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1. INTRODUCTION

This paper is devoted to the problem of fault diagnosis in
engineering systems. This problem was extensively inves-
tigated for the past 30 years, see, e.g., Blanke et al. (2006);
Ding (2014); Samy et al. (2011) where different tools for
fault diagnosis have been developed, in particular, identi-
fication. There are many methods of identification, one is
based on sliding mode observers and uses peculiarities of
sliding motion Utkin (1992).

Sliding mode observers are used for fault identification
(reconstruction) in linear systems Edwards and Spurgeon
(1994); Edwards et al. (2000); Tan and Edwards (2009);
Chandra et al. (2015); Zhirabok et al. (2019), nonlinear
systems Yan and Edwards (2007); He and Zhang (2012);
Brahim et al. (2017), and descriptor systems Chan et al.
(2017), for fault tolerant control Corradini et al. (2005);
Alwi and Edwards (2008), in practical applications Chan-
dra et al. (2015); Meziane et al. (2015); Mohamed et al.
(2016); Yang and Yin (2020); Zhang et al. (2016).

In this paper, the method based on sliding mode observers
is used to solve the problem of sensor fault identification in
nonlinear systems under disturbances. This problem was
studied in Edwards et al. (2000); Tan and Edwards (2002,
2003); Filasova and Krokavec (2010); Kalsi et al. (2011).

To discuss features of some of these papers, consider
system described by nonlinear dynamic model

ẋ(t) = Fx(t) +Gu(t) + CΨ(x(t), u(t)) + Lρ(t),

y(t) = Hx(t) +
l∑

i=1

Didi(t).
(1)

⋆ This paper was supported by grants of Russian Scientific Founda-
tion, projects 16-19-00046-P (method of sliding mode observers con-
struction) and 18-79-00143 (synthesis of the observers for dynamic
object diagnosis).

Here x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are vectors
of state, control, and output, F , G, H, C, and L are
constant matrices; Di and di(t) ∈ R are matrix and
function describing faults: if faults are absent, di(t) = 0, if
a fault occurs in the ith sensor, di(t) becomes an unknown
bounded function of time, i = 1, ..., l; D1 = (1 0 ... 0)T , ...
Dl = (0 0 ... 1)T ; ρ(t) ∈ Rp is the disturbance, we assume
that ρ(t) is an unknown bounded function of time; Ψ(x, u)
is nonlinear term:

Ψ(x, u) =

(
φ1(A1x, u)

...
φq(Aqx, u)

)
,

A1, ..., Aq are constant row matrices, φ1, ..., φq are
nonlinear functions.

For simplicity, consider the case when the fault can occur
in single sensor only with the number j, appropriate
matrix D := Dj , and function d(t) := dj(t), that is the
jth component of the vector y is subjected to the fault.

To solve the problem of sensor fault identification, the
methods suggested in Tan and Edwards (2003) and similar
papers assume that a new state vector being a filtered
version of y(t) is introduced and special system of the
dimension n + l is constructed. It is known that under
some conditions the extended system is transformed into
decomposition of two subsystems having the following
peculiarities: the functions d(t) and ρ(t) enter in one
of the subsystem only, the output vector y(t) depends
on the state vector of this subsystem, and the second
subsystem is stable. Based on this decomposition, sliding
mode observer is designed. The methods suggested in
Edwards et al. (2000); Kalsi et al. (2011) provide only
approximate solution of the sensor fault identification
problem since the final expressions contain the derivative
ḋ(t).
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The contribution of the present paper is that in contrast to
these methods, we construct sliding mode observer based
on the reduced order model of the initial system of the
dimension k < n invariant with respect to the disturbance
which does not contain the derivative ḋ(t). Besides, the
problem of sensor fault identification is solved without
conditions imposed in Tan and Edwards (2003).

