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Abstract: In this paper, by exploiting the concept of polynomial greatest common divisor,
some algebraic tests are proposed to certify the structural properties of both discrete-time and
continuous-time linear systems. Furthermore, by exploiting the concept of parametric greatest
common divisor, such results are extended to certify the structural properties of systems whose
dynamical matrices depend polynomially on some parameters.
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1. INTRODUCTION

The Popov-Belevitch-Hautus (PBH) tests are powerful
tools that allow one to characterize the properties of
discrete-time (Kalman et al., 1969; Zabczyk, 2009; Sontag,
2013; Hespanha, 2018), continuous-time (Belevitch, 1968;
Popov and Posehn, 1974), and hybrid (Possieri and Teel,
2016) linear systems. In particular, such a family of tests
allows one to certify reachability, controllability, stabiliz-
ability, observability, constructability, and detectability of
linear systems by evaluating the rank of the matrices

[A− λ I B ],

[
A− λ I
C

]
, (1)

for all λ ∈ C, whereA,B, and C are the matrices governing
the dynamics of the plant. Nonetheless, using numerical
methods to implement such tests may lead to errors, as
shown in the following example.

Example 1. Consider the discrete-time system

x(k + 1) = Ax(k) +B u(k), (2)

with

A =


1 −4 −1 0 −5
0 0 1 0 0
0 −5 −2 −2 −5
0 4 1 1 5
0 −3 −2 −1 −4

 , B =


1
0
0
0
0

 .
By computing numerically the spectrum σ(A) of A, one
obtains the following numerical values

σ(A) = {−4.19, 1.00, −0.802,

− 0.004 + 0.771ı, −0.004− 0.771ı}. (3)

? This work has been (partially) supported by the Italian Ministry
for Research in the framework of the 2017 Program for Research
Projects of National Interest (PRIN), Grant no. 2017YKXYXJ.

Thus, by evaluating numerically rank[A− λ I B ] for all
λ ∈ σ(A) using the Matlab command rank with tolerance
10−20 (that is lower than the precision to which the
spectrum σ(A) has been computed), one obtains that
rank[A− λ I B ] = 5 for all λ ∈ σ(A), thus concluding
that system (2) is reachable. Nonetheless, by computing
the reachability matrix [B · · · A4B ] of system (2), it can
be easily derived that it is not reachable since

rank([B · · · A4B ]) = 1.

The issue highlighted in Example 1 is intrinsic in the
numerical application of the PBH tests. In fact, the matrix
A − λ I loses rank if and only if λ ∈ σ(A), Therefore,
if such a spectrum is computed numerically via some
algorithm using finite precision, the roundoff error may
lead to critical evaluation errors, as in Example 1.

In view of such an issue, the main objective of this paper is
to derive tests that allows one to certify algebraically the
structural properties of linear time-invariant system by us-
ing algebraic geometry tools. It is worth pointing out that
these techniques have been already used in the literature
to verify the structural properties of linear systems. For
instance, in Habets (1993), Gröbner bases have been used
to determine whether the matrix [A− λ I B ] is right-
invertible (thus ensuring reachability of the corresponding
system) and to compute a right-inverse of [A− λ I B ], to
be used to design a compensator.

In this paper, it is shown that the structural properties
of both discrete-time (see Section 3.1) and continuous-
time (see Section 3.2) linear systems can be certified al-
gebraically by using the concept of polynomial greatest
common divisor (that is briefly reviewed in Section 2),
which can be computed more efficiently than Gröbner
bases. Furthermore, by exploiting the notion of parametric
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greatest common divisor, such results are extended to cer-
tify the structural properties of systems depending poly-
nomially on some parameters (see Section 4). Examples
of application of the proposed techniques are given all
throughout the paper to illustrate the theoretical results.

2. ALGEBRAIC GEOMETRY CONCEPTS

Let K be a field (e.g., the sets Q, R, and C of rational,
real, and complex numbers). Let K[x] be the ring of all
the polynomials in the single variables x = [ x1 · · · xn ]
with coefficients in K.

