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Abstract: This paper discusses some issues related with the design of a bank of interval observers for
uncertain switched systems, in which several sources of uncertainty are considered: parametric uncer-
tainties, unknown disturbances, measurement noise, and unknown switching signal. More specifically,
this paper focuses on analyzing the interval estimation accuracy when changes of active mode induce
non-positivity of the interval state estimation errors. In particular, it is shown that by combining two
types of interval observers, referred to as local and global, the accuracy and reliability of the estimation
can be improved. The properties of the obtained so-called glocal observer are investigated and illustrated
by means of numerical simulations.
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1. INTRODUCTION

It is a well known fact that, due to uncertainties coming either
from external disturbances or from the mismatch between the
model and the real system, the classical state observers cannot
converge to the real value of the state in general settings
[Efimov et al., 2016, Wang et al., 2015]. For this reason, interval
observers have been considered as an appealing alternative
approach, since they can take into account the information
that uncertainties and disturbances are bounded in some known
sets, in order to compute the set of admissible values for the
state at each instant of time [Efimov et al., 2012]. Research
on interval observers is still a hot topic in present days, with
several contributions appearing in the literature, concerning
their integration with advanced control techniques [Oubabas
et al., 2018], fault diagnosis [Rotondo et al., 2018b] and fault
tolerant control [Rotondo et al., 2018a] problems.
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Council of Norway through the AMOS Center, grant number 223254 and by
the University of Stavanger through the project IN-12267.

On the other hand, switched systems [Daafouz et al., 2002]
represent a special class of hybrid dynamics that is applied
in several fields, such as control of chemical processes [Niu
et al., 2015] and flight control systems [Sakthivel et al., 2016].
In the last few years, some results concerning state estimation
in switched systems have appeared, see for instance Zhao et al.
[2015], Rı́os et al. [2015], Rios et al. [2014], where an important
difference comes from whether the hypothesis on availability
of the switching signal is made or not. Some works have
considered the problem of interval state estimation in switched
systems. For instance, Ethabet et al. [2018b,a] have proposed an
interval observer design approach for continuous-time switched
systems affected by unknown inputs. He and Xie [2016] have
addressed control system design based on an interval observer
for non-linear switched systems with Lipschitz non-linearities.
Ifqir et al. [2017] have analyzed interval estimation accuracy
and robustness with respect to unknown disturbances usingH∞
objective with pole placement constraints.

However, all the above works have been developed under the
assumption that the switching signal that defines the active
mode of the switched system is known. This assumption is
not always true [Wang et al., 2018], and some research has
addressed the issue of determining the active mode at any
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moment, using only the system’s input/output data, see e.g. Lee
et al. [2013], Hakem et al. [2016], Rotondo et al. [2017b,a].
In particular, Rotondo et al. [2017b,a] showed that this goal
could be achieved using a multiple model adaptive architecture
(MMAE) that relies on a set of local observers, each designed
using one among the possible modes of the switched system.

With the future ultimate goal of extending the MMAE to the
case where interval observers are used to estimate the switching
signal while taking into account the effects of the different
sources of uncertainty, this paper focuses on analyzing the
interval estimation accuracy when changes of active mode
induce non-positivity of the interval state estimation errors.
In particular, the main contribution of this work is to show
that the accuracy of the estimation can be improved by using
a combination of two types of interval observers, referred to
as local and global. The properties of the obtained observer,
named glocal after Hara et al. [2015], are investigated and
demonstrated by means of numerical simulations.

The paper is structured as follows. Section 2 presents some
notation used in the paper, along with a useful lemma and
the definition of cooperative system. Section 3 contains the
theoretical results concerning the definition of the considered
class of systems, and the structure of the local, global and glocal
interval observers. Simulation results are shown and discussed
in Section 4, whereas Section 5 presents the conclusions.

