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Abstract: With the rapid development of prognostics and health management (PHM),
the prognostic of the remaining useful life (RUL) is gradually being used for performance
management and optimization. The aerospace industry is particularly in need of this, for
instance, the remaining life expectancy of aircraft engines is of great significance to guarantee
the safety and reliability. However, it is hard to establish the physical model of aircraft
engines with the complex degradation process, which motivates the data-driven solution to
RUL prediction. In this paper, a data-driven RUL prognostic approach is proposed for aircraft
engines. Key performance indicators are extracted from sensor variables through principal
component analysis. The summation wavelet-extreme learning machine is used to predict
the KPIs’ degradation process by iterative method, and then KPIs’ degradation states are
determined by subtractive-maximum entropy fuzzy clustering to calculate the RUL of engines.
To validate the prediction model, aircraft engine degradation data are used for model simulation.
Compared with other algorithms, the proposed method delivers superior prediction performance.

Keywords: Remaining useful life, Data-driven, Summation wavelet-extreme learning machine,
Iterative prediction, Clustering

1. INTRODUCTION

In recent years, PHM for aircraft engines have become
more and more popular with researchers, aiming to provide
early warning of faults, extend system life and diagnose
intermittent faults. In general, RUL prognostic meth-
ods can be divided into the following categories: model
based, data-driven and hybrid model based prognostic
method (Li et al. (2018)). Currently, model-based prog-
nostics methods mainly include particle filtering (Jouin
et al. (2016)), Weibull distribution (Ali et al. (2015)), re-
duced order sliding mode observer (Yang and Yin (2019)),
etc. Data-driven methods include hidden markov models
(Zhang et al. (2005)), recurrent neural networks (Yam
et al. (2001)), support vector machines (Gebraeel et al.
(2004)), etc. For RUL prediction, the following issues have
to be considered: (1) the quantity, type and quality of the
required data, (2) the impact of noise on the data, (3) the
number of fault modes that can be handled, (4) whether
new fault types can be handled (Sikorska et al. (2011)).
As for aircraft engine systems, it is hard to implement
the model based prognostic method due to the inherited
complex degraded processes such as nonlinearity, random-
ness and non-stationarity (Xu et al. (2013)). Fortunately,
there are many reliable sensors installed on the engines for
data collection, based on which the fault information can
be provided by real-time monitoring (Yin et al. (2019)).
Therefore the data-driven methods can model the system’s
failure mechanism well, and provide better and RUL pre-
diction performance (Yin et al. (2016)).

Currently, data-driven RUL estimation methods can be
divided into two groups(Si et al. (2011)): (1) Direct RUL

prognostic. The method can directly predicts the value
of RUL based on the input data. In Yuan et al. (2016),
the LSTM is used to directly predict the RUL of aircraft
engines. However, It doesn’t reveal the degradation pro-
cess well, and predicted results relie largely on smooth
and monotonic features. (2) Variable degradation based
prognostic. In the method, the key performance indicators
(KPIs) obtained by feature extraction can well character-
ize the degradation. RUL can be calculated by determining
when the predicted KPIs reach the thresholds.

Since the prediction process of the second method is
more intuitive and persuasive, this paper makes RUL
prediction based on this method. A large number of sensor
data of engines could generate redundant information,
which could increase the computation load or affect the
prognostics results. Therefore, there are two key questions:

(1) How to extract features and build the degradation
model?

(2) How to exploit multiple features to judge system
degraded states?

In order to solve these problems, a data-driven RUL prog-
nostic approach, based on and summation wavelet-extreme
learning machine (SW-ELM), is proposed in this paper.
The main contribution of this paper can be summarized
in the following 3 aspects:

• To reduce the data dimension and obtain useful fea-
tures, principal component analysis (PCA) is adopted
for feature extraction;

• To accelerate the computation and improve the pre-
diction accuracy, SW-ELM is used to model the
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degradation process of the engine, and the iterative
prediction method is adopted to achieve the long-term
prediction of degradation process;
• The degradation states of the engines can be deter-

mined by subtractive-maximum entropy fuzzy clus-
tering (S-MEFC). Failure thresholds obtained by S-
MEFC can be used to determine when the KPIs’
prediction process ends.

The rest of this paper is organized as follows. Section II
proposes the RUL prediction model for aircraft engines
which contains feature extraction, degradation prediction
model, multi-step prediction and threshold-based degra-
dation state estimation. Section III validates the proposed
model on aircraft engines data. Section IV concludes the
work.

2. RUL PREDICTION MODEL

2.1 Feature Extraction

Sensor degradation data of aircraft engines are mainly
divided into two trends: 1) the growing trend 2) the
attenuation trend. To obtain representative features, PCA
can be used to perform dimensionality reduction for two
kind of sensor data respectively. The principal component
with an information retention rate of over 90% can be
used as the key performance indicator (KPI) for engine
degradation. Finally, two KPIs obtained can be used to
characterize the degradation process. KPI1 is increasing
over time, while KPI2 is decreasing.

