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Abstract: This article presents a class of Stackelberg mean-field-type games with multiple
leaders and multiple followers. The decision-makers act in sequential order with informational
differences. The state dynamics is driven by jump-diffusion processes and the cost function is
non-quadratic and has a polynomial structure. The structures of Stackelberg strategies and
costs of the leaders and followers are given in a semi-explicit way in state-and- mean-field-
type feedback form. A sufficiency condition is provided using an infinite dimensional partial
integro-differential system. The methodology is extended to multi-level hierarchical systems.
It is shown that not only the set of decision-makers per level matters but also the number of
hierarchical levels plays a key role in the global performance of the system. We also identify
specific range of parameters for which the Nash equilibrium coincides with the hierarchical
solution independently of the number of layers and the order of play.

Keywords: Mean-field-type games, Stackelberg solutions, hierarchical game design,
semi-explicit solutions.

1. INTRODUCTION

One of the central questions in game theory is understand-
ing the difficulties that parties have in reaching a solu-
tion when decision-makers act in a sequential order with
different information structure. Informational differences
provide an appealing explanation for the solution concept.
A distinction between the order of play was introduced in
von Stackelberg (1934) within the context of game theory.
In this original work, he distinguished between the first
mover, called the primary decision-maker (the leader),
and the second mover, called the secondary decision-maker
(the follower). The idea is to investigate the best response
and the reaction of the decision-makers when the follower
can observe the move of the leader and subsequently acts.

Mean-field-type game theory studies a class of games in
which the payoffs and or state dynamics depend not only
on the state-action pairs but also the distribution of them.
This class of games offers several features:

? We gratefully acknowledge support from U.S. Air Force Office
of Scientific Research under grant number FA9550-17-1-0259. The
authors are members of the NYUAD Research Center on Stability,
Instability and Turbulence

• a single decision-maker can have a strong impact on
the mean-field terms,

• the expected payoffs are not necessarily linear with
respect to the state distribution,

• the number of decision-makers is not necessarily infi-
nite.

Games with non-linearly distribution-dependent quantity-
of-interest are very attractive in terms of applications
because the non-linear dependence of the payoff functions
in terms of state distribution allow us to capture risk mea-
sures which are functionals of variance, inverse quantile,
and or higher moments.

Only few works consider hierarchical structures in mean-
field related games. Open-loop Stackelberg solutions are
addressed in linear-quadratic setting in Lin et al. (2019);
Du and Wu (2019). In the context of large populations,
mean-field Stackelberg games are investigated in (Moon
and Basar, 2015; Bensoussan et al., 2015, 2017; Aver-
boukh, 2018).

Our contribution can be summarized as follows. This work
examines a class of hierarchical mean-field-type games
with multiple leaders and multiple followers. Based on
infinite dimensional partial integrodifferential equations
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(PIDEs), we provide semi-explicit solutions of a class
of master systems with hierarchical structure and non-
quadratic cost, which are not covered by the earlier works.

The rest of this article is structured as follows. We present
the model setup in Section 2. Section 3 investigates the
Nash equilibrium (no leader). Section 4 presents Stackel-
berg solution. Finally, concluding remarks are presented
in Section 5.

2. THE SETUP

The time horizon of the interaction is [t0, t1], t0 < t1.
There are I ≥ 1 agents. The set of agents is denoted
by I = {1, 2, . . . , I}. Agent i ∈ I has a control action
ui ∈ Ui = R. The state x is driven by Drift-Jump-Diffusion
of mean-field type given by

dx = bdt+ σdB +

∫
Θ

µ(., θ)Ñ(dt, dθ), x(t0) ∼ m(t0, .),

where
Drift: b,
Diffusion: Brownian motion B,

Jump: Ñ(dt, dθ) = N(dt, dθ)− ν(dθ)dt,

b, σ, µ(., θ), : [t0, t1]× R× P(R)×
I∏
j=1

Uj → R.

The performance functional of agent i is

Li(u,m0) = hi(x(t1),m(t1)) +

∫ t1

t0

li(t, x, u,m)dt,

where m(t, dy) = Px(t)(dy) is the probability measure of
the state x(t) at time t.