2. PRELIMINARIES

Denote by R and N (N0) the sets of real and natural numbers
(with zero included), respectively, and R+ = {s ∈ R : s ≥ 0}.
For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n, the
relations x1 ≤ x2 and A1 ≤ A2 are understood elementwise.
Given a matrix A ∈ Rn×n, let us define A+ = max{0, A},
with max understood elementwise, A− = A+ − A and |A| =
A+ +A− (similarly for vectors).
Lemma 1. [Efimov et al., 2016] Let A ≤ A ≤ A for some A,
A, A ∈ Rn×n and x ≤ x ≤ x for x, x, x ∈ Rn, then:

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax (1)

≤ A+
x+ −A+x− −A−x+ +A−x−

Let us define as Rn×n
+ the set of matrices A ∈ Rn×n with

nonnegative elements (A ≥ 0). Then, any solution of the
system:

x(t+ 1) = Ax(t) + ω(t), ω : N→ Rn
+, t ∈ N (2)

with x(t) ∈ Rn and A ∈ Rn×n
+ , is elementwise nonnegative

for all t ≥ 0 if x(0) ≥ 0. Such a system is referred to as
cooperative (or monotone) [Hirsch and Smith, 2005].

3. THEORETICAL RESULTS

3.1 System definition

Let us consider a discrete-time uncertain switched system de-
scribed by:

x(t+ 1) = [A(κ(t)) + ∆A(κ(t))]x(t) (3)
+ [B(κ(t)) + ∆B(κ(t))]u(t) + d(t)

y(t) = Cx(t) + v(t) (4)
where t ∈ N0 stands for the sample, x ∈ Rnx is the state,
y ∈ Rny is the output, u ∈ Rnu is the input, κ(t) ∈

{κ1, κ2, . . . , κJ} denotes the switching signal, while the sig-
nals d ∈ Rnx and v ∈ Rny denote the exogenous disturbance
and measurement noise, respectively, which are unknown. The
matrix C ∈ Rny×nx and the matrix functions A(κ(t)) ∈
Rnx×nx , B(κ(t)) ∈ Rnx×nu are assumed to be known (al-
though the instantaneous value of κ(t) is not), whereas the
matrix functions ∆A(κ(t)) ∈ Rnx×nx , ∆B(κ(t)) ∈ Rnx×nu

are unknown. The following assumption will be used in further
developments.

Assumption 1. d(t) ≤ d(t) ≤ d(t) and |v(t)| ≤ V for all
t ∈ N0 and for known d(t), d(t) ∈ Rnx and V ∈ R+.
Moreover:

∆A(κ(t)) ≤ ∆A(κ(t)) ≤ ∆A(κ(t)) (5)

∆B(κ(t)) ≤ ∆B(κ(t)) ≤ ∆B(κ(t)) (6)

A0 + ∆A ≤ A(κ(t)) + ∆A(κ(t)) ≤ A0 + ∆A (7)

B0 + ∆B ≤ B(κ(t)) + ∆B(κ(t)) ≤ B0 + ∆B (8)
for some known matrix functions:

∆A(·),∆A(·) ∈ Rnx×nx : ∆A(·) ≤ 0, ∆A(·) ≥ 0

∆B(·),∆B(·) ∈ Rnx×nu : ∆B(·) ≤ 0, ∆B(·) ≥ 0

and some known matrices A0 ∈ Rnx×nx , B0 ∈ Rnx×nu and:

∆A,∆A ∈ Rnx×nx : ∆A ≤ 0,∆A ≥ 0

∆B,∆B ∈ Rnx×nu : ∆B ≤ 0,∆B ≥ 0

It is straightforward to show that if κ(t) = κj , the system (3)-
(4) reduces to:

x(t+ 1) = (Aj + ∆Aj)x(t) + (Bj + ∆Bj)u(t) + d(t) (9)
y(t) = Cx(t) + v(t) (10)

with known matricesAj , A(κj), Bj , B(κj) and, according
to Assumption 1, matrices ∆Aj , ∆A(κj) and ∆Bj ,
∆B(κj) unknown but such that:

∆Aj ≤ ∆Aj ≤ ∆Aj

∆Bj ≤ ∆Bj ≤ ∆Bj

for some known matrices:

∆Aj , ∆A(κj) ∈ Rnx×nx : ∆Aj ≤ 0

∆Aj , ∆A(κj) ∈ Rnx×nx : ∆Aj ≥ 0

∆Bj , ∆B(κj) ∈ Rnx×nu : ∆Bj ≤ 0

∆Bj , ∆B(κj) ∈ Rnx×nu : ∆Bj ≥ 0

3.2 Local interval observers

For each subsystem (9)-(10), it is possible to propose a local in-
terval observer based on cooperativity of the interval estimation
error dynamics [Efimov et al., 2016], as follows:

xj(t+ 1) =
[
Aj − LjC

]
xj(t) +Bju(t) + Ljy(t) (11)

