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Abstract:
Heteroplanar active magnetic bearings have numerous applications, where one example is a high-
temperature gas-cooled reactors. Rotor imbalance, however, may cause problems for critical parts of
the system in the form of repetitive periodic vibrations. This is known problem and periodic component
extraction is widely used in active magnetic bearing unbalance control laws. More recently, iterative
learning control has been considered as an alternative and this paper gives new results on this approach.
In particular, a new control law in the 2D systems setting is developed and the results of a simulation
based study using the model of a test rig are given, where such a study is an essential step prior to
experimental validation.

1. INTRODUCTION

An active magnetic bearing (AMB) provides has advantages
for rotational machines such as reduced maintenance, high ro-
tational speed, low wear and long life-time (Schweitzer and
Maslen, 2009). There are different types of AMB models and
one way to classify them is by division into current- and
voltage-controlled models. Current-controlled models are often
used in industrial applications, since they are easier to control.
Voltage-controlled models are more accurate and preferred in
some applications for reasons such as: higher overall robust-
ness, very low stiffness values and a simpler power amplifier
architecture. Although voltage-controlled models need more
complex control laws, but improved performance should be
obtained, even in the presence of large disturbances.

Features of this form of bearing that degrade performance in-
clude mass imbalance, sensor runout, an asymmetrical circuit
and misalignment of the geometric centers between the rotor
and the stator. The result can be asymmetrical magnetic forces
produced by the active magnetic bearing, which could eventu-
ally lead to repetitive periodic rotor vibrations. Moreover, the
application of feedback control action alone is also known to
be problematic in at least some applications.

A considerable volume of literature exists on the problem
of controlling the unbalance characteristic in active magnetic
bearings. The performance of these bearings is also influenced
by non-periodic disturbances and as a result most unbalance
control designs must extract the periodic components from the
rotor displacement signal by either direct or indirect means,
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which, in turn, is costly from a signal processing standpoint. In
particular, the process of extracting the periodic components is
difficult and hence applying rotor unbalance control is difficult.

The presence of repetitive disturbances in this application area
strongly suggests that iterative learning control (ILC) may be
applied to advantage. Previous research on the use of ILC
in active bearings area includes (Zheng et al., 2020) with
supporting experimental results. In this previous research the
analysis is based on a discrete linear system sample varying
model of the dynamics but for the experimental results the
bearing dynamics are modeled by a continuous-time transfer-
function with a pair of purely imaginary complex conjugate
poles, i.e., simple harmonic motion.

The overall control scheme in (Zheng et al., 2020) applies a
Proportional plus Integral plus Derivative (PID) control loop
first and then applies ILC to the resulting controlled dynamics,
i.e., a two step design. An alternative approach is to treat the
design problem in the 2D systems setting, i.e., systems that
propagate information in two independent directions and hence
variables are described in terms of two indeterminates. This
approach forms the basis for the results in this paper.

Throughout this paper, the null and identity matrices of com-
patible dimensions are denoted by 0 and I respectively. Also,
a symmetric positive definite (respectively negative definite)
matrix, say M, is denoted by M � 0 (respectively M ≺ 0)
and the spectral radius of a matrix is denoted by ρ(·).
This paper begins in the next section with the model of the
bearing system considered and then the following section gives
the necessary background on the ILC analysis used in this
paper. Section 3 details the control law design and Section 4 the
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results of a simulation-based evaluation of performance when
applied to a particular bearing. Finally, an objective overview
of the progress reported in this paper is given in the concluding
section together with discussion of planned future research.

2. BACKGROUND – THE SYSTEM CONSIDERED

The physical system considered in this paper is shown in the
schematic diagram of Fig. 1. Various possibilities exist for the

Fig. 1. Schematic of the AMB.

control of AMB dynamics, where the commonly considered
approaches are based on either voltage or current actuated
models. Moreover, the former is more precise than the latter.
Voltage actuated control is considered in this paper, which
is achieved by using a model of the dynamics where the
coil current is taken as a state variable rather than the input.
The linearized voltage-controlled AMB model is 3rd order
dynamics as given next.

Suppose that the state variables are x1, x2 and x3 representing,
respectively, the rotor position [m], the rotor speed [m/s] and
the coil current [A]. Also set x = [ x1 x2 x3 ]

T . Then the state-
space model of the dynamics to be controlled is

ẋ(t) = Ãx(t) + B̃u(t),

y(t) = C̃x(t),
(1)

where u(t) is the input voltage and

Ã=



0 1 0

2ks
m

0
2k1
m

0 − ki
Ls + Lo

− R

Ls + Lo


,

B̃ =

 0
0
1

Ls + Lo

 ,
C̃ = [ 1 0 0 ] .