We assume the following information structure:

• perfect state measurement, i.e., all the decision-
makers observe the state x
• perfect knowledge of the model i.e., the model above

is known by all decision-makers.

In addition, each decision-maker is assumed to have a
computability capability such that is able to compute an
aggregative term, denoted by m, from the model. Let Ui
be the set of control strategies of decision-maker i that are
progressively measurable with the respect to the filtration
generated by the unions of events in {B,N}.

2.1 Games with polynomial cost

We investigate the mean-field-type game with the follow-
ing data: t0 = 0, t1 = T > 0,

li(t, x, u,m) = qi
(x− x̄)2ki

2ki
+ ri

(ui − ūi)2ki

2ki
+ ci(x− x̄)2ki−1(ui − ūi)
+

∑
j∈I\{i}

εij(x− x̄)2(ki−1)(ui − ūi)(uj − ūj)

+ q̄i
x̄2k̄i

2k̄i
+ r̄i

ū2k̄i
i

2k̄i
+ c̄ix̄

2k̄i−1ūi

+
∑
j 6=i

ε̄ij x̄
2(k̄i−1)ūiūj , (1a)

hi(x,m) = qiT
(xT − x̄T )2ki

2ki
+ q̄iT

x̄2k̄i
T

2k̄i
, (1b)

b(t, x, u,m) = b1(x− x̄) + b̄1x̄

+
∑
j∈I

[
b2j(uj − ūj) + b̄2j ūj

]
, (1c)

σ(t, x, u,m) = (x− x̄)σ̃, (1d)

µ(t, x, u,m, θ) = (x− x̄)µ̃(., θ), (1e)

x̄(t) =

∫
ym(t, dy), (1f)

ū(t) =

∫
u(t, y,m)m(t, dy), (1g)

where ki ≥ 1, k̄i ≥ 1, are natural numbers, and the
coefficients are time dependent. The coefficient functions
qi, ri, q̄i, r̄i, are nonnegative functions.

3. NASH MEAN-FIELD-TYPE EQUILIBRIUM

The risk-neutral mean-field-type game is given by

(I, Ui,Ui,E[Li])i∈I .

A risk-neutral Mean-Field-Type Nash Equilibrium is a
solution of the following fixed-point problem:

i ∈ I,
E[Li(u

∗,m0)]

= inf
ui∈Ui

E[Li(u
∗
1, . . . , u

∗
i−1, ui, u

∗
i+1, . . . , u

∗
I ,m0)].

Let V̂i(t,m) be the optimal cost-to-go from m at time
t ∈ (t0, t1) given the strategies of the others, i.e.,

V̂i(t,m) = inf
ui

E[hi(x(t1),m(t1))

+

∫ t1

t

li(t, x, u,m)dt′|m(t) = m].

Let V̂i,m be the Gâteaux derivative of V̂i(t, .) with the
respect to the measure m. Introduce the integrand Hamil-
tonian as

Hi(x,m, (V̂j,m, V̂j,xm, V̂j,xxm)j)

= inf
ui∈Ui

{
li + b V̂i,xm +

σ2

2
V̂i,xxm

+

∫
Θ

[V̂i,m(t−, x+ µ)− V̂i,m − µV̂i,xm]ν(dθ)

}
.

Denote the jump operator J as

J [φi] :=

∫
Θ

[φi,m(t−, x+ µ)− φi,m − µφi,xm]ν(dθ),

and let J∗ be the adjoint operator of J :

〈J [φ],m〉 = 〈φ, J∗[m]〉.
A sufficiency condition for a risk-neutral Nash equilibrium
system is given by the following (backward-forward) par-
tial integro-differential system

i ∈ I, (2a)

0 = V̂i,t(t,m) (2b)

+

∫
x

Hi(x,m, (V̂j,m, V̂j,xm, V̂j,xxm)j∈I)m(t, dx),

V̂i(t1,m) =

∫
m(t1, dy)hi(y,m(t1)), (2c)

mt = −(mb)x +
1

2
(mσ2)xx + J∗[m], (2d)

m(0) = m0. (2e)
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We refer the reader to Bensoussan et al. (2020) for a
derivation of this equilibrium system. The system (2) is
an infinite PIDE system in m and it provides the Nash
equilibrium values of the mean-field-type game. Notice
that the PIDE system, satisfied by {V̂i,m}i∈I , is not the

equilibrium value {V̂i}i∈I in (2). We use (2) to find risk-
neutral Nash mean-field-type equilibrium.