− |Lj |V 1ny + d(t) + ∆Aj
+xj

+(t)−∆Aj
+
xj
−(t)

−∆Aj
−xj

+(t) + ∆Aj
−
xj
−(t) + ∆Bj

+u+(t)

−∆Bj
+
u−(t)−∆Bj

−u+(t) + ∆Bj
−
u−(t)
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xj(t+ 1) =
[
Aj − LjC

]
xj(t) +Bju(t) + Ljy(t) (12)

+ |Lj |V 1ny + d(t) + ∆Aj
+
xj

+(t)−∆Aj
+xj

−(t)

−∆Aj
−
xj

+(t) + ∆Aj
−xj

−(t) + ∆Bj
+
u+(t)

−∆Bj
+u−(t)−∆Bj

−
u+(t) + ∆Bj

−u−(t)

where xj , xj are the lower and upper interval estimates of x(t)

for the j-th subsystem, Lj , Lj ∈ Rnx×ny are the observer gains
to be designed, and 1ny

denotes the column vector of length ny
with all elements equal to 1 .

The following proposition gives some conditions under which
the local interval observer provides an interval estimation of
x(t).
Proposition 1. Let Assumption 1 be satisfied, and:

Aj − LjC,Aj − LjC ∈ Rnx×nx
+ (13)

Then, for t0, tf ∈ N0, the relation:
xj(t) ≤ x(t) ≤ xj(t) ∀t ∈ {t0, t0 + 1, . . . , t0 + tf} (14)

holds provided that:
κ(t) = κj ∀t ∈ {t0, t0 + 1, . . . , t0 + tf} (15)
xj(t0) ≤ x(t0) ≤ xj(t0) (16)

Proof. Consider the dynamics of the interval estimation errors
ej(t) = x(t)− xj(t) and ej(t) = xj(t)− x(t):

ej(t+ 1) =
[
Aj − LjC

]
ej(t) +

4∑
i=1

wi
j(t) (17)

ej(t+ 1) =
[
Aj − LjC

]
ej(t) +

4∑
i=1

wi
j(t) (18)

where:
w1

j (t) = ∆Ajx(t)−∆Aj
+xj

+(t) + ∆Aj
+
xj
−(t) (19)

+ ∆Aj
−xj

+(t)−∆Aj
−
xj
−(t)

w2
j (t) = ∆Bju(t)−∆Bj

+u+(t) + ∆Bj
+
u−(t) (20)

+ ∆Bj
−u+(t)−∆Bj

−
u−(t)

w3
j (t) = d(t)− d(t) (21)

w4
j (t) = |Lj |V 1ny

+ v(t) (22)

w1
j (t) = ∆Aj

+
xj

+(t)−∆Aj
+xj

−(t)−∆Aj
−
xj

+(t)

(23)
+ ∆Aj

−xj
−(t)−∆Ajx(t)

w2
j (t) = ∆Bj

+
u+(t)−∆Bj

+u−(t)−∆Bj
−
u+(t) (24)

+ ∆Bj
−u−(t)−∆Bju(t)

w3
j (t) = d(t)− d(t) (25)

w4
j (t) = |Lj |V 1ny − v(t) (26)

Hence, the dynamics for ej(t) and ej(t) is cooperative and (14)

holds as long as wi
j(t), w

i
j(t) ≥ 0 ∀i = 1, 2, 3, 4 and ∀t ≥ t0,

which is true due to Assumption 1. �

Under a change of active mode, condition (16) might not hold,
in such a case Lemma 1 could not be applied anymore in order
to ensure that the signalsw1

j (t) andw1
j (t) described by (19) and

(23), respectively, remain non-negative. The remaining of this

section will show how, by defining a global interval observer,
and using the estimated global bounds to feed the local ob-
servers, it is possible to ensure that the interval estimation errors
are fed by non-negative inputs even in cases where a change of
active mode causes (16) not to hold anymore.
Remark 1. Note that Proposition 1, along with similar proposi-
tions presented in the remaining of the paper, focuses only on
the interval estimation property, without considering bounded-
ness of the observers’ states. Linear matrix inequality (LMI)-
based conditions for designing appropriate observer gains such
that boundedness is achieved can be found in the available
literature, see e.g. Efimov et al. [2016].