Table 1 defines the parameters in this model together with the
values used in the simulation case study given later in the paper.

3. ILC DESIGN

3.1 Preliminaries

Many systems repeatedly perform the same task of finite dura-
tion, after which the system is returned to the initial location.

Table 1. Values and descriptions of parameters

Symbol Value Physical description
s0[m] 0.0004 air gap
m[kg] 2.5 mass of the rotor

in the bearing plane
Lo[H] 0.0025 coil inductance
Ls[H] 0.0005 coil inductance losses
R[Ω] 0.5 coil resistance
N 108 number of turns of wire

in the coil
µ0[H/m] 1.25 × 10−6 permeability of free space
A[m2] 0.0014 cross sectional area of

air gap
ki[N/A] 15.625 current stiffness
ks[N/m] 97656.25 displacement stiffness

Each execution of the task is known as a trial or pass or itera-
tion, where in this paper trial is exclusively used. The duration
of each trial is termed the trial length. A typical example is a
robot performing a ‘pick and place’ operation, i.e., i) collect a
payload from a fixed location, ii) transfer it over a finite dura-
tion, iii) place it on a moving conveyor (under synchronization),
iv) return to the original location to collect the next payload and
then repeat i)-iv) for as many trials as needed or until a halt is
required for maintenance or other reasons. It was applications
such as this one that motivated the initial ILC research.

The earliest research on ILC is widely credited to (Arimoto
et al., 1984) and focused on robotic applications. Since this
early work, ILC has remained a very active research area both
in terms of terms of theory/algorithm development and appli-
cations. The survey papers (Bristow et al., 2006) and (Ahn
et al., 2007) are possible starting points for the earlier litera-
ture. More recent application areas include additive manufac-
turing (Sammons et al., 2019), center-articulated industrial ve-
hicles (Dekker et al., 2019) and in healthcare, see, e.g. (Sakariya
et al., 2020; Seel et al., 2016).

In ILC there is information propagation from trial-to-trial and
along the trials. In this paper the nonnegative subscript k on a
scalar or vector variable denotes the trial number and such a
variable for discrete dynamics is written as yk(p), 0 ≤ p ≤ α−
1, where α denotes the number of samples along the trial and
if the sampling period is Ts then α × Ts gives the trial length.
Hence the dynamics of a discrete linear time-invariant system
in the ILC setting is described by the state-space model

xk+1(p+ 1) = Axk+1(p) +Buk+1(p),
yk+1(p) = Cxk+1(p) +Duk+1(p),

(2)

where xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the trial
profile vector and uk(p) ∈ Rr is the control input vector.

Let yref (p) be a possibly vector-valued reference representing
the desired output behavior and denote the system output on
trial k as yk(p), 0 ≤ p ≤ α− 1, k ≥ 0. Then the error on trial
k is

ek(p) = yref (p)− yk(p). (3)
The control design problem is to construct an input sequence
{uk} that when applied forces the error sequence {ek} to
converge in k, i.e.,

lim
k→∞

||ek|| = 0, lim
k→∞

||uk − u∞|| = 0, (4)

where || · || is a signal norm in a suitably chosen function
space with a norm-based topology and u∞ is termed the learned
control. As the trial length is finite, convergence in k can occur
for unstable systems, i.e, ρ(A) ≥ 1 in (2).
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Once a trial is complete all information generated during its
evolution is available for use in designing the control input for
the next trial and thereby improve performance from trial-to-
trial. Hence a commonly used form of an ILC law is

uk+1(p) = uk(p) + ∆uk+1(p), (5)

where ∆uk+1(p) is the correction term to be designed. Given
that all previous trial is available the ILC law on trial k + 1
can access information from any sample instant on the previous
trial, e.g., at sample instant p previous trial data at, say, sample
instant p+1 can be used. The feature is sometimes termed ‘non-
causal’ in the ILC literature and it can be shown that if such data
is not used, i.e., at sample instant p on trial k+1 the control law
only uses information at sample instant p,then the ILC law can
be replaced by a standard feedback control loop.

If the dynamics along the trial are discrete then a commonly
used setting for design is based on a form of lifting. Consider
without loss of generality the single-input single-output case
and focus on the trial output. Then the so-called supervector
representation of this variable is formed by placing the sample
values in turn as the entries in an α × 1 vector. Repeating
this step for all other variables, the trial-trial error updating
is represented by a standard difference equation, providing a
setting for analysis and design based on standard discrete linear
systems theory and design algorithms. This setting for discrete
dynamics has been extensively used with many designs leading
through to experimental validation and actual application, see,
e.g., the survey papers by (Bristow et al., 2006; Ahn et al., 2007)
are possible starting points for the literature.