Given p1, . . . , p` ∈ K[x], the ideal of p1, . . . , p` is the set of
all the polynomials in K[x] that can be written as a linear
combination with polynomial coefficients of p1, . . . , p`,

〈p1, . . . , p`〉 := {∑`
i=1 qipi, qi ∈ K[x], i = 1, . . . , `},

whereas the variety of p1, . . . , p` is the subset of K where
such polynomials vanish jointly,

V(p1, . . . , p`) := {x ∈ K : pi(x) = 0, i = 1, . . . , `}.
A set V is constructible if there exist varieties Zi ⊂ Wi,
i = 1, . . . , ς, such that V =

⋃ς
i=iWi \ Zi.

Given ideals I and J of K[x], the saturation of I with
respect to J is defined as

I : J∞ := {f ∈ K[x] : ∀p ∈ J , ∃N > 0 s.t. f pN ∈ I}.
By Proposition 9 at page 202 of Cox et al. (2015), the
saturation I : J∞ is an ideal of K[x].

Letting λ be a single variable, a greatest common divisor
of p1, . . . , p` ∈ K[λ] is a polynomial h ∈ K[λ] that divides
p1, . . . , p` and such that if there is another f ∈ K[λ] that
divides p1, . . . , p`, then f divides h. Since, by Proposition 8
at page 44 of Cox et al. (2015), such a polynomial exists
and is unique up to multiplication by a nonzero constant
in K, there is a unique monic h ∈ K[λ] that is a greatest
common divisor of p1, . . . , p`, denoted gcd(p1, . . . , p`).

By Corollary 4 at page 41 of Cox et al. (2015), every
ideal I of K[λ] is principal, i.e., there is a single p ∈ K[λ]
such that I = 〈p〉. Such a polynomial is unique, up to a
multiplication by a constant in K. Thus, given an ideal I
of K[λ], there is a unique monic p such that I = 〈p〉, which
is referred to as basis of I. In particular, by Proposition 8
at page 44 of Cox et al. (2015), one has that gcd(p1, . . . , p`)
is a basis of 〈p1, . . . , p`〉. A polynomial p ∈ C[λ] is Hurwitz
if all its roots have negative real part, whereas it is Schur
if all its roots have absolute value lower than 1.

Letting β = [ β1 · · · βw ]> be a vector of parameters,
let K[β][λ] be the ring of the polynomials in λ over the
parameter ring K[β]. Given p ∈ K[β][λ], the polynomial

p(λ, β̂) ∈ K[λ] obtained by fixing the parameters as β =

β̂ ∈ Kw is called a specialization of p. Given p1, . . . , p` ∈
K[β][λ], the parametric greatest common divisor (briefly,

GCD) of p1, . . . , p` is a finite sequence {(Ai, gi)}ζi=1 such
that (Abramov and Kvashenko, 1993):

• each Ai, i = 1, . . . , ζ, is a constructible set;
• Ai ∩ Aj = ∅ for each i, j ∈ {1, . . . , ζ}, i 6= j;

• ⋃ζi=iAi = Kw;

• for each β̂ ∈ Ai, the polynomial gi(λ, β̂) is the

greatest common divisor of p1(λ, β̂), . . . , p`(λ, β̂).

See Nagasaka (2017) for algorithms capable of comput-
ing such a sequence and Kapur et al. (2018) for their
implementation in Singular 1 , an open source computer
algebra system for polynomial computations, which is used
hereafter.

3. THE NOMINAL CASE

In this section, it is shown how the tools reviewed in
Section 2 can be used to certify algebraically the structural
properties of linear systems in the nominal case, i.e., when
the parameters of the system are fixed.

3.1 Discrete-time systems

Consider the discrete-time linear system

x(k + 1) = Ax(k) +B u(k), (4a)

y(k) = C x(k) +Du(k), (4b)

with A ∈ Rn×n, B ∈ Rn×ν , C ∈ Rµ×n, and D ∈ Rµ×ν . Let
p1, . . . , p` ∈ C[λ] be the n× n minors of [A− λ I B ], ` =(
n+ν
n

)
. The objective of this section is to provide algebraic

certificates built upon the p1, . . . , p` for the analysis of the
structural properties of system (4).

Reachability and observability certificates The following
theorem provides easily verifiable conditions for certifying
reachability of system (4).

Theorem 1. System (4) is reachable if and only if

gcd(p1, . . . , p`) = 1. (5)

The following remark details how Theorem 1 can be
adapted so to certify observability of system (4).