Proposition 1. A risk-neutral mean-field-type Nash equi-
librium is given in a semi-explicit way as follows:

unei = −ηi
(
x−

∫
ym(dy)

)
− η̄i

∫
ym(dy), (3a)

0 = −riη2ki−1
i −

∑
j 6=i

εijηj + b2iαi + ci, (3b)

0 = −r̄iη̄2k̄i−1
i −

∑
j 6=i

ε̄ij η̄j + b̄2iᾱi + c̄i, (3c)

V̂i(t,m) = αi

∫
x

(x−
∫
ym(dy))2ki

2ki
m(dx)

+ ᾱi
(
∫
ym(dy))2k̄i

2k̄i
, (3d)

0 = α̇i + qi + riη
2ki
i − 2kiciηi + 2ki

∑
j 6=i

εijηiηj

+ 2kiαi[b1 −
∑
j∈I

b2jηj ] + 2ki(2ki − 1)αi
1

2
σ̃2

+ αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ), (3e)

αi(T ) = qiT , (3f)

0 = ˙̄αi + q̄i + r̄iη̄
2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

∑
j 6=i

ε̄ij η̄iη̄j

+ 2k̄iᾱi[b̄1 −
∑
j

b̄2j η̄j ], (3g)

ᾱi(T ) = q̄iT , (3h)

for all i ∈ I with∫
ym(t, dy) =

[∫
ym(0, dy)

]
e

∫ t

0

[
b̄1−
∑

j
b̄2j η̄j

]
dt
, (3i)

whenever the above coefficient system admits a unique
solution. �

Proof. This proof is developed by solving the PIDE
system (2) using the following guess functional of agent
i as

V̂i(t,m) = αi(t)

∫
x

(x−
∫
ym(dy))2ki

2ki
m(dx)

+ ᾱi(t)
(
∫
ym(dy))2k̄i

2k̄i
,

where the coefficient functions αi, ᾱi need to be deter-
mined. We ommit details of this proof due to the lack
of space. �

The uniqueness of the coefficient system (3) in η requires a
strong condition. For example for k = 1, the determinant
must be non-zero. When the determinant is zero, the
resulting control strategies become non-admissible and the
costs become infinite. In the next section we investigate the
bi-level case with multiple leaders and multiple followers.

4. MULTIPLE LEADERS AND MULTIPLE
FOLLOWERS

We consider the description in (1) in a bi-level hierarchical
game with two and more leaders, i.e., |IL| ≥ 2, and two
and more followers, i.e., |IF | ≥ 2. We restrict our attention
to the admissible strategies which are Lipschitz in the state
x. Given the strategies of the leaders (ui)i∈IL ∈

∏
i∈IL Ui,

a risk-neutral best response strategy of follower j is a strat-
egy that solves infUj ELj . The set of risk-neutral best re-
sponses of j is denoted by rnBRj((ui)i∈IL , (uj′)j′∈IF \{j}).

A mean-field-type risk-neutral Nash equilibrium between
the followers given the first movers’ strategies (ui)i∈IL ∈∏
i∈IL Ui, is a strategic profile (uj , j ∈ IF ), of all followers

such that for every decision-maker j ∈ IF ,
uj ∈ rnBRj((ui)i∈IL ; (urn

j′ )j′∈IF \{j}).