As usual, it is assumed that the function CΨ(x, u) satisfies
Lipschitz condition about x uniformly for t and u:

∥C(Ψ(x, u)−Ψ(x′, u))∥ ≤ N∥x− x′∥, (2)

where N is some positive constant. This condition is not
satisfied for so phenomenons as Coulomb friction, back-
lash, and square root. To take into account such phe-
nomenons, we introduce the generalized Lipschitz condi-
tion:

∥C(Ψ(x, u)−Ψ(x′, u))∥ ≤ N∥x− x′∥+M, (3)

N, M ≥ 0 are some constants.

The rest of the paper is organized as follows. In Sec-
tion 2, the reduced order model of the initial system is
constructed. Section 3 presents the FD problem different
solutions. Practical example is considered in Section 4.
Section 5 concludes the paper.

2. REDUCED ORDER MODEL DESIGN

Depending on how the signal of faulty sensor enters in
sliding mode observer, we consider three variants.
1. This signal enters in the linear terms of the observer
only.
2. This signal enters in the nonlinear terms of the observer
only.
3. This signal enters both in the linear and nonlinear terms
of the observer.

Consider initially the first variant. In this case solution of
the problem is based on the reduced model of the initial
system (1):

ẋ∗(t) = F∗x∗(t) +G∗u(t) + J∗Hx(t)

+C∗Ψ(x∗(t), H
(j)x(t), u(t)) + L∗ρ(t),

y∗(t) = H∗x∗(t) +D∗d(t),
(4)

where x∗(t) ∈ Rk is the state vector, F∗, G∗, J∗, H∗, D∗,
and L∗ are some matrices to be determined,

C∗Ψ(x∗,H
(j)x, u) =

 φi1(A∗1i1x∗ +A∗2i1H
(j)x, u)

...

φik(A∗1ikx∗ +A∗2ikH
(j)x, u)

 ,(5)

A∗1i1 , A∗2i1 , ..., A∗1ik , A∗2ik are matrices to be deter-
mined, y(j) = H(j)x is the vector y without jth element
corresponding to the faulty sensor, H(j) is the correspond-
ing matrix. This means that the nonlinear term in (4) does
not depend on the jth component of the vector y subjected
to the fault.

We assume that x∗(t) = Φx(t) and y∗(t) = R∗y(t) for
matrices Φ and R∗ under d(t) = 0 and ρ(t) = 0. These
matrices satisfy the conditions Zhirabok et al. (2017a,b)

ΦF = F∗Φ+ J∗H, R∗H = H∗Φ, ΦG = G∗,

Ai = (A∗1i A∗2i)

(
Φ

H(j)

)
, i = i1, ..., ik,

ΦC = C∗, R∗D = D∗, ΦL = L∗.

(6)

Consider the method to construct system (4) insensitive
to the disturbance which will be used for sliding mode
observer design. The matrices F∗ and H∗ are sought in
the canonical form

F∗ =

 0 1 0 ... 0
0 0 1 ... 0
... ... ... ...
0 0 0 ... 0

 ,

H∗ = ( 1 0 0 ... 0 ).

(7)

Based on the matrices F∗ and H∗ in (7), equations for rows
of the matrices Φ and J∗ are obtained from (6):

Φ1 = R∗H, ΦiF = Φi+1 + J∗iH, i = 1, ..., k − 1,
ΦkF = J∗kH,

(8)

where Φi and J∗i are ith rows of the matrices Φ and J∗,
i = 1, ..., k, k is the model (4) dimension.

To construct sliding mode observer, the condition R∗D =
0 should be satisfied. To take it into account, introduce
the matrix D0 of maximal rank such that D0D = 0, then
R∗ = SD0 is true for some matrix S.

It is shown in Zhirabok et al. (2017a) that (8) can be
rewritten in the form of single equation

SD0F k = J∗1HF k−1 + J∗2HF k−2 + ...+ J∗kH.

Rewrite it in as

( S −J∗1 ... −J∗k )V
(k) = 0, (9)

where

V (k) =

D0HF k

HF k−1

...
H

 .