Remark 1. Theorem 1 can be easily adapted to certify
observability of system (4). In fact, by classical results,
system (4) is observable if and only if the system

x(k + 1) = A>x(k) + C>u(k) (6)

is reachable. Therefore, by Theorem 1, letting p̄1, . . . , p̄ρ ∈
C[λ] be n × n minors of [A> − λ I C> ], ρ =

(
n+µ
n

)
,

system (4) is observable if and only if gcd(p̄1, . . . , p̄ρ) = 1.

Controllability and reconstructibility certificates The fol-
lowing theorem provides easily verifiable conditions for
certifying controllability of system (4).

Theorem 2. System (4) is controllable if and only if

gcd(p1, . . . , p`) = λα, (7)

for some α ∈ Z, α > 0

The following corollary provides an alternative approach
to certify that system (4) is controllable.

Corollary 1. System (4) is controllable if and only if

〈gcd(p1, . . . , p`)〉 : 〈λ〉∞ = 〈1〉 = C[λ]. (8)

The next remark details how the tools given in this section
can be used to certify reconstructibility of system (4).

1 Available at the following link
https://www.singular.uni-kl.de.
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Remark 2. Since system (4) is reconstructible if and only
if system (6) is controllable, letting p̄1, . . . , p̄ρ be defined
as in Remark 1, system (4) is reconstructible if and only if

〈gcd(p̄1, . . . , p̄ρ)〉 : 〈λ〉∞ = 〈1〉.

Stabilizability and detectability certificates Let

Cd := {λ ∈ C : |λ| < 1}.
The following theorem provides easily verifiable conditions
for certifying stabilizability of system (4).

Theorem 3. System (4) is stabilizable if and only if
gcd(p1, . . . , p`) is Schur.

Letting h := gcd(p1, . . . , p`) there are several ways to
check whether h is Schur, as, e.g., the Jury criterion (Jury,
1962), which can be carried out exactly, thus obtaining an
algebraic certificate for the stabilizability of system (4).

Example 2. Consider the system analyzed in Example 1.
By computing h = gcd(p1, . . . , p6), one obtains

h = λ4 + 5λ3 + 4λ2 + 3λ+ 2,

which implies that system (2) is neither reachable nor
controllable. Furthermore, since h is not Schur, system (2)
is not stabilizable.

The following remark details how Theorem 3 can be
adapted so to deal with detectability of system (4).

Remark 3. Since system (4) is detectable if and only if
system (6) is stabilizable, letting p̄1, . . . , p̄ρ be defined as
in Remark 1, by Theorem 3, system (4) is detectable if
and only if gcd(p̄1, . . . , p̄ρ) is Schur.

3.2 Continuous-time systems

The techniques given in Section 3.1 can be easily adapted
to deal with continuous-time systems of the form

ẋ(t) = Ax(t) +B u(t), (9a)

y(t) = C x(t) +Du(t). (9b)

Theorem 4. Let p1, . . . , p` ∈ C[λ] be the n× n minors of
[A− λ I B ], ` =

(
n+ν
n

)
, and let p̄1, . . . , p̄ρ ∈ C[λ] be n×n

minors of [A> − λ I C> ], ρ =
(
n+µ
n

)
. System (9) is:

• reachable if and only if gcd(p1, . . . , p`) = 1;
• observable if and only if gcd(p̄1, . . . , p̄ρ) = 1;
• stabilizable if and only if gcd(p1, . . . , p`) is Hurwitz;
• detectable if and only if gcd(p̄1, . . . , p̄ρ) is Hurwitz.

There are many ways to check if gcd(p1, . . . , p`) is Hurwitz,
as, e.g., the Routh-Hurwitz criterion (Hurwitz, 1895).

Remark 4. Several software allow to compute the greatest
common divisor of the univariate polynomials p1, . . . , p`.
For instance, it can be computed using the command
PolynomialGCD in Mathematica, the script gcd in Maple,
the function gcd in Macaulay2, the command gcd in Sage,
or the script gcd in Matlab. On the other hand, computing
the parametric greatest common divisor, which is used in
the following Section 4 to characterize the properties of
parametric linear systems, requires specialized software,
such as the Singular package parametric GCD 2 ; see
Kapur et al. (2018) for further details.

