) •
Hik Xjl

]
> 0 (18)

along with Xik > 0, where

Hik ,


ν(i,k)(i,k)Xik • • • •

Xik 0n×n • • •
Xik 0n×n Ξik • •
JTi 0r×n 0r×n −γ2

∞Ir •
0q×n 0q×n 0q×n 0q×r −Iq

 ,
Ξik , −Her(Hik) +

∑
(j,l)∈V (i,k)

ν(i,k)(j,l)Z(i,k)(j,l)

Ψ′ik , [Inζ In 0n×n 0n×r 0n×q] ,

Φik ,[
(AiGk +BiYk)′ −G′k 0n×n 0n×r (CiGk +DiYk)′

]
,

and V (i,k) , {(j, l) ∈ V : (j, l) 6= (i, k)}.
Theorem 7. Given γ∞ ∈ R+ and ζ ∈ R, if there exist ς >
0, 0 < Wik ∈ B(Rr), 0 < Z(i,k)(j,l) ∈ B(Rn), Hik ∈ B(Rn),
0 < Xik ∈ B(Rn), Gk ∈ B(Rn), Yk ∈ B(Rn,Rm), such that
(15)-(18) hold, then by setting Kk = YkG

−1
k , we get that

K ∈ K, ‖GK‖2 < ς1/2 and ‖GK‖∞ < γ∞. 2

Proof. Given that (15)-(18) holds, we note that Her(Gk)
< 0, and thus Gk is non-singular. We get, by setting γ2

2 = ς
and Yk = KkGk, that

Hik +Her(ΨikG
′
kΦ̄ik) < 0 (19)

holds, where

Φ̄ik ,
[
A′ik −In 0n×n 0n×r C

′
ik

]
.

By defining

N =


In 0 0 0
A′ik 0 0 C ′ik
0 In 0 0
0 0 Ir 0
0 0 0 Iq


so that Rank(N) = 2n+ r+ q, we get by multiplying (19)
to the left-hand side by N ′ and to the right-hand side by
N , that

N ′HikN

=

ν(i,k)(i,k)Xik +Her(AikXik) • • •
Xik Ξik • •
JTi 0r×n −γ2

∞Ir •
CikXik 0q×n 0q×r −Iq

 < 0

(20)

holds. Then, by considering the reasoning presented in
Cardeĺıquio et al. (2014) and Geromel et al. (2009), we
get that (17) yields to Z(i,k)(j,l) > H ′ikX

−1
jl Hik. Then

it follows by multiplying the last inequality by ν(i,k)(j,l)

and summing everything up by (j, l) ∈ V (i,k) that∑
(j,l)∈V (ik) ν(i,k)(j,l)Z(i,k)(j,l) ≥ H ′ikPikHik, where Pik ,∑
(j,l)∈V (i,k) ν(i,k)(j,l)X

−1
jl . Therefore,

Her(Hik)−H ′ik

 ∑
(j,l)∈V (i,k)

ν(i,k)(j,l)X
−1
jl

Hik

≥ Her(Hik)−
∑

(j,l)∈V (i,k)

ν(i,k)(j,l)Z(i,k)(j,l) (21)

and then, considering Assumption 1, (21), and that (G′ik−
P−1
ik )Pik(Gik −P−1

ik ) ≥ 0 for Gik , Hik, we get from the
same reasoning as presented in Cardeĺıquio et al. (2014)
that −Ξik = Her(Hi) −

∑
(j,l)∈V (i,k) ν(i,k)(j,l)Z(i,k)(j,l) ≤

Her(Gik) − G′ikPikGik = P−1
ik − (G′ik − P−1

ik )Pik(Gik −
P−1
ik ) ≤ P−1

ik . Thus, we can substitute Ξik by −P−1
ik in

(20) and the inequality still holds, that is,
ν(i,k)(i,k)Xik +Her(AikXik) • • •

Xik −P−1
ik • •

JTi 0r×n −γ2
∞Ir •

CikXik 0q×n 0q×n −Iq

 < 0.