2.2 Degradation Prediction Model

To describe the degradation process of the engines well, it
is important to find a suitable prediction model. Many
studies have shown that multi-layer feedforward neural
networks have better general approximation ability. How-
ever, the networks have the disadvantages of easy con-
vergence to local minimum and slow learning process.
Motivated by this, some researchers have proposed an
improved model called SW-ELM (Javed et al. (2014)) (see
Fig.1) that is based on Extreme Learning Machine (ELM)
(Huang et al. (2004)). It only needs a batch learning for
the training process, and has fast learning speed with good
generalization performance.

The characteristics of SW-ELM are summarized as follows:

(1) Each node of the hidden layer contains two different
activation functions: f1 and f2. The node output is the
average of dual functions f̄ = (f1 + f2)/2.

f1 = θ(X) = log[x+
√

1 + x2] (1)

f2 = φ(X) = cos(5x) · e−0.5x
2

(2)

(2) To provide a suitable initial state for the SW-ELM, two
parameter initialization methods are used here. The first
one is the wavelet heuristic adjustment (Oussar and Drey-
fus (2000)). The scaling and translation values are adjusted
according to the interval of input data. This initialization
method ensures that the activation function f2 covers the
whole input data. The second one is the Nguyen-Widrow
initialization method (Nguyen and Widrow (1990)). It
can determine the parameters (weights and biases) of the
input-hidden layer by the range of the input data.

Fig. 1. Structure of SW-ELM (Javed et al. (2014))

The detailed implementation of SW-ELM can be referred
to Javed et al. (2014). In this paper, SW-ELM is used to
predict the value of the next moment of a KPI. Therefore,
the input of SW-ELM is a piece of KPI data before time
t, and the output is the value of a KPI at time t. The
parameters of the input-hidden layer can be initialized by
the method of Nguyen and Widrow (1990). The relation-
ship between the hidden-output layer can be formulated
in the following matrix

Havgβ = T (3)

where Havg, obtained by input data of training set, is
the output matrix of the hidden layers. T is the target
matrix of predicted data. Every row vector of Havg and
T correspond to an instance of the training data. β is the
weight parameter of the hidden-output layer. Therefore,
based on train set of a KPI, the least squares solution for
β can be given as follows

β̂ = H†avgT = (HT
avgHavg)−1HT

avgT (4)

Algorithm 1 The Procedures of SW-ELM

Input: Train data, the number of nodes

Output: w, b, β̂
1: Slice time series of a KPI for model training
2: Initialize the network parameters by Oussar and Drey-

fus (2000); Nguyen and Widrow (1990)
3: Calculate H†avg
4: Obtain β̂ by (4)

It should be noted that KPIs’ data need to be first nor-
malized to the interval [0,1] by min-max standardization.
What’s more, before training a KPI’s SW-ELM model,
a time sliding window needs to be used to slice the time
series of the KPI to obtain the input data of the model, and
the next data of the time window is used as the predicted
data. After trained, SW-ELM can be used to predict their
value of next moment through inputing a time series of
two KPIs respectively.

2.3 Multi-step Predictions

Due to the need for the long-term prediction of the engine
degradation process, it is necessary to predict KPIs in mul-
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tiple steps. Five long-term prediction methods proposed in
Gouriveau and Zerhouni (2012) include iterative, parallel,
direct, multiple-input several multiple-outputs and DirRec
prediction. Among them, the iterative method is the most
common and convenient one. It takes the predicted value
of the previous moment as the input of the next-time pre-
diction process. Due to its easy implementation with fewer
constraints, the iterative multi-step prediction method is
adopted in this paper. The schematic diagram is shown in
Fig.2. {f1, [θ1]} represents a SW-ELM prediction model,
p is the length of the input data.

Fig. 2. Iterative model (Gouriveau and Zerhouni (2012))

Based on SW-ELM prediction model, the iterative multi-
step prediction method is used to obtain predicted values
of two KPIs over a long period of time.

2.4 Threshold-based Degradation State Estimation

The collected sensor data are time series data without
labels during the engine life cycle. To cope with this prob-
lem, unsupervised classification methods can be used to
classify unlabeled data, and the clustering results are then
used to judge the degradation state of the system. In this
paper, KPIs are clustered according to an unsupervised
classification algorithm called subtraction-maximum en-
tropy fuzzy clustering (S-MEFC) proposed in Javed et al.
(2013). The algorithm firstly obtains the initial clustering
center by subtractive clustering, and then optimizes the
initial clustering center by Li and Mukaidono (1995). S-
MEFC is summarized in Algorithm 2

Since the two KPIs are monotonic during degradation
of the engine, the last class can be considered as the
fault state (see Fig.3(a)). After obtaining the cluster
centers, this paper proposes a novel method to judge
whether predicted data of KPIs could reach the fault state.
According to the conservative estimation strategy, when
one of the KPIs reaches the corresponding failure threshold
in Fig.3(b), the prediction process is terminated and the
RUL can be calculated.