2 Available at the following link
http://mmrc.iss.ac.cn/~dwang/software.html.

4. THE PARAMETRIC CASE

In this section, the results given in Section 3 for nominal
plants are extended to the case of systems depending on
some parameters by using the concept of parametric GCD.

4.1 Discrete-time parametric systems

Consider the discrete-time parametric linear system

x(k + 1) = A(β)x(k) +B(β)u(k), (10a)

y(k) = C(β)x(k) +D(β)u(k), (10b)

where A ∈ Rn×n[β], B ∈ Rn×ν [β], C ∈ Rµ×n[β], and D ∈
Rµ×ν [β] are parametric matrices depending polynomially
on the vector of parameters β = [ β1 · · · βw ]>. As in
Section 3, let p1, . . . , p` ∈ C[β][λ] be the n × n minors of
the matrix [A(β)− λ I B(β) ], ` =

(
n+ν
n

)
. The objective of

this section is to provide algebraic certificates built upon
p1, . . . , p` for the structural properties of the specialization

x(k + 1) = A(β̂)x(k) +B(β̂)u(k), (11a)

y(k) = C(β̂)x(k) +D(β̂)u(k), (11b)

of system (10) for some β̂ ∈ Rw.

Reachability and observability certificates The following
theorem provides conditions to ensure reachability of sys-

tem (10) for some specialization β̂ ∈ Rw.

Theorem 5. Let {(Ai, gi)}ζi=1, with Ai ⊂ Cw and gi ∈
C[β, λ], i = 1, . . . , ζ, be a parametric GCD of p1, . . . , p` ∈
C[β][λ]. Hence, the specialization (11) of system (10) is

reachable for any β̂ ∈ Ai if and only if the specialization

gi(λ, β̂) is a nonzero constant in C[λ], i = 1, . . . , ζ.

The following example illustrates the application of The-
orem 5 to a parametric discrete-time system.

Example 3. Consider system (10) with β = [ β1 β2 ]>,

A(β) =

[
0 β1

1 0

]
, B(β) =

[
β2 0
0 1

]
.

By computing the parametric GCD of p1, . . . , p4, one
obtains the following three branches:

• g1 = 1 and A1 := V(φ1) \V(ω1), with

φ1 = 0, ω1 = β2;

• g2 = 1 and A2 := V(φ2) \V(ω2), with

φ2 = β2, ω2 = β1;

• g3 = λ and A3 := V(φ3,1, φ3,2) \V(ω3), with

φ3,1 = β1, φ3,2 = β2, ω3 = 1.

Since both g1 and g2 equal 1, system (11) is reachable for

each specialization β̂ ∈ A1 ∪A2. On the other hand, since
g3 6= 1, system (11) is not reachable for β1 = 0 and β2 = 0.

The technique given in Theorem 5 can be easily adapted
to certify observability of a parametric discrete-time linear
system, as detailed in the following remark.

Remark 5. Let p̄1, . . . , p̄ρ ∈ C[β][λ] be n × n minors

of [A>(β)− λ I C>(β) ], ρ =
(
n+µ
n

)
. Let {(Āi, ḡi)}ζ̄i=1,

with Āi ⊂ Cw and ḡi ∈ C[β, λ], i = 1, . . . , ζ̄, be a
parametric GCD of p̄1, . . . , p̄ρ. By the same reasoning
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given in Remark 1 and Theorem 5, the specialization (11)

of system (10) is observable for some β̂ ∈ Āi if and only

if the corresponding specialization ḡi(λ, β̂) is a nonzero
constant in C[λ], i = 1, . . . , ζ.

The following example illustrates the application of Re-
mark 5 to a parametric discrete-time system.

Example 4. Consider system (10) with β = [ β1 β2 ]>,

A(β) =

[
β1 β1 − β2

1 β1 + β2

]
, C(β) =

[
β1 − β2 1

0 β2 − β1

]
.

By computing the parametric GCD of p1, . . . , p6, one
obtains the following three branches:

• ḡ1 = 1 and Ā1 := V(φ̄1) \V(ω̄1), with φ̄1 = 0, and

ω̄1 = β4
1 − 4β2β

3
1 + 6β2

2β
2
1 + β2β

2
1

− 4β3
2β1 − 2β2

2β1 − β1 + β4
2 + β3

2 + β2;

• ḡ2 = 1 and Ā2 := V(φ̄2) \V(ω̄2), with

φ̄2 = β1 − β2, ω̄2 = 1;

• ḡ3 = 1 and Ā3 := V(φ̄3) \V(ω̄3), with

φ̄3 = β3
1 − 3β2β

2
1 + 3β2

2β1 + β2β1 − β3
2 − β2

2 − 1,

ω̄3 = β1 − β2.