By applying the congruence transformation diag(X−1
ik , In,

Ir, Iq) and the Schur complement with respect to −P−1
ik

in the previous inequality, we get that (12) holds for
Pik = X−1

ik , and then K ∈ K and ‖GK‖∞ < γ∞. It
remains to show that (15)-(16) leads to the bound on the
H2 norm. By applying the Schur complement to (16), we
get that Wik > J ′iX

−1
ik Ji = J ′iPikJi holds. By taking the

trace operator on both sides of this inequality, multiplying
them by µik, summing everything up for all (i, k) ∈ V ,
and considering (15), we get that (14) holds. By Lemma
6, the claim follows. 2

Bearing in mind the result of Theorem 7, we can rewrite
the main goal posed in (13) as follows

inf
ψ∈Ψ(γ∞,ζ)

ς : subject to (15)− (18) (22)

where ψ , (ς,Wik, Z(i,k)(j,l), Xik, Hik, Gk, Yk, (i, k)× (j, l)
∈ V × V , k ∈M ), and Ψ(γ∞, ζ) is the set of all solutions
of (15)-(18) for given γ∞ ∈ R+ and ζ ∈ R, which adds
a degree of freedom to the problem. This parameter is
discussed in Section 5.

Remark 8. (“Pure”H2 and H∞ control). From the result
of Theorem 7, we can obtain alternative design conditions
for the “pure” H2 and H∞ control of exponential hidden
Markov models presented in Stadtmann and Costa (2017)
and Stadtmann and Costa (2018). By taking ς → ∞ and
minimizing γ∞, we note that (15) is fulfilled for arbitrary
big values of Wik, and thus by the Schur complement in
(16), we get that Xik > JiW

−1
ik J

′
i ≈ 0, retrieving the

“pure”H∞ control. On the other hand, by taking the Schur
complement of (17) with respect to the block −γ∞Ir,
γ∞ → ∞, and minimizing ς, we get that the resulting
conditions will yield to Her(X−1

ik Aik) + C ′ikCik < 0, that
by Lemma 5, provides a “tighter bound” on the solution
P̄ik of (11). 2

5. ILLUSTRATIVE EXAMPLE

In this section we study problem (22) and the effects of
the rates q and α on the problem. Consider the following
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Fig. 1. θ(t) (full black line) and θ̂(t) (dashed grey line)
against t for Case (i) (upper figure) and Case (ii)
(lower figure).

unstable MJLS with two modes of operation (N = 2) and
system matrices given by

A1 =

[
0 1
2 −2

]
, B1 =

[
1
1

]
, J1 =

[
0
1

]
,

A2 =

[
0 1
−1 1

]
, B2 =

[
0
1

]
, J2 =

[
0
5

]
,

and rate transition matrix Λ given by

Λ =

[
−0.3 0.3

0.8 −0.8

]
.

Note that both subsystems are unstable. We set the
controlled output matrices as follows

Ci =

[
1 0
0 0

]
, Di =

[
0
1

]
for i ∈ N . Regarding the detector θ̂(t), we consider that
M = 2 and investigate the effects of the rates αkjl and qikl
presented in (6) and Remark 1 in the behavior of the joint

process (θ, θ̂):

(i) (Simultaneous Jumps only). We set qikl = 0 for all
i ∈ N , k, l ∈M , and αkjj = 0.7 for all j ∈ N , k ∈M

in (6), that is, the process θ̂(k) can jump only when

θ(k) changes. The probability that θ(k+1) = θ̂(k+1)
in this case is given by 0.7.

(ii) (No mutual jumps). We set qikk = −0.5 for all i ∈ N ,
k ∈ M , and αkjk = 1 for j ∈ N , k ∈ M . In this
case, the detector will change according to its own
conditioned rates as in (24). Note that at the times

when θ changes, the detector θ̂(t) will not jump.