The followers solve the following Nash game given the
strategy of the leaders (ui)i∈IL
j ∈ IF ,
0 = V̂j,t(t,m)+ (4a)∫
x

Hr
j (x,m, (V̂j′,m, V̂j′,xm, V̂j′,xxm)j′∈IF |(ui)i∈IL)m(t, dx),

V̂j(t1,m) =

∫
m(t1, dy)hj(y,m(t1)), (4b)

Hr
j = inf

uj∈Uj

{
lj + b V̂j,xm +

σ2

2
V̂j,xxm + J [V̂j,m]|(ui)i∈IL

}
,

(4c)

mt = −(mb)x +
1

2
(mσ2)xx + J∗[m], m(0) = m0. (4d)

Then the leader agents solve the following PIDE system:

i ∈ IL :

0 = V̂i,t(t,m)+ (5a)∫
x

Hr
i (x,m, (V̂i′,m, V̂i′,xm, V̂i,xxm)i′∈IL∪IF )m(t, dx),

V̂i(t1,m) =

∫
m(t1, dy)hi(y,m(t1)), (5b)

Hr
i = inf

ui∈Ui

{
li + b V̂i,xm +

σ2

2
V̂i,xxm + J [V̂i,m] (5c)

|{u∗j (., (ui)i∈IL)}j∈IF

}
, (5d)

mt = −(mb)x +
1

2
(mσ2)xx + J∗[m], m(0) = m0. (5e)

A minimizer of the integrand Hamiltonian Hr
i , denoted

by ussi = ussi (t, x,m, (V̂i′,m, V̂i′,xm, V̂i′,xxm)i′∈IL∪IF ), pro-
vides a candidate Stackelberg strategy of the leader i. A
mean-field-type risk-neutral Stackelberg solution among
multiple leaders and multiple followers is a strategy
(ussi )i∈IL , (u

ss
j )j∈IF , of all decision-makers such that

i ∈ IL,

ussi ∈ arg min
ui∈Ui

{
ELi(x, ui, (ussi′ )i∈IL\{i}, (u

ss
j )j∈IF ) :

ussj ∈ rnBRj((u
ss
i )i∈IL ; (ussj′ )j′∈IF \{j}

}
,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17163



and for every follower

j ∈ IF , ussj ∈ rnBRj((u
ss
i )i∈IL ; (ussj′ )j′∈IF \{j}).

Proposition 2. The risk-neutral Stackelberg mean-field-
type solution with multiple leaders and multiple followers
is given in a semi-explicit way as follows:

ussj = −ηj
(
x−
∫
ym(dy)

)
− η̄j

∫
ym(dy), j ∈ IF , (6a)

j ∈ IF ,
0 = −rjη

2kj−1
j −

∑
j′∈IF \{j}

εjj′ηj′ −
∑
i∈IL

εjiηi + b2jαj + cj ,

0 = −r̄j η̄
2k̄j−1
j −

∑
j′∈IF \{j}

ε̄jj′ η̄j′ −
∑
i∈IL

ε̄jiη̄i

+ b̄2jᾱj + c̄j ,

i ∈ IL,
0 = −riη2ki−1

i −
∑

i′∈IL\{i}

εii′ηi′ −
∑
j∈IF

εijηj + b2iαi

+
∑
j∈IF

εijηi
εji

(2kj − 1)rjη
2kj−2
j

−
∑
j∈IF

b2j
εji

(2kj − 1)rjη
2kj−2
j

αi + ci,

0 = −r̄iη̄2k̄i−1
i −

∑
i′∈IL\{i}

ε̄ii′ η̄i′ −
∑
j∈IF

ε̄ij η̄j + b̄2iᾱi

+
∑
j∈IF

ε̄ij η̄i
ε̄ji

(2k̄j − 1)r̄j η̄
2k̄j−2
j

−
∑
j∈IF

b̄2j
ε̄ji

(2k̄j − 1)r̄j η̄
2k̄j−2
j

ᾱi + c̄i,

and

V̂i(0,m) = αi(0)

∫
x

(x−
∫
ym0(dy))2ki

2ki
m0(dx)

+ ᾱi(0)
(
∫
ym0(dy))2k̄i

2k̄i
, (6b)

0 = α̇i + qi + riη
2ki
i − 2kiciηi + 2ki

∑
i′∈IL\{i}

εii′ηiηi′

+ 2ki
∑
j∈IF

εijηiηj

+ 2ki

b1 − ∑
i′∈IL

b2i′ηi′ −
∑
j∈IF

b2jηj

αi
+ 2ki(2ki − 1)αi

1

2
σ̃2

+ αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ), (6c)