3.3 Global interval observer

It is possible to take into account the uncertainty about κ(t) by
means of a global interval observer that guarantees the state to
be always within some estimated lower and upper bounds, in
spite of the varyingness of κ(t), as follows:

x(t+ 1) =
[
A0 − L0C

]
x(t) +B0u(t) + L0y(t) (27)

− |L0|V 1ny
+ d(t) + ∆A+x+(t)−∆A

+
x−(t)

−∆A−x
+

(t) + ∆A
−
x
−

(t) + ∆B+u+(t)

−∆B
+
u−(t)−∆B−u+(t) + ∆B

−
u−(t)

x(t+ 1) =
[
A0 − L0C

]
x(t) +B0u(t) + L0y(t) (28)

+ |L0|V 1ny
+ d(t) + ∆A

+
x
+

(t)−∆A+x
−

(t)

−∆A
−
x+(t) + ∆A−x−(t) + ∆B

+
u+(t)

−∆B+u−(t)−∆B
−
u+(t) + ∆B−u−(t)

Proposition 2. Let Assumption 1 be satisfied, and:

A0 − L0C,A0 − L0C ∈ Rnx×nx
+ (29)

Then, for t0, tf ∈ N0, the relation:
x(t) ≤ x(t) ≤ x(t) ∀t ∈ {t0, t0 + 1, . . . , t0 + tf} (30)

holds provided that:
x(t0) ≤ x(t0) ≤ x(t0) (31)

Proof. Due to Assumption 1, in particular Eqs. (7)-(8), the
following is true:

A (κ(t)) + ∆A (κ(t)) = A0 +∇A (κ(t)) (32)
B (κ(t)) + ∆B (κ(t)) = B0 +∇B (κ(t)) (33)

for some ∇A (κ(t)) ,∇B (κ(t)) such that:

∆A ≤ ∇A (κ(t)) ≤ ∆A

∆B ≤ ∇B (κ(t)) ≤ ∆B

Hence, the dynamics of the interval estimation errors e(t +

1) = x(t)− x(t) and e(t) = x(t)− x(t) are described by:

e(t+ 1) =
[
A0 − L0C

]
e(t) +

4∑
i=1

wi(t) (34)

e(t+ 1) =
[
A0 − L0C

]
e(t) +

4∑
i=1

wi(t) (35)

where wi(t), wi(t) can be obtained from wi
j(t), w

i
j(t) in (19)-

(26) by replacing ∆Aj → ∇A(κ(t)), ∆Aj → ∆A, ∆Aj →
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∆A, xj → x, xj → x, ∆Bj → ∇B(κ(t)), ∆Bj → ∆B,

∆Bj → ∆B, Lj → L0, Lj → L0. The remaining of the proof
follows a similar reasoning as in the one of Proposition 1. �

3.4 Glocal interval observers

The information provided by the global interval observer can
be fed locally to interval observers for different subsystems (9)-
(10), as follows:

xj(t+ 1) =
[
Aj − LjC

]
xj(t) +Bju(t) + Ljy(t) (36)

− |Lj |V 1ny
+ d(t) + ∆Aj

+x+(t)−∆Aj
+
x−(t)

−∆Aj
−x

+
(t) + ∆Aj

−
x
−

(t) + ∆Bj
+u+(t)

−∆Bj
+
u−(t)−∆Bj

−u+(t) + ∆Bj
−
u−(t)

xj(t+ 1) =
[
Aj − LjC

]
xj(t) +Bju(t) + Ljy(t) (37)

+ |Lj |V 1ny
+ d(t) + ∆Aj

+
x
+

(t)−∆Aj
+x
−

(t)

−∆Aj
−
x+(t) + ∆Aj

−x−(t) + ∆Bj
+
u+(t)

−∆Bj
+u−(t)−∆Bj

−
u+(t) + ∆Bj

−u−(t)