Figure 1 depicts the corresponding partition of R2.

Ā1

-2 -1 0 1 2
-2

-1

0

1

2

β1

β2

Ā2

Ā3

Fig. 1. Partition Ā1, Ā2, Ā3 of the parameter space.

Since g1 = g2 = g3 = 1, system (11) is observable for all

specializations β̂ ∈ R2.

Controllability and reconstructibility certificates The fol-
lowing theorem provides conditions to ensure controllabil-
ity of the parametric system (10).

Theorem 6. Let {(Ai, gi)}ζi=1, with Ai ⊂ Cw and gi ∈
C[β, λ], i = 1, . . . , ζ, be a parametric GCD of p1, . . . , p` ∈
C[β][λ]. Hence, the specialization (11) of system (10) is

controllable for some β̂ ∈ Ai if and only if gi(λ, β̂) equals
c λα in C[λ], for some c ∈ C and α > 0, i = 1, . . . , ζ.

The following example illustrates Theorem 6.

Example 5. Consider system (10) with β = [ β1 β2 ]>,

A(β) =

[
0 β1 + β2 − 1 β1 − β2 − 1
0 1 β1 + 2β2 − 1
0 1 1

]
, B(β) =

[
0
0
1

]
.

By computing the parametric GCD of p1, . . . , p4, one
obtains the following four branches:

• g1 = 1 and A1 := V(φ1) \V(ω1), with φ1 = 0 and

ω1 = (β1 + 2β2 − 1)·
· (β2

1 + 3β2β1 − 3β1 + 2β2
2 − 2β2 + 2);

• g2 = λ and A2 := V(φ2) \V(ω2), with

φ2 = β2
1 + 3β2β1 − 3β1 + 2β2

2 − 2β2 + 2,

ω2 = β1 + 2β2 − 1;

• g3 = λ− 1 and A3 := V(φ3) \V(ω3), with

φ3 = β1 + 2β2 − 1, ω3 = β2;

• g4 = λ2 − λ and A3 := V(φ4,1, φ4,2) \V(ω4), with

φ4,1 = β1 − 1, φ4,2 = β2, ω4 = 1.

Since g1 = 1, system (11) is reachable (and hence con-

trollable) for each specialization β̂ ∈ A1; whereas, since
g2 = λ, one has that system (11) is controllable (but not

reachable) for each specialization β̂ ∈ A2. On the other
hand, since g3 = λ− 1 and g4 = λ2−λ, system (11) is not

controllable for each specialization β̂ ∈ A3 ∪ A4.

Figure 2 depicts the partition A1,A2,A3,A4 of R2.

A1

-8 -4 0 4 8
-8

-4

0

4

8

β1

β2

A2

A3

A4

Fig. 2. Partition A1,A2,A3,A4 of the parameter space.

As for observability, the technique proposed in Theorem 6
can be easily extended to certify reconstructibility of
discrete-time parametric linear systems, as detailed in the
following remark.

Remark 6. Let {(Āi, ḡi)}ζ̄i=1 be defined as in Remark 5.
By Theorem 7, the specialization (11) of system (10) is

reconstructible for some β̂ ∈ Āi if and only if ḡi(λ, β̂)
equals c λα in C[λ], for some c ∈ C and α > 0, i = 1, . . . , ζ̄.

Stabilizability and detectability certificates The following
theorem provides conditions to ensure stabilizability of the
parametric system (10).

Theorem 7. Let {(Ai, gi)}ζi=1, with Ai ⊂ Cw and gi ∈
C[β, λ], i = 1, . . . , ζ, be a parametric GCD of p1, . . . , p` ∈
C[β][λ]. Hence, the specialization (11) of system (10) is

stabilizable for some β̂ ∈ Ai if and only if the specialization

gi(λ, β̂) is Schur, i = 1, . . . , ζ.

The following example illustrates Theorem 7.
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Example 6. Consider system (10) with β = [ β1 β2 ]>,

A(β) =

[
β2 2β2 − 1
1 1− β1

]
, B(β) =

[
β1

β2

]
.