As discussed above, an ILC system can converge from trial-
to-trial even if the system is unstable. In lifting based de-
sign, the only option is to design a pre-stabilizing feedback
control loop and then apply the ILC design to the resulting
controlled dynamics. This is a two stage design procedure and
also problems arise in robust control design as product terms
arise formed by matrices from the nominal model state-space
matrices and those describing the uncertainty description, .e.g.,
norm bounded or polytopic, used.

An alternative setting for ILC analysis and design is to use
2D systems theory, where the two directions of information
propagation is from trial-to-trial (k) and along the trial (p). The
first work on this approach is usually credited to (Kurek and
Zaremba, 1993). This work used the Roesser model (Roesser,
1975), whose domain of operation is the complete upper-right
quadrant of the 2D plane, i.e., (k, p) ∈ [0,∞]× [0,∞].

Repetitive processes are another class of 2D systems that make
a series of sweeps, termed trials, also termed passes in some
of the literature, through dynamics that are defined over a
finite duration, which is known as the trial length. The output
produced on each trial is termed the trial profile. On completion
of a current trial, the process resets to the starting location and
the next trial can begin, either immediately or after some further
time has elapsed. The trial profile produced on the previous trial
contributes to current trial dynamics and it is the finite duration
of the trial length that is particularly relevant to ILC analysis.

Let {yk} denote the sequence of trial profiles generated by a
repetitive process. Then this sequence can contain oscillations
which increases in amplitude from trial-to-trial. Moreover, this
unwanted behavior cannot be regulated by standard control
action, e.g., static state or output feedback control activated,
respectively, by the current trial state or trial profile vector.

Instead, this must be augmented by a term activated by previous
trial information, i.e., repetitive processes are a class of 2D
systems and therefore require a 2D control law.

Discrete linear repetitive processes are described by the follow-
ing state-space model over 0 ≤ p ≤ α− 1, k ≥ 0,

xk+1(p+ 1) = Axk+1(p) + Buk+1(p) + B0yk(p),
yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p),

(6)

where on trial k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm
is the trial profile vector and uk(p) ∈ Rr is the control input
vector.

The stability theory for linear repetitive processes (Rogers et al.,
2007) is based on an abstract model of the dynamics in a
Banach space setting that includes all examples as special cases.
Given the unique control problem, this theory requires that a
bounded initial trial profile is required to produce a bounded
sequence of trial profiles {yk}, where bounded is defined by
the norm on the associated signal space. This property can be
imposed over the finite and fixed trial length or uniformly, i.e.,
independent of the trial length, where this last property can be
analyzed mathematically by considering α→∞ and is termed
stability along the trial.

In many applications the stronger stability property must be
imposed and the following result characterizes stability along
the trial of examples described by (6).
Lemma 1. (Rogers et al., 2007). A discrete linear repetitive
processes described by (6) is stable along the trial if and only
if (i) ρ(D0) < 1, (ii) ρ(A) < 1, and (iii) all eigenvalues of
G(z) = C(zI − A)−1B0 + D0 have modulus strictly less than
unity for all |z| = 1.

Condition (ii) in this result requires frequency attenuation the
complete spectrum of the previous trial profile and this may
be restrictive in control design in many cases. This, in turn,
has led to the use of sufficient conditions developed through
the use of Lyapunov functions with computations that can be
implemented using Linear Matrix Inequalities (LMIs) and this
is the method used in the remainder of this paper.

Asymptotic stability for the processes considered holds if and
only if the first condition of this last result holds. This will en-
force convergence in k of the sequence {yk}where the resulting
dynamics are described by a standard (i.e. one independent vari-
able) discrete linear systems state-space model but this system
can be unstable (due to the finite trial length). Hence, in general,
stability along the trial must be enforced as per conditions (ii)
and (iii) in this result.

In this last result, (ii), which governs the dynamics along a
trial, is only a necessary condition for stability along the trial.
Condition (iii) requires frequency attenuation the complete
spectrum of the previous trial profile. Moreover, this condition
can be ‘difficult’ to use in the control law design. This, in turn,
has led to the use of sufficient conditions developed through
the use of Lyapunov functions with computations that can be
implemented using Linear Matrix Inequalities (LMIs).