As is known Zhirabok et al. (2017a,b), the condition of
insensitivity to the disturbance ρ(t) is of the form L∗ =
ΦL = 0; it can be shown Zhirabok et al. (2017a,b) that
this condition can be presented in the form

( S −J∗1 ... −J∗k )L
(k) = 0, (10)

where

L(k) =

D0HL D0HFL D0HF 2L ... D0HF k−1L
0 HL HFL ... HF k−2L
... ... ... ... ...
0 0 0 ... 0

 .

Since the row ( S −J∗1 ... −J∗k ) satisfies the condition
(9), it follows from (9) and (10)

( S −J∗1 ... −J∗k )(V
(k) L(k)) = 0. (11)

Equation (11) has a nontrivial solution if

rank(V (k) L(k)) < l(k + 1)− 1.

To construct the model (4) of minimal dimension, find
minimal k for which equation (11) has a solution and find
a solution of (11), then obtain from (8) the matrix Φ, set
C∗ := ΦC, calculate (5), and check the condition

rank

(
Φ

H(j)

)
= rank

 Φ

H(j)

Ai

 , i = i1, ..., ik. (12)

If it is true, set G∗ := ΦG and D∗ := ΦD; the matrices
A∗1i and A∗2i, i = i1, ..., ik, entering in the nonlinear
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function C∗Ψ(x∗,H
(j)x, u), are found from (6). If (12) is

not true, one finds another solution of (11) with former or
incremented dimension k.

As a result, the model (4) takes the form

ẋ∗(t) = F∗x∗(t) +G∗u(t) + J∗Hx(t)

+C∗Ψ(x∗(t),H
(j)x(t), u(t)),

y∗(t) = H∗x∗(t) = R∗y(t),
(13)

3. SLIDING MODE OBSERVER DESIGN

3.1 Problem Solution: the Main Relations

Analogously to He and Zhang (2012), sliding mode ob-
server should be written in the form

˙̂x∗(t) = F∗x̂∗(t) +G∗u(t) + J∗y(t)− J∗Dv(t)

+C∗Ψ(x̂∗(t), y
(j)(t), u(t))−Key(t),

ŷ∗(t) = H∗x̂∗(t).
(14)

Here the matrix K is chosen so that F∗∗ = F∗ −KH∗ to
be stable matrix, the discontinuous vector v(t) is defined
by

v(t) =

 g
Qey(t)

∥Qey(t)∥
, if ey(t) ̸= 0,

0, otherwise,
(15)

ey(t) = ŷ∗(t) − y∗(t) = ŷ∗(t) − R∗y(t) is the output
estimation error; the rules to choose the matrix Q and
positive scalar g are discussed below. Note that since the
matrices F∗ and H∗ are in the canonical form (7), the
matrix K always exists.

Define e(t) = x̂∗(t) − x∗(t); since R∗H = H∗Φ and
R∗D = 0, then

ey = ŷ∗ −R∗y = H∗x̂∗ −R∗(Hx+Dd)
= H∗x̂∗ −R∗Hx+R∗Dd = H∗e.

Based on (13) and (14), one obtains the equation for e(t) :

ė(t) = F∗e(t) + J∗(y(t)−Hx(t))
−J∗Dv(t) + ∆Ψ(t)−Key(t)

= F∗∗e(t) + J∗D(d(t)− v(t)) + ∆Ψ(t),
(16)

where

∆Ψ(t) = C∗(Ψ(x̂∗(t), y
(j)(t), u(t))

−Ψ(x∗(t),H
(j)x(t), u(t))).