By computing the parametric GCD of p1, p2, p3, one ob-
tains the following three branches:

• g1 = 1 and A1 := V(φ1) \V(ω1), with

φ1 = 0, ω1 = 2β3
2 + β1β

2
2 − β2

2 + β2
1β2 − β1β2 − β2

1 ;

• g2 = λβ2 + β1 − β2
2 and A2 := V(φ2) \V(ω2), with

φ2 = 2β3
2 + β1β

2
2 − β2

2 + β2
1β2 − β1β2 − β2

1 , ω2 = β2;

• g3 = λ2−λ+ 1 and A3 := V(φ3,1, φ3,2)\V(ω3), with

φ3,1 = β1, φ3,2 = β2, ω3 = 1.

Since g1 = 1, system (11) is reachable (and hence control-

lable and stabilizable) for all specializations β̂ ∈ A1. On
the other hand, since g2 = λβ2 + β1 − β2

2 and

A2 ∩ {β ∈ R2 : β2 = 0} = ∅,
system (11) is not reachable for all β̂ ∈ A2. However, since

A2 ∩ {β ∈ R2 : β1 − β2
2 = 0} 6= ∅,

there is a specialization β̂◦ ∈ A2 such that system (11)

is controllable. Nonetheless, since g2(λ, β̂) 6= c λα for

all specializations β̂ ∈ A2 \ {β̂◦}, system (11) is not

controllable for all β̂ ∈ A2 \ {β̂◦}. By considering that

g2(λ, β̂) is Schur for all

β̂ ∈ {β ∈ R2 : |β1−β2
2

β2
| < 1} =: H,

system (11) is stabilizable for all β̂ ∈ A2 ∩ H, whereas,

since g2(λ, β̂) is not Schur for all

β̂ ∈ {β ∈ R2 : |β1−β2
2

β2
| > 1} =: N ,

system (11) is not stabilizable for all specializations β̂ ∈
A2 ∩N . Finally, since g3 ∈ C[λ] is not Schur and

A3 = {[ 0 0 ]>},
system (11) is not stabilizable for β̂ = 0. Figure 3 depicts

the partition A1,A2,A3 of R2, the point β̂◦, and the set
A2 ∩H.

A1

-2 -1 0 1 2
-2

-1

0

1

2

β1

β2

A2 A2 ∩H

A3

β̂◦

Fig. 3. Partition A1,A2,A3 of the parameter space, point

β̂◦, and set A2 ∩H.

The next remark details how to adapt the technique given
in Theorem 7 to certify algebraically detectability of a
parametric discrete-time linear system.

Remark 7. Let {(Āi, ḡi)}ζ̄i=1 be defined as in Remark 5.
By Theorem 7, the specialization (11) of system (10) is

detectable for some β̂ ∈ Āi if and only if the corresponding

specialization ḡi(λ, β̂) is Hurwitz, i = 1, . . . , ζ̄.

4.2 Continuous-time parametric systems

The techniques given in Section 4.1 can be adapted to deal
with continuous-time parametric systems of the form

ẋ(t) = A(β)x(t) +B(β)u(t), (12a)

y(t) = C(β)x(t) +D(β)u(t), (12b)

where A ∈ Rn×n[β], B ∈ Rn×ν [β], C ∈ Rµ×n[β], and
D ∈ Rµ×ν [β] are parametric matrices depending polyno-
mially on the vector of parameters β = [ β1 · · · βw ]>.
Namely, letting p1, . . . , p` ∈ C[β][λ] be the n × n
minors of the matrix [A(β)− λ I B(β) ], ` =

(
n+ν
n

)
,

and letting p̄1, . . . , p̄ρ ∈ C[β][λ] be n × n minors of

[A>(β)− λ I C>(β) ], ρ =
(
n+µ
n

)
, consider the following

theorem.

Theorem 8. Let {(Ai, gi)}ζi=1, with Ai ⊂ Cw and gi ∈
C[β, λ], i = 1, . . . , ζ, be a parametric GCD of p1, . . . , p` ∈
C[β][λ], and let {(Āi, ḡi)}ζ̄i=1, with Āi ⊂ Cw and ḡi ∈
C[β, λ], i = 1, . . . , ζ̄, be a parametric GCD of p̄1, . . . , p̄ρ.