2.5 RUL Prediction Model

By summarizing the above methods, the RUL prediction
model of aircraft engines can be built. The algorithmic
process of the predictive model is shown in Algorithm 3.
Its schematic diagram is shown in Fig.4. It shuold be noted
that the two SW-ELMs are respectively used to predict
the multi-step values of two KPIs by iterative prediction
method. In this process, prediction and judgment are
carried out simultaneously. In other words, after the values

Algorithm 2 The Procedures of S-MEFC

Input: Training data of KPIs, fuzzy parameters σ and
end threshold ε

Output: Cluster centers V new

1: Acquire c cluster centers by subtractive clustering
V old = {V old

j }cj=1(Chiu (1994))
2: Compute membership matrix U (Li and Mukaidono

(1995))

µij =
e
−D2

SEij /2σ2∑c
k=1 e

−D2
SEik /2σ2

∀i, j (5)

where D2
SEij

and D2
SEik

are the squares of the Eu-

clidean distance from the i-th point to the j-th point
and the k-th cluster center, respectively.

3: Adjust cluster centers

V new
j =

∑N
i=1 µij · xi∑N

i=1 µij

∀j (6)

4: Repeat Step 2 and Step 3 until the end condition is
met

‖ vnew − vold ‖< ε (7)

(a) Clustering diagram (b) The judgment process

Fig. 3. Threshold-based degradation state estimation

of KPIs are predicted at one moment, the prediction
process should be stopped if one of predicted data of KPIs
reaches the corresponding failure threshold.

Therefore, for a given piece of sensor data before time t,
the model can obtain the KPIs by PCA, then use SW-
ELMs to predict the system’s degradation process, and
finally give the RUL of the system at time t.

Algorithm 3 RUL Prediction Model

Input: Train set and test set
Output: RUL of engines
1: Preprocess data and obtain train and test data of two

KPIs.
2: Train a SW-ELM model for two KPIs respectively

after slicing the training data.
3: Cluster the training data and obtain failure thresholds

for KPIs.
4: Provide one engine’s initial time series of KPIs during

testing.
5: Use trained SW-ELMs to predict KPIs’ degradation

data by iterative method and determine when the
predicted data reache the failure thresholds.

6: Calculate the RUL of the engine.
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Fig. 4. RUL prediction model

3. EXPERIMENTS

3.1 Data Introduction

The aircraft engine degradation data (Saxena et al.
(2008)), provided by NASA, is used to verify the proposed
method. These data are generated by simulating turbofan
engines degradation process. In this paper, the dataset
from the first failure mode (FD001) includes 21 kinds of
sensor data for the life cycle of the engines with different
initial conditions. The training data contain complete life
cycle data of 100 engines fault evolutions, while the test
data only give initial evolution data for 100 engines over
a period of time. In addition, the RULs of engines cor-
responding to the test data are provided for comparative
analysis of the final predicted results.

3.2 Data Preprocessing

Firstly, all sensors are numbered from 1 to 21, and then the
data are filtered with moving average filter of 50 lengths
to reduce the noise impact. In order to select variables
with clear trends of change, these sensor variables are
selected with the standard deviation greater than 0.01.
In general, the sensor variables of engines with a certain
trend can indicate the degradation process well. However,
some variables are sometimes increasing and sometimes
decreasing, which could have a bad impact on prediction
process. Therefore, based on their trend statistics in train
set, these variables should be removed with two trends.
Finally, the sensor variables, numbered 2, 3, 4, 7, 8, 11,
12, 13, 15, 17, 20, 21, are screened out. They are used to
calculate the values of two KPIs.

3.3 Prediction Results

After feature extraction, the information retention rates
can reach over 95% for the principle components of two
types of sensor data, which can verify that the two KPIs
can be used to characterize the degradation process. All
parameters are shown in Table 1. Note that ns is (in-
put,hidden,output nodes) for SW-ELM. It shows that SW-
ELM can predict a KPI of the next moment through a KPI
time series of length 26, and ns of the two KPIs’ SW-ELM
are the same. The others are parameters of S-MEFC. The
clustering results can be obtained by clustering two KPIs
of 100 engines of train set (see Fig.5). KPI1 is monotoni-
cally decreasing over time, while KPI2 is opposite. In the

figure, these clusters can be distinguished well. Therefore,
the last cluster center in the lower right corner can be set
as the failure thresholds that are 5.6557 and -4.0773.