We will refer to an observer in the form (36)-(37) as glocal.
The advantage of considering a glocal observer lies in the fact
that thanks to the introduced feed, it can be guaranteed that the
dynamics of the estimation errors ej(t) = x(t) − xj(t) and

ej(t) = xj(t) − x(t) will be excited by non-negative inputs
even when changes of active mode induce their non-positivity
at some sample.
Proposition 3. Let Assumption 1 be satisfied, and for t0, tf ∈
N0:

Aj − LjC,Aj − LjC ∈ Rnx×nx
+ (38)

κ(t) = κj ∀t ∈ {t0, t0+1, . . . , t0+tf} (39)
Then, the relation:
xj(t) ≤ x(t) ≤ xj(t) ∀t ∈ {t0, t0 + 1, . . . , t0 + tf} (40)

holds provided that:
xj(t0) ≤ x(t0) ≤ xj(t0) (41)

Moreover, let us define:

ewj (t0 +N) ,
N−1∑
k=0

4∑
i=1

[
Aj − LjC

]N−k−1
wi

j(t0 + k) (42)

ewj (t0 +N) ,
N−1∑
k=0

4∑
i=1

[
Aj − LjC

]N−k−1
wi

j(t0 + k) (43)

If x(t0) ≤ xj(t0) or x(t0) ≥ xj(t0) and there exists N ∈ N
such that:

ewj (t0 +N) ≥ −
[
Aj − LjC

]N
ej(t0) (44)

or:
ewj (t0 +N) ≥ −

[
Aj − LjC

]N
ej(t0) (45)

respectively 1 , then:
xj(t0 +N) ≤ x(t0 +N) ≤ xj(t0 +N) (46)

1 Conditions (44)-(45) can be interpreted as requiring that the signals wi
j(t0+

k) and wi
j(t0 + k), i = 1, 2, 3, 4, are sufficiently exciting in the time interval

t0, . . . , t0 +N − 1.

Proof: The dynamics of the interval estimation errors ej(t) and

ej(t) are given by:

ej(t+ 1) =
[
Aj − LjC

]
ej(t) +

4∑
i=1

wi
j(t) (47)

ej(t+ 1) =
[
Aj − LjC

]
ej(t) +

4∑
i=1

wi
j(t) (48)

where wi
j(t), wi

j(t) can be obtained from wi
j(t), w

i
j(t) in (19)-

(26) by replacing xj → x, xj → x, Lj → Lj , Lj → Lj . The
proof that (41) implies (40) follows a similar reasoning as in
the proof of Proposition 1. Let us notice that the response of
(47)-(48) is given by:

ej(t0 +N) =
[
Aj − LjC

]N
ej(t0) + ewj (t0 +N) (49)

ej(t0 +N) =
[
Aj − LjC

]N
ej(t0) + ewj (t0 +N) (50)

Then, it is straightforward that (46) follows from (44)-(45). �
Remark 2. The last result of Proposition 3 implies that in the
cases when the instants of commutation are unknown, and we
cannot reinitialize the interval observer (36)-(37) properly for
the correct value of κ, if the inputs are sufficiently rich, then
the glocal interval observer will start to produce correct state
bounds after some transient. In fact, if the gains Lj and Lj are

designed such that the matrices Aj − LjC and Aj − LjC are
Schur stable, then the terms corresponding to the free responses
from initial conditions ej(t0), ej(t0) will converge to zero.

Hence, since the terms ewj (·), ewj (·) are always positive, if they

are also sufficiently exciting (e.g., but not necessarily, v(t) is
a white noise), then ej(·) and ej(·) will eventually become
positive and (46) will hold.

4. SIMULATION RESULTS

The aim of this section is to illustrate the comparison between
local and glocal observers by means of a simulation study. Let
us begin introducing the following system matrices:

A(κ) = A0 + κA•
B(κ) = B0 + κB•

with

A0 =

[
0.4 0.2
0.2 0.3

]
B0 =

[
4
2

]
A• =

[
0.2 0.1
−0.1 −0.3

]
B• =

[
2
−1

]
The unknown parameter κ is assumed to vary in the discrete set
{−0.5, 0, 0.5} according to the following switching scheme:

κ(t) :=

{−0.5 t ≤ 100
0.5 100 ≤ t < 200
0 t ≥ 200

Assuming that C = I , the local, global and glocal observer
gains have been computed such that the corresponding closed-
loop matrices equal the zero matrix. The bounds for local,
global and glocal observers are computed based on (17)-(18),
(34)-(35) and (47)-(48), respectively, assuming that each ele-
ment of the state and input matrices is affected by bounded
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uncertainty between −0.05 and 0.05. The results obtained for
an input u(t) = −3 + cos(0.06t) from an initial condition
[0, 0]

T ≤ x(0) ≤ [0.5, 0.5]
T , are depicted in Figs. 1-4. It is

worth to note that, as expected, the glocal bounds are more
conservative than the local ones, but the latter are more likely
to be violated due to changes in the system’s active mode.

In a second simulation study, a statistical analysis has been
performed to compare the estimation effectiveness of local and
glocal observers. A family of 1000 switched systems with a
fixed structure has been generated by random coefficient se-
lection. The system matrices have been designed to depend
linearly on the switching parameter κ(t), whose range is con-
strained to a discrete set containing three admissible values.
In the simulations the parameter κ(t) is forced to undergo a
switch at t = 200 and at t = 600. When a switch occurs, a
transient is triggered both in the local and the glocal observers,
with a consequent possible temporary violation of bounds (17)-
(18) and (47)-(48). Focusing on the time samples following the
switches, we are interested in comparing the number of systems
that are violating the bounds. The two scenarios are represented
in the histograms in Figs. 5-6. In both cases, it is clear that a
smaller proportion of glocal observers fails to remain within
the bounds compared to local observers and, furthermore, that
the rate of recovery for glocal observers is remarkably higher.
In conclusion, as already mentioned, on the one hand glocal ob-
servers introduce a larger conservativeness for the computation
of bounds but, on the other hand, they also guarantee a better
accuracy for the identification of correct switching modes.

0 50 100 150 200 250 300
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-35

-30

-25

-20

-15

-10

-5

0

5
State x

2
 - Local observers

x(t)
Est. bounds κ(t) = κ

1

Est. bounds κ(t) = κ
2

Est. bounds κ(t) = κ
3

Fig. 1. Evolution of the state x2: estimation using a bank of
local interval observers

5. CONCLUSIONS

This paper has analyzed how different types of interval ob-
servers behave after a commutation of active mode in uncertain
discrete-time switched systems, and how the effects of non-
positivity of interval state estimation errors can be reduced. In
particular, the performance of local interval observers has been
compared to the one obtained using glocal interval observers,
i.e. local observers fed by the information provided by a global
interval observer. The simulation results show that, although
glocal observers introduce conservativeness in the computation
of the interval bounds, they also guarantee a better accuracy for
the identification of correct switching modes.
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Fig. 2. Evolution of the state x2: estimation using a global
observer

0 50 100 150 200 250 300

Sample

-40

-35

-30

-25

-20

-15

-10

-5

0

5
State x

2
 - Glocal observers

x(t)
Est. bounds κ(t) = κ

1

Est. bounds κ(t) = κ
2

Est. bounds κ(t) = κ
3

Fig. 3. Evolution of the state x2: estimation using a bank of
glocal interval observers
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Fig. 5. Statistical analysis of bound violation due to the switch
at t = 200

Fig. 6. Statistical analysis of bound violation due to the switch
at t = 600

REFERENCES

J. Daafouz, P. Riedinger, and C. Iung. Stability analysis and
control synthesis for switched systems: a switched Lyapunov
function approach. IEEE Transactions on Automatic Control,
47(11):1883–1887, 2002.

D. Efimov, L. Fridman, T. Raissi, A. Zolghadri, and R. Seydou.
Interval estimation for LPV systems applying high order
sliding mode techniques. Automatica, 48(9):2365–2371,
2012.

D. Efimov, T. Raı̈ssi, W. Perruquetti, and A. Zolghadri. De-
sign of interval observers for estimation and stabilization of
discrete-time LPV systems. IMA Journal of Mathematical
Control and Information, 33(4):1051–1066, 2016.

H. Ethabet, D. Rabehi, D. Efimov, and T. Raı̈ssi. Interval
estimation for continuous-time switched linear systems. Au-
tomatica, 90:230–238, 2018a.