Given β̂ ∈ Ai for some i ∈ {1, . . . , ζ}, the specialization

ẋ(t) = A(β̂)x(t) +B(β̂)u(t), (13a)

y(t) = C(β̂)x(t) +D(β̂)u(t), (13b)

of system (10) is

• reachable if and only if gi(λ, β̂) is a nonzero constant;

• stabilizable if and only if gi(λ, β̂) is Hurwitz.

On the other hand, given β̂ ∈ Āi for some i ∈ {1, . . . , ζ},
the specialization (13) of system (10) is

• observable if and only if ḡi(λ, β̂) is a nonzero
constant;

• detectable if and only if ḡi(λ, β̂) is Hurwitz.

The following example illustrates Theorem 8.

Example 7. Consider system (12) with β = [ β1 β2 ]>,

A(β) =

[
β1 + 1 1
β1 1− β1

]
,

B(β) =

[
β1

β2

]
,

C = [ β2 0 ].

By computing the parametric GCD of p1, p2, p3, one ob-
tains the following four branches:

• g1 = 1 and A1 := V(φ1) \V(ω1), with

φ1 = 0, ω1 = β4
1 − 2β2β

3
1 − β2

2β1;

• g2 = 1 and A2 := V(φ2) \V(ω2), with

φ2 = β1, ω2 = β2;

• g3 = λ2 − 2λ+ 1, and A3 := V(φ3,1, φ3,2) \V(ω3),

φ3,1 = β1, φ3,2 = β2, ω3 = 1;
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• g4 = λβ2 +β2
1 −β1β2−β2 and A4 := V(φ4) \V(ω4),

φ4 = β3
1 − 2β2β

2
1 − β2

2 , ω4 = β1 β2.

By Theorem 8, system (13) is reachable for each special-

ization β̂ ∈ A1 ∪ A2; whereas it is neither reachable nor

stabilizable for β̂ ∈ A3. Furthermore, letting

H := {β ∈ R2 :
−β2

1+β2β1+β2

β2
< 0},

since g4(λ, β̂) is Hurwitz for all β̂ ∈ A4 ∩ H, system (13)

is stabilizable for each specialization β̂ ∈ A4 ∩ H. On the
other hand, letting

N := {β ∈ R2 :
−β2

1+β2β1+β2

β2
> 0},

since g4(λ, β̂) is not Hurwitz for all β̂ ∈ A4∩N , system (13)

is not stabilizable for each β̂ ∈ A4 ∩ N . Figure 4 depicts
the partition A1,A2,A3,A4 of R2 and the set A4 ∩H.

A1

-8 -4 0 4 8
-8

-4

0

4

8

β1

β2

A4

A4 ∩H
A2

A3

Fig. 4. PartitionA1,A2,A3,A4 of the parameter space and
set A4 ∩H.

On the other hand, by computing the parametric GCD of
p̄1, p̄2, p̄3, one obtains the following two branches:

• ḡ1 = 1 and Ā1 := V(φ̄1) \V(ω̄1), with

φ̄1 = 0, ω̄1 = β2;

• ḡ2 = λ2− 2λ− β2
1 − β1 + 1 and Ā2 := V(φ̄2) \V(ω̄2),

φ̄2 = β2, ω̄2 = 1.

Thus, system (13) is observable for all specializations

β̂ ∈ Ā1. On the other hand, since ḡ2(λ, β̂) is not Hurwitz

for all β̂ ∈ Ā2, system (13) is not detectable for all β̂ ∈ Ā2.

5. CONCLUSIONS

In this paper, by exploiting the concept of parametric
polynomial greatest common divisor, some tests have been
proposed to provide algebraic certificates for the structural
properties of linear systems whose dynamical matrices
depend polynomially on some parameters. Examples of
application of the proposed techniques have been given all
throughout the paper to illustrate the theoretical results.

Differently from other tests available in the literature, such
as the ones involving the computation of the singular
value decomposition of the pencil matrices in (1), the
proposed tests do not asses a “degree” for a structural

property, but provide an algebraic certificates about its
satisfaction. However, these tests can be employed also
to deal with parametric linear systems whose dynamical
matrices depend polynomiallu on the parameters, as it has
been shown in Section 4.
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