Table 1. Parameter list

Parameters ns ra σ ε

Values (26,43 1) 0.78 0.68 0.1
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Fig. 5. Cluster results

The RUL prediction process for the 9th test engine is
shown in Fig.6. When KPI2 reaches its threshold, degra-
dation prediction process is terminated and then the RUL
is equal to the length of the predicted data.
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Fig. 6. The prediction process of 9th test engine

3.4 Result Analysis

The trained model is used to predict the RULs of 100
test engines. The predicted results are shown in Fig.7.
It is obvious that the model can deliver accurate RUL
prediction for most engines. In addition, when the real
RUL is small, the prediction result is more accurate. This
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Fig. 7. The predicted RUL of 100 test engines

is because the error caused by the iterative process will be
smaller for RUL prediction of a short-life engine.

To evaluate the prediction results, an evaluation indicator
was proposed in Saxena et al. (2008). In general, the score
increases exponentially with the increasing error, the trend
can be approximately described by the following scoring
functions.

s =


n∑

i=1

e
−
(

d
a1

)
− 1 when d < 0

n∑
i=1

e

(
d
a2

)
− 1 when d ≥ 0

(8)

where s is the score and n is the number of test engines,

d = t̂RUL − tRUL (predicted RUL − real RUL), a1 = 13,
a2 = 10. In addition, the common evaluation indicator for
predictive models is as follows.

R2 = 1−

∑
i

(
RULi − R̂ULi

)2
∑

i

(
RULi −RULs

)2 (9)

where RULi is the ith predicted RUL, R̂ULi is the real
RUL. RULs is the average of the real RUL. The closer R2

is to 1, the better the model predictive performance is.

The results of two papers can be used for comparative
analysis here. In Ramasso et al. (2012), an EVIPRO-KNN
algorithm was used to predict RUL but without a score
curve. In Javed et al. (2015), predictability based features
selection was used to improve predictive performance
with a score curve (see Fig.8(a)). The score curve of the
proposed method is compared with the one in Javed et al.
(2015) (see Fig.8(b)). As can be seen from Fig.8, the
prediction errors of proposed model is more concentrated
around zero. More importantly, it has fewer positive errors
and smaller maximum positive error. The positive error
indicates that the predicted value is greater than the true
value. If this condition always happens, it could affect
management’s early maintenance for the engine and cause
more serious consequences. Therefore, this proposed model
has better security.

Moreover, other evaluation indicators are shown in Table
2. Note that paper1 and paper2 represent Ramasso et al.
(2012) and Javed et al. (2015), respectively. It can be
found that the error interval of the proposed model in
this paper is significantly smaller. Compared with paper2,
the total score of the proposed model can be reduced by
half, and its R2 is higher. These show that the prediction

(a) Method by Javed et al.
(2015)
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Fig. 8. Scores for 100 test engines

results of the proposed model are more accurate. In addi-
tion, compared with paper2’s time consumption of several
minutes, the model is able to complete the operation in
seconds, which shows that the model has better real-time
performance. Therefore, these analysis results can prove
that the proposed novel model can deliver better predictive
performance with faster computation speed.

Table 2. Analysis of prediction results

Criteria paper1 paper2 this paper

Interval of RUL errors [-85,120] [-39,60] [-49,48]
Total score None 1046 515

R2 None 0.641 0.807
Time None 3m 54sec 6sec

In order to further determine the stability of the prediction
model, this paper conducted 10 tests on the prediction
model and evaluated the prediction results according to
the scoring function. The scores are shown in Fig.9. It
can be seen that the total scores are within the interval
[500,800] and the fluctuation range is about 300 points.
The scores would change greatly with small error fluctua-
tions because the scoring function is exponentially related
with the prediction error. Therefore, in fact, the fluctua-
tion of the prediction error is not obvious. The proposed
model can deliver stable prediction results.

4. CONCLUSION

In this paper, an SW-ELM based remaining useful life
prognosis approach is proposed for aircraft engines. Firstly,
two KPIs are extracted from sensor data by PCA. Then
a series of methods are used to predict the degradation
process of system KPIs and the value of RUL, such as
SW-ELM, iterative prediction and S-MEFC. Finally, the
prediction model was tested using turbofan engine data
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from PHM challenge 2008. Compared with the simulation
results from other literatures, it can be proved that the
proposed model can deliver superior prediction perfor-
mance with faster computation and higher stability.

In future work, other feature selection or extraction meth-
ods can be considered, such as recursive feature elimina-
tion can be used to screen out more important variables.
Furthermore, deep learning methods can be considered for
variable degradation based RUL prognostic in the future.
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