H. Ethabet, T. Raı̈ssi, M. Amairi, C. Combastel, and M. Aoun.
Interval observer design for continuous-time switched sys-
tems under known switching and unknown inputs. Interna-
tional Journal of Control, pages 1–14, 2018b.

A. Hakem, V. Cocquempot, and K. M. Pekpe. Switching time
estimation and active mode recognition using a data projec-
tion method. International Journal of Applied Mathematics
and Computer Science, 26(4):827–840, 2016.

S. Hara, J.-I. Imura, K. Tsumura, T. Ishizaki, and T. Sadamoto.
Glocal (global/local) control synthesis for hierarchical net-
worked systems. In 2015 IEEE Conference on Control Ap-
plications (CCA), pages 107–112. IEEE, 2015.

Z. He and W. Xie. Control of non-linear switched systems with
average dwell time: interval observer-based framework. IET
Control Theory & Applications, 10(1):10–16, 2016.

M. W. Hirsch and H. Smith. Monotone maps: A review. Journal
of Difference Equations and Applications, 11(4-5):379–398,
2005.

S. Ifqir, N. A. Oufroukh, D. Ichalal, and S. Mammar. Switched
interval observer for uncertain continuous-time systems. In
Proc. 20th IFAC World Congress, 2017.

C. Lee, Z. Ping, and H. Shim. On-line switching signal
estimation of switched linear systems with measurement
noise. In 2013 European Control Conference (ECC), pages
2180–2185. IEEE, 2013.

B. Niu, X. Zhao, X. Fan, and Y. Cheng. A new control method
for state-constrained nonlinear switched systems with appli-
cation to chemical process. International Journal of Control,
88(9):1693–1701, 2015.

H. Oubabas, S. Djennoune, and M. Bettayeb. Interval sliding
mode observer design for linear and nonlinear systems. Jour-
nal of Process Control, 61:12–22, 2018.

H. Rios, D. Efimov, J. Davila, T. Raı̈ssi, L. Fridman, and A. Zol-
ghadri. Non-minimum phase switched systems: HOSM-
based fault detection and fault identification via Volterra in-
tegral equation. International Journal of Adaptive Control
and Signal Processing, 28(12):1372–1397, 2014.

H. Rı́os, D. Mincarelli, D. Efimov, W. Perruquetti, and
J. Davila. Continuous and discrete state estimation for
switched LPV systems using parameter identification. Au-
tomatica, 62:139–147, 2015.

D. Rotondo, A. Cristofaro, V. Hassani, and T. A. Johansen.
Icing diagnosis in unmanned aerial vehicles using an LPV
multiple model estimator. IFAC-PapersOnLine, 50(1):5238–
5243, 2017a.

D. Rotondo, V. Hassani, and A. Cristofaro. A multiple model
adaptive architecture for the state estimation in discrete-
time uncertain LPV systems. In 2017 American Control
Conference (ACC), pages 2393–2398. IEEE, 2017b.

D. Rotondo, A. Cristofaro, and T. A. Johansen. Fault tolerant
control of uncertain dynamical systems using interval virtual
actuators. International Journal of Robust and Nonlinear
Control, 28(2):611–624, 2018a.

D. Rotondo, A. Cristofaro, T. A. Johansen, F. Nejjari, and
V. Puig. State estimation and decoupling of unknown inputs
in uncertain LPV systems using interval observers. Interna-
tional Journal of Control, 91(8):1944–1961, 2018b.

R. Sakthivel, M. Joby, P. Shi, and K. Mathiyalagan. Robust
reliable sampled-data control for switched systems with ap-
plication to flight control. International Journal of Systems
Science, 47(15):3518–3528, 2016.

Y. Wang, D. M. Bevly, and R. Rajamani. Interval observer
design for LPV systems with parametric uncertainty. Au-
tomatica, 60:79–85, 2015.

Y. Wang, G. Zheng, D. Efimov, and W. Perruquetti. Differentia-
tor application in altitude control for an indoor blimp robot.
International Journal of Control, 91(9):2121–2130, 2018.

X. Zhao, H. Liu, J. Zhang, and H. Li. Multiple-mode observer
design for a class of switched linear systems. IEEE Trans-
actions on Automation Science and Engineering, 12(1):272–
280, 2015.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4780