Since the function Ψ(x, u) satisfies the generalized Lips-
chitz condition (3) about x, then the function C∗Ψ(x∗(t),
H(j)x(t), u(t)) satisfies this condition about x∗ and

∥∆Ψ(t)∥ = ∥C∗(Ψ(x̂∗(t), y
(j)(t), u(t))

−Ψ(x∗(t),H
(j)x(t), u(t)))∥

≤ N∗∥e(t)∥+M∗

(17)

for some scalars N∗,M∗ ≥ 0. Note that the nonzero value
of M∗ is used to provide existence of sliding motion in the
observer (14) (see the condition (19)). On the other hand,
it is known Edwards et al. (2000) that a sliding motion
takes place forcing e(t) = 0, that is x̂∗(t) = x∗(t), and one
may set here M∗ := 0.

Since the matrix F∗∗ is stable, then for arbitrary symmet-
ric positive defined matrix W there exists the symmetric

positive defined matrix P such that FT
∗∗P + PF∗∗ = −W.

By analogy with He and Zhang (2012), we assume that
there exists the matrix Q so that

PJ∗D = HT
∗ Q

T . (18)

Theorem. If λmin(W ) > 2N∗∥P∥ and scalar g satisfies
the condition

g > ∥d(t)∥+M∗
∥P∥

∥QH∗∥
, (19)

then the sliding motion of system (16) is asymptotically
stable.

Proof. Consider the following Lyapunov function

V (t) = eT (t)Pe(t)

and using (16) find its derivative with respect to time:

V̇ (t) = (F∗∗e(t) + J∗D(d(t)− v(t))
+∆Ψ(t))TPe(t) + eT (t)P (F∗∗e(t)
+J∗D(d(t)− v(t)) + ∆Ψ(t))

= eT (t)(FT
∗∗P + PF∗∗)e(t)

+(J∗D(d(t)− v(t)))TPe(t)
+eT (t)PJ∗D(d(t)− v(t)) + 2(Pe(t))T∆Ψ(t).

(20)

Clearly, there exists positive defined matrix W such that
the first addend in (20) takes the form −eT (t)We(t).

Using (15) and (18), one transforms the expression
(J∗D(d(t)− v(t)))TPe(t) + eT (t)PJ∗D(d(t)− v(t)):

(J∗D(d(t)− v(t)))TPe(t)
+eT (t)PJ∗D(d(t)− v(t))

= 2eT (t)PJ∗D(d(t)− v(t))
= −2eT (t)HT

∗ Q
T v(t) + 2eT (t)HT

∗ Q
T d(t)

= −2geT (t)HT
∗ Q

T Qey(t)

∥Qey(t)∥
+ 2(QH∗e(t))

T d(t)

= −2g(QH∗e(t))
T QH∗e(t)

∥QH∗e(t)∥
+ 2(QH∗e(t))

T d(t)

= −2g∥QH∗e(t)∥+ 2(QH∗e(t))
T d(t).

(21)

Combine the obtained expression with −eT (t)We(t) and
the last addend in (20) 2(Pe(t))T∆Ψ(t) and transform the
result:

V̇ (t) = −eT (t)We(t)− 2g∥QH∗e(t)∥
+2(QH∗e(t))

T d(t) + 2(Pe(t))T∆Ψ(t)
≤ −λmin(W )∥e(t)∥2 − 2g∥QH∗e(t)∥

+2∥QH∗e(t)∥∥d(t)∥+ 2∥P∥∥∆Ψ(t)∥∥e(t)∥
≤ −λmin(W )∥e(t)∥2 − 2∥QH∗∥∥e(t)∥

×(g − ∥d(t)∥) + 2∥P∥∥e(t)∥(N∗∥e(t)∥+M∗)
= −(λmin(W )− 2∥P∥N∗)∥e(t)∥2

−2∥QH∗∥∥e(t)∥

×
(
g − ∥d(t)∥ −M∗

∥P∥
∥QH∗∥

)
< 0;

(22)

one accounts the conditions λmin(W ) > 2N∗∥P∥ and (19)

in the last inequality. Hence V̇ (t) < 0 that completes the
proof.