αi(T ) = qiT , (6d)

0 = ˙̄αi + q̄i + r̄iη̄
2k̄i
i − 2k̄ic̄iη̄i

+ 2k̄i
∑

i′∈IL\{i}

ε̄ii′ η̄iη̄i′ + 2k̄i
∑
j∈IF

ε̄ij η̄iη̄j

+ 2k̄i{b̄1 −
∑
i′∈IL

b̄2i′ η̄i′ −
∑
j∈IF

b̄2j η̄j}ᾱi, (6e)

ᾱi(T ) = q̄iT , (6f)

with

∫
ym(t, dy) =

[∫
ym(0, dy)

]
e

∫ t

0
[b̄1−

∑
j
b̄2j η̄j ]dt′

, (6g)

whenever the above coefficient system admits a unique
solution. �

Proof. This proof is omitted for brevity. It is developed
by following same technique as in Proposition 1. �

Clearly, the mean-field-type Nash equilibrium (3) differs
from the Stackelberg solution (6) when the εij are non-
zero.

4.1 No control-coupling within classes

It follows from (6) that for εjj′ = 0 = ε̄jj′ for (j, j′) ∈ I2
F ,

the term ηj is explicitly given by

ηj =

{−∑i∈IL εjiηi + b2jαj + cj

rj

} 1
2kj−1

,

η̄j =

{
−
∑
i∈IL ε̄jiη̄i + b̄2jᾱj + c̄j

r̄j

} 1
2k̄j−1

.

No Leader. All Followers: In this case there is no leader.
All agents are followers. This case is similar to the model
proposed in the Nash game above. The solution is given
in (3).

One Leader and Multiple Followers : There is one leader
in IL and the remaining agents in IF are followers. I =
IL ∪ IF . We assume that the leader agent 1 ∈ IL uses
a state-and-mean-field type feedback strategy u1(t, x,m)
and each of the follower agent j ∈ IF finds state-and-
mean-field type feedback strategy uj(t, x,m, u1) given u1.
The followers solve a Nash game given the strategy of the
leader u1.

Multiple Leaders and One Follower: Since there is only
one follower the reaction set of the follower will be com-
puted given the strategies of the leaders.

All leaders and no follower: In this case there is no
follower. All agents are leaders. In terms of information
structure, this case is similar to the model proposed in the
Nash game above. The solution is given in (3).

4.2 Effect of the total number of leaders on the social cost:

We investigate the effect of the number of leaders in the
global performance of the system. The total cost at the
Stackelberg solution is

S(IL,m0) =
∑
i∈IL

V̂i(0,m0) +
∑
j∈IF

V̂j(0,m0).

For m0 = δx0
, and k̄i = k̄ ≥ 1, the total cost is

S(IL,m0) =

∑
i∈IL

ᾱi(0) +
∑
j∈IF

ᾱj(0)

 x2k̄
0

2k̄
.

Uniform coupling: When all other parameters are iden-
tical across the players except their role, S(IL,m0) can be
expressed as a function |IL|. It follows from (6) that

χ := |IL|,
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0 = −r̄(η̄fo)2k̄−1 − (|I| − χ− 1)ε̄η̄fo

− χε̄η̄lead + b̄2ᾱ
fo + c,

0 = −r̄(η̄lead)2k̄−1 − (χ− 1)ε̄η̄lead

− (|I| − χ)ε̄η̄fo + b̄2ᾱ
lead + c̄

+
ε̄(|I| − χ)(ε̄η̄lead − ᾱleadb̄2)

(2k̄ − 1)r̄(η̄fo)2k̄−2
,

ᾱlead(t0) = q̄t1 +

∫ t1

t0

{
q̄ + r̄(η̄lead)2k̄ − 2k̄c̄η̄lead

+ 2k̄ε̄η̄lead[(χ− 1)η̄lead + (|I| − χ)η̄fo]

+ 2k̄ᾱlead[b̄1 − b̄2η̄leadχ− b̄2η̄fo(|I| − χ)]

}
dt

ᾱfo(t0) = q̄t1 +

∫ t1

t0

{
q̄ + r̄(η̄fo)2k̄ − 2k̄c̄η̄fo

+ 2k̄ε̄η̄fo[(|I| − χ− 1)η̄fo + χη̄lead]

+ 2k̄ᾱfo[b̄1 − b̄2η̄leadχ− b̄2η̄fo(|I| − χ)]

}
dt.