3.2 Dynamic ILC

In some applications the previously published (see e.g. (Hlad-
owski et al., 2010)) static ILC law suffers from possible high
conservativeness and difficulties in obtaining required perfor-
mance with allowable, by the actuators, control signals and
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sufficiently fast convergence etc. Some improvements in this
area are possible by using optimization techniques to choose the
”best” control law, but these are limited in their applicability.
An alternative is to consider the use of dynamic ILC laws or
schemes. Also, there are other ILC structures where dynamic
controllers and filters have been used, e.g. (de Roover et al.,
2000).

In this paper, a dynamic ILC law (or controller, see (Hladowski
et al., 2016, 2017) for more background) is considered for a
discrete linear time-invariant state-space model written in the
ILC setting as in (2) with D = 0. The dynamic ILC controller
considered has state dynamics governed by
ηck+1(p+ 1) = Acη

c
k+1(p) +A0,cηk+1(p) +B0cek(p),

(7)
where

ηck+1(p) = xck+1(p− 1)− xck(p− 1), (8)
is the trial-to-trial increment of the controller internal state
vector xck(p) ∈ Rnc , where possibly n 6= nc. The control input
for the next trial is that used on the previous plus a correction
term which is in this case the controller output, ∆uk+1(p), i.e.,

ηk+1(p+ 1) = xk+1(p)− xk(p),
uk+1(p) = uk(p) + ∆uk+1(p).

(9)

In the dynamic ILC case, the control input increment is given
by

∆uk+1(p) = Ccη
c
k+1(p+ 1) + Ecηk+1(p+ 1),

+ Dcek(p+ 1).
(10)

The resulting controller depends on the trial-to-trial increments
of both the system to be controlled and the controller state
vector and a phase advance term in the previous trial error. For
implementation (using (9)) the current trial input is

uk+1(p) = Ccη
c
k+1(p+ 1) + Ec

(
xk+1(p)− xk(p)

)
,

+ Dc (yref (p+ 1)− yk(p+ 1)) + uk(p),
(11)

where ηc is defined in (7). Introducing

Xk(p) =

[
ηk(p)
ηck(p)

]
, (12)

the controlled ILC dynamics can be written as
Xk+1(p+ 1) = AXk+1(p) + B0ek(p),

ek+1(p) = CXk+1(p) + D0ek(p),

where

A =

[
A+BEc BCc
A0,c Ac

]
, B0 =

[
BDc

B0c

]
,

C = [−C(A+BEc) −CBCc] , D0 = I − CBDc,
(13)

which is a particular case of the discrete linear repetitive pro-
cess state-space model (6) with no input terms and ek(p) is
the trial profile vector. Hence stability along the trial in this
case will guarantee monotonic (from trial-to-trial) error con-
vergence, i.e., solve the ILC design problem.

One set of (sufficient) conditions for stability along the trial
of a discrete linear repetitive process described by (13) is the
following.
Lemma 2. (Rogers et al., 2007). A discrete linear repetitive
process described (13) and (13) is stable along the trial if there
exist

P1 =

[
P̂11 0

0 P̂22

]
� 0,

where P̂11, P̂22 are, respectively, of the same dimensions as
A,D0 such that

[
P1 −W −WT WΦT

ΦW −P1

]
≺ 0, (14)

where

Φ =

[
A B0

C D0

]
(15)

and W is a compatibly dimensioned matrix.

This last result is used in the proof of the following theorem
that enables controller design.
Theorem 1. (Hladowski et al., 2017). An ILC control configu-
ration described by the discrete linear repetitive process state-
space model (13) for the system of (2) is stable along the trial
if the following LMI is feasible[

P1 −W −WT (ÂW + B̂N)T

ÂW + B̂N −P1

]
≺ 0, (16)

where

Â =

[
A 0 0
0 0 0
−CA 0 I

]
, B̂ =

[
B 0
0 I
−CB 0

]
(17)

P1 =

[
P̂11 0

0 P̂22

]
� 0,

and P̂11 and P̂22 have the same dimensions as A and D0

respectively. If this LMI is feasible the dynamic controller
matrices, which are the compatible blocks of the matrix

K̃ =

[
Ec Cc Dc

A0,c Ac B0,c

]
. (18)

can be calculated as
K̃ = NW−1. (19)

4. DYNAMIC ILC APPLIED TO THE BEARING SYSTEM

Discretizing (1) with discretization period of Ts = 1 · 10−4

yields the following state-space representation for the dynamic
bearing system in the form of (2) with matrices

A =

 1 0.0001 3.108 · 10−8

7.813 1 0.0006199
−2.023−0.5166 0.9833

,
B =

3.458 · 10−10

1.036 · 10−5

0.03306

, C = [1 0 0], D = [0].