The trajectories of θ and θ̂ for one realization of Cases
(i) and (ii) are shown in Figure 1. We note in Figure 1
at the top of the page that for Case (i) (upper figure),

the expected behavior of the detector is that θ̂ is able to
jump only when the Markov chain θ switches. By looking
at the interval t ∈ [1.5, 12), we get that the detector is
able to follow the Markov chain, even in the jump times
t ∈ {4, 4.5, 9.1}. However in the transition instant t = 12 s,
we note that both trajectories take different paths, due to
the probability αkjj = 0.7. On the other hand, considering
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Fig. 2. ς∗1 (dashed black line) and ς∗0 (full black line) against
α ∈ (0, 1) for ζ = 1 for γ∞ = 12.

Case (ii), since αkjk = 1, we get that the detector will
always stay in the same state whenever the Markov chain
θ(t) changes. This can be noted in Figure 1 (lower figure),

that is, the two processes θ and θ̂ switch at different time
instants, as expected.

We now set the detector rates as follows,

Ak =

[
α 1− α

1− α α

]
,∀k ∈M (23)

Qi =

[
−β β
β −β

]
,∀i ∈ N , (24)

for α ∈ [0, 1] and β ∈ [0, 2], and investigate the effects of α
and β in (22) by setting γ∞ = 12 and ζ = 1, and solving
(22) for α ∈ (0, 1), for β ∈ {0, 1}. The initial distribution
of the Markov chain is taken as the stationary one for each
case. The solution ς∗β for β ∈ {0, 1} is shown in Figure 2
at the top of the page. First we note in Figure 2 that the
worst-case scenario is given by α = 0.5 for both β ∈ {0, 1}.
That is to say that the detector will switch with equal
probability to 1 or 2 whenever the Markov chain jumps,
thus we do not have any clear information being provided

by θ̂. Specially for the case β = 1, we note that due to
qi11 = qi22 in (24), we get that the detector behavior is not
distinguishable between the two possible outputs, for fixed
values of θ. In this situation, we get the mode-independent
case (see Remark 2 and Stadtmann and Costa (2017)), and
therefore the controller becomes

K1 = K2 = [−1.66 −2.47]

Besides, we note a degradation on the upper bounds in
Figure 2 for the case β = 1 with respect to β = 0 for
ζ = 1, that is, we increase the uncertainty of the detector
in this case.

Finally, we briefly investigate the effects of ζ ∈ {1, 2, 10}
of (17) in (22) in the case β = 0 through Figure 3 at
the top of page 6. We note that as we increase ζ, we
get smaller upper bounds ς∗ in a similar effect as the one
obtained in Stadtmann and Costa (2017) and Morais et al.
(2016). That seems to be consistent behavior that leads to
the optimal H2 and H∞ control for the mode-dependent
case. Indeed considering Remark 8, by solving (22) with
ζ = 10 and γ∞ = 1e3 with β = 0, α = 1, and invariant
set V = {(11), (22)}, we get ς∗ = ‖GK‖22 = 11.28. The
controller in this case is given by
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Fig. 3. ς∗ against α ∈ (0, 1) for ζ ∈ {1, 2, 10} and β = 0
for γ∞ = 12.

K1 = [−1.6086 −0.5676]

K2 = [−0.2703 −1.6324]

6. CONCLUSION

In this work we proposed new LMI conditions for the
design of mixed H2/H∞ state-feedback controllers for
continuous-time MJLS considering that we have access
only to the output of a detector of the Markov chain.
We investigate some interesting behaviors that the de-
tector can exhibit, such as the cases of simultaneous and
spontaneous jumps and noticed through in a numerical
example that we are able to obtain optimal H2 state-
feedback controllers for the case in which the detector can
perfectly observe the Markov chain.

For future steps, the study of more general forms of the
mixedH2/H∞ control is desirable, since the equalized case
tackled in this paper is very restrictive due to the use
of a common weight for both the H2 and H∞ control.
Besides, as we noted in the Illustrative Example, we are
able to obtain optimal H2 controllers in the case of perfect
observation of the Markov chain, and thus a formal proof is
required for properly accessing this property. Finally some
robustness aspects of the mixed H2/H∞ control should
also be exploited.
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