It is known Edwards et al. (2000) that a sliding motion
takes place forcing ė(t) = e(t) = 0, then (16) implies

0 = D∗(v(t)− d(t)) + ∆Ψ(t).
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Since in sliding motion ∥∆Ψ(t)∥ ≤ N∗∥e(t)∥ = 0 (see
remark after (17)), the function d(t) can be estimated in
the form

d̂(t) = g
Qey(t)

∥Qey(t)∥+ δ
,

where δ > 0 is small scalar. Note that right-hand side of
the last equation depends only on the output estimation
error ey(t) = ŷ∗(t)−R∗y(t).

3.2 Problem Solution: the Second Variant

Consider the case when the jth component of the vector y,
subjected to the fault, enters in the nonlinear term only. In
this case it is suggested to find the approximate solution as
follows. Assume that the function d(t) is sufficiently small,
then

C∗Ψ(x̂∗, y, u) ≈ C∗Ψ(x̂∗,Hx, u) +
∂C∗Ψ(x̂∗, y, u)

∂y
d

= C∗Ψ(x̂∗,Hx, u) + d∗,
(23)

where

d∗ = C∗∗d, C∗∗ =
∂C∗Ψ(x̂∗, y, u)

∂y
.

In this case (14), (16), and (18) should be modified as

˙̂x∗(t) = F∗x̂∗(t) +G∗u(t) + J∗y(t)
+C∗Ψ(x̂∗(t),Hx(t), u(t))− v(t)−Key(t),

ŷ∗(t) = H∗x̂∗(t),
ė(t) = F∗∗e(t) + d∗(t)− v(t) + ∆Φ∗(t),
P = HT

∗ Q
T ,

(24)

respectively, where

∆Φ∗(t) = C∗(Ψ(x̂∗(t),Hx(t), u(t))
−Ψ(x∗(t),Hx(t), u(t))).

(25)

Then (21) results in

−2g2∥QH∗∥e(t) + 2(QH∗e(t))
T d∗(t)

and (22) is modified as follows:

V̇ (t) ≤ −(λmin(W )− 2∥P∥N∗)∥e(t)∥2
−2∥QH∗∥∥e(t)∥

×
(
g2 − ∥d∗(t)∥ −M∗

∥P∥
∥QH∗∥

)
.

Clearly, V̇ (t) < 0 if λmin(W ) > 2N∗∥P∥ and

g2 > ∥d∗(t)∥+M∗
∥P∥

∥QH∗∥
.

Then the function d(t) can be estimated as

d̂(t) = g2(C
T
∗∗C∗∗)

−1CT
∗∗

Qey(t)

∥Qey(t)∥+ δ
.

Note that for some types of nonlinearities one may obtain
exact solution (see Example).

3.3 Problem Solution: the Third Variant

As before, we find the approximate solution. In this case
combination of (14), (16), and (18) results in

˙̂x∗(t) = F∗x̂∗(t) +G∗u(t) + J∗y(t)− v(t)
+C∗Ψ(x̂∗(t), y(t), u(t))−Key(t),

ŷ∗(t) = H∗x̂∗(t),
ė(t) = F∗∗e(t) + C0d(t)− v(t) + ∆Ψ∗(t),
P = HT

∗ Q
T ,

where ∆Ψ∗(t) is given by (25), C0 = J∗D+C∗∗. Then (21)
results in

−2g3∥QH∗∥e(t) + 2e(t)TPC0d(t)

and (22) is modified as follows:

V̇ (t) ≤ −(λmin(W )− 2∥P∥N∗)∥e(t)∥2
−2∥QH∗∥∥e(t)∥

×
(
g3 − ∥d(t)∥ ∥PC0∥

∥QH∗∥
−M∗

∥P∥
∥QH∗∥

)
.