(20)

In this section, the dynamic ILC controller of the previous
section is applied to the bearing system. For comparison against
a non-ILC design, a stabilizing state feedback control law is
used, where applying one of the many pole placement design
algorithms gives the stabilizing state feedback gain matrix as

K =
[
1.723 · 104, 50.45, 0.7738

]
. (21)

This law places the system poles at (−126.88 − 2.32j),
(−126.88 + 2.32j), −171.08 (for implementation as u(p) =
−Kx(p)).

Fig. 2 gives a block diagram of the system used in the sim-
ulation, where the switch SW1 is used to apply each of the
two designs in turn. Moreover, z−1 denotes the backward shift
operator in p and z−1k the same operator in k. The reference
signal for the AMB is zero since it is required the AMB shaft
(see Fig. 1) stays in the middle position, denoted by zero. In the
simulations below, the starting position for the AMB was taken
as 2.5 · 10−4.
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SW1

Fig. 2. Block diagram arrangement used to generate the simu-
lation results.

Using the LMI and the associated optimization procedure given
in the appendix, the following matrices defining the ILC dy-
namic controller (7) were selected as a starting point for inves-
tigation

Ac = 0.9178,
A0,c =

[
7.326 · 104 −1.899 · 106 −1.553 · 104

]
,

B0,c = 2.784 · 105, Cc = −0.0003081, Dc = 935,
Ec =

[
−1024 −1.004 · 104 −40.24

]
.

(22)

4.1 Simulation – Sample Results

An extensive set of simulations were performed, where in
each case uniformly-distributed additive noise was added to
both the input and output, both of amplitude 10−5. This value
for the noise was selected based on the signal measurements
in input/output channels. The trial length was 0.2 [s], which
corresponds to α = 2000 samples.

A representative of the simulation results obtained with both
designs is given Fig. 3 for the selected initial starting position.
The pole placement design returns to zero after 0.18s and
the ILC design after 0.03s. Also the overshoot for the pole
placement design is approximately 3.5 times large than that for
the ILC design. Fig. 4 shows that both designs require a similar

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

time [s]

-2

0

2

4

6

8

10

12

14

16

x 
[m

]

10-4 Reference signal and output after trial 50

Reference
Pole placement
ILC

Fig. 3. Comparison of the outputs produced by the two designs.

level of control input.

5. CONCLUSIONS

This paper has continued the development of dynamic ILC
design in the repetitive process setting. The particular focus
here is an application to hetroplanar active magnetic bearings,
where a core requirement is to keep a particular variable at
a constant value, i.e., a regulator design to correct unwanted
initial displacement. A comparative simulation study using a

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

time [s]

-14

-12

-10

-8

-6

-4

-2

0

2

 u
 [V

]

Input at trial 50

Pole placement

ILC

Fig. 4. Comparison of the inputs required by the two designs.

model of an actual bearing has demonstrated potentially strong
benefits of the ILC design over a standard state feedback
design. Planned future work includes experimental validation
and also algorithm development for the ILC design to reduce
the requirement to store the complete previous trial state vector.
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APPENDIX – THE OPTIMIZATION ALGORITHM

(1) Assume a sufficiently large number of simulated trials β.
(2) Obtain a starting point of Kopt:

(a) Solve the LMI of (16), if feasible, to calculate K us-
ing (18). Set Kopt = K. When (16) has no solutions,
the optimization scheme can be rerun with random
starting entries in K.

(b) Simulate (2) over each trial using the control sig-
nal calculated from (11) to obtain the error defined
by (3)) forming the vector E = {e1, e2, . . . , eβ}.

(c) Calculate f = fopt =
√

(EET ),
(3) repeat over the trials

(a) Adjust K̃ according to Optimization Algorithm rule,
taking into account the value of f

(b) Simulate (2) using control matrices given by (18) and
the control signal calculated using (11) to obtain the
updated error signal vector E.

(c) Calculate the value of objective function f =√
(EET ),

(d) If f < fopt, set fopt = f and Kopt = K
(4) Until (fopt is small enough or a required number of

iterations has been performed)
(5) (end of optimization phase) Use values from K = Kopt

to control the system
(6) (stability test) Calculate the matrices of (13) and apply

Lemma 2. If the resulted system is stable, STOP and apply
the calculated controller matrices. If stability cannot be
guaranteed, restart the algorithm using a different starting
point.
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