Clearly, V̇ (t) < 0 if λmin(W ) > 2N∗∥P∥ and

g3 > ∥d(t)∥ ∥PC0∥
∥QH∗∥

+M∗
∥P∥

∥QH∗∥
. (26)

Then the function d(t) can be estimated as

d̂(t) = g3(C
T
0 C0)

−1CT
0

Qey(t)

∥Qey(t)∥+ δ
.

3.4 Problem Solution: Special Case

Consider a special case when the nonlinear term in (4)
C∗Ψ(x∗(t),H

(j)x(t), u(t)) does not depend on the variable
x∗(t). Clearly, the equation (16) becomes linear due to
∆Ψ = 0, and a solution is simplified. Really, construct
sliding mode observer in the form

˙̂x∗(t) = F∗x̂∗(t) +G∗u(t) + J∗y
(j)(t)

+Ψ∗(y
(j)(t), u(t)) +D∗v(t)−Key(t),

ŷ∗(t) = H∗x̂∗(t),
(27)

where the matrixK is chosen such that F∗∗ = F∗−KH∗ to
be stable matrix, the discontinuous vector v(t) is defined
by (15), the function Ψ∗(H

(j)x, u) by assumption depends
only on the variables y(j) = H(j)x and u, the matrix Q
and scalar g are chosen as above. Note that if C∗ = 0, the
observer (27) does not contain the nonlinear term.

Then the equation for e(t) takes the form

ė(t) = F∗e(t) +D∗(v(t)− d(t))−Key(t)
= F∗∗e(t) +D∗(v(t)− d(t)).

It can be shown that the sliding motion of system (16) is
asymptotically stable if g > ∥d(t)∥ since N∗ = M∗ = 0 in
(19).

There are two sufficient criteria of independence of non-
linear term C∗Ψ(x∗, y, u) of the variable x∗ based on (12):
1) each row Ai linearly depends on rows of the matrix H(j)

which is equivalent to

rank(H(j)) = rank

(
H(j)

Ai

)
, i = i1, ..., ik;

2) if some row Ai does not depend on rows of the matrix
H(j), then ith row of the matrix C∗ is equal to zero.

When the jth component of the vector y, subjected to the
fault, is in the nonlinear term only, the condition above is
replaced by

rank(H) = rank

(
H
Ai

)
, i = i1, ..., ik. (28)
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4. EXAMPLE

Consider the control system

ẋ1 = u/ϑ1 − a4
√
x1 − x2,

ẋ2 = a4
√
x1 − x2 − a5

√
x2 − x3,

ẋ3 = a5
√
x2 − x3 − a6

√
x3 − ϑ7,

y1 = x1, y2 = x2,

(29)

where a4 = ϑ4

√
2ϑ8/ϑ1, a5 = ϑ5

√
2ϑ8/ϑ2, and a6 =

ϑ6

√
2ϑ8/ϑ3.

The equations (29) constitute a model of the example of
three tank system (Patton and Chen (1991)). The system
consists of three consecutively united tanks with areas of
the cross-section ϑ1, ϑ2, and ϑ3. The tanks are linked by
pipes with areas of the cross-section ϑ4 and ϑ5. The liquid
flows into the first tank and follows from the third one
through the pipe with area of the cross-section ϑ6 which is
located at height ϑ7; ϑ8 is the gravitational constant. The
levels of liquid in the tanks are x1, x2, and x3, respectively.
Assume for simplicity that ϑ1 = 1 and ϑ7 = 0.

Clear, F = 0 in the model (1). To overcome this difficulty,
transform the initial equations by entering formal addends
−(x1 − x2) + (x1 − x2), (x1 − 2x2 + x3)− (x1 − 2x2 + x3),
and (x2 − 2x3)− (x2 − 2x3) in the first, second, and third
equations, respectively. As a result, the system is described
by matrices and nonlinearities as follows:

F =

(−1 1 0
1 −2 1
0 1 −2

)
, G =

(
1
0
0

)
, H =

(
1 0 0
0 1 0

)
,

Ψ(x, u) =

 −a4
√
A1x+A1x

a4
√
A1x− a5

√
A2x− (A1x−A2x)

a5
√
A2x− a6

√
A3x− (A2x−A3x)

 ,

C =

(
1 0 0
0 1 0
0 0 1

)
, D1 =

(
1
0

)
, D2 =

(
0
1

)
, L = 0,

A1 = (1 − 1 0), A2 = (0 1 − 1), A3 = (0 0 1),

Consider the fault in the second sensor where D0 = (1 0).
Equation (11) with k = 1 takes the form

(S − J∗) =

(−1 1 0
1 0 0
0 1 0

)
and has a solution S = 1, J∗ = (−1 1). As a result,
R∗ = (1 0), Φ = (1 0 0), G∗ = (1 0), and C∗ = (1 0 0).
It can be shown that the condition (12) is satisfied for A1

contained in C∗Ψ(x, u) and A∗1 = (0 0 1 −1). As a result,
the model (13) is of the form

ẋ∗ = −(H1x−H2x) + u− a4
√
H1x−H2x

+H1x−H2x = u− a4
√
H1x−H2x,

y∗ = x∗ = y1.

?

-

u

Fig. 1. Three-tank system

Since A1 satisfies the condition (28) and H∗ = 1, one may
set P = Q = 1 based on (24). Sliding mode observer is
described by

˙̂x∗ = u− a4
√
y1 − y2 − v − bey,

ŷ∗ = x̂∗ = y1,
(30)

where b > 0, ey(t) = ŷ∗(t)− y1(t) = e(t) = x̂∗(t)− x∗(t),

v(t) =

 g
ey(t)

∥ey(t)∥
, if ey(t) ̸= 0,

0, otherwise,

g > ∥d2(t)∥; clearly, N∗ = M∗ = 0.

Note that nonlinearity ”square root” allows to obtain exact
solution. Write down the express for the error e:

ė = ˙̂x∗ − ẋ∗
= u− a4

√
y1 − y2 − v − bey − (u− a4

√
H1x−H2x).

Since y1 = H1x and y2 = H2x+ d2, then

ė = −a4
√
y1 − y2 − v − bey + a4

√
y1 − y2 + d2.

A sliding motion takes place forcing ė(t) = e(t) = 0, then

0 = a4
√
y1 − y2 − v − a4

√
y1 − y2 + d2

and
y1 − y2 + d2 =

(√
y1 − y2 + v/a4

)2
.

As a result, the function d2(t) can be estimated as

d̂2(t) = 2
√
y1(t)− y2(t)

v(t)

a4
+

(
v(t)

a4

)2

.

It can be shown that D0 = (0 1) for the fault in the first
sensor and

ẋ∗1 = a4
√

H1x−H2x− a5
√

H2x− x∗2,

ẋ∗2 = a5
√

H2x− x∗2 − a6
√

x∗2 − ϑ7.

SinceH∗ = (1 0)T , there is no exist the matrixQ to obtain
symmetric positive define matrix P , and the function d1(t)
cannot be estimated by the suggested method.

For simulation, consider system (29) and the observer (30)
with the control u(t) = sin(t). The fault is presented by
signal d2(t) = sin(πt − 2π) on time intervals t = 4 ÷ 8 c.
Simulation results are shown in Figs. 2 and 3. Figs. 2 and

3 show behavior of the estimation d̂2(t) and the estimation

error d̂2(t)− d2(t).

5. CONCLUSION

In this paper, the problem of sensor fault identification
in technical systems described by nonlinear models under
the disturbance is solved using methods using sliding mode
observers. In contrast to the known methods, sliding mode
observer is constructed based on the reduced order model
of the initial system that allows to extend a class of systems
for which sliding mode observer can be constructed and
the problem without conditions imposed in known papers.
Future research direction is constructing adaptive sliding
mode observers for sensor fault identification.
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