The optimal number of leaders is given by

|IL| ∈ arg min
χ

[χᾱlead(0) + (|I| − χ)ᾱfo(0)],

where ᾱ depends on χ as well. We observe that the
later function is not necessarily monotone in χ = |IL|.
This means that increasing the number of leaders in
the interaction does not necessarily improve the global
performance of the system.

5. FULLY HIERARCHICAL GAME

In the previous sections we had only bi-level problems.
Here, we make as many levels as the number of decision-
makers. There are |I| hierarchical levels. In each layer i,
decision-maker i chooses a control strategy ui knowing
the control strategy of the preceding decision-makers i.e.,
{i− 1, . . . , 1}. This becomes a sequential decision-making
problem. We use a backward induction method to solve the
hierarchical game problem. This means that the decision-
making problem at the last layer I, which is the reaction of
decision-maker I can be seen as a mean-field-type control
problem. This is because at i−th level, the strategies
(ui′)i′∈{1,...,i−1} are already known by decision-maker i.

Proposition 3. The risk-neutral I−level hierarchical mean-
field-type solution is given in a semi-explicit way as follows:

uhsi = −ηi
(
x−

∫
ym(dy)

)
− η̄i

∫
ym(dy), i ∈ I, (7a)

V̂i(0,m) = αi(0)

∫
x

(x−
∫
ym0(dy))2ki

2ki
m0(dx)

+ ᾱi(0)
(
∫
ym0(dy))2k̄i

2k̄i
, (7b)

with∫
ym(t, dy) =

[∫
ym(0, dy)

]
e

∫ t

0

[
b̄1−
∑

j
b̄2j η̄j

]
dt
, (7c)

where coefficient functions are given by

Level 1 :

0 = −r1η
2k1−1
1 + c1 −

I∑
j=2

ε1,jηj

+

I∑
j=2

ε1,jηi
εji

(2kj − 1)rj
η
−2(kj−1)
j

+

b2,1 −
I∑
j=2

b2j
εj1

(2kj − 1)rj
η
−2(kj−1)
j

α1,

0 = α̇1 + q1 + r1η
2k1
1 − 2k1c1η1 + 2k1

I∑
j=2

ε1jη1ηj

+ 2k1{b1 − b21η1 −
I∑
j=2

b2jηj}α1

+ 2k1(2k1 − 1)α1
1

2
σ̃2

+ α1

∫
Θ

[(1 + µ̃)2k1 − 1− 2k1µ̃]ν(dθ),

α1(T ) = q1T ,

0 = −r̄1η̄
2k̄1−1
1 + c̄1 −

I∑
j=2

ε̄1,j η̄j

+

I∑
j=2

ε̄1,j η̄1
ε̄j1

(2k̄j − 1)r̄j
η̄
−2(k̄j−1)
j

+

b̄21 −
I∑
j=2

b̄2j
ε̄j1

(2k̄j − 1)r̄j
η̄
−2(k̄j−1)
j

 ᾱ1,

0 = ˙̄α1 + q̄1 + r̄1η̄
2k̄1
1 − 2k̄1c̄1η̄1 + 2k̄1

I∑
j=2

ε̄1j η̄iη̄j

+ 2k̄1{b̄1 − b̄21η̄1 −
I∑
j=2

b̄2j η̄j}ᾱ1,

ᾱ1(T ) = q̄1T ,

Level i :

0 = −riη2ki−1
i + ci −

i−1∑
i′=1

εI−1,i′ηi′ −
I∑

j=i+1

εi,jηj

+

I∑
j=i+1

εi,jηi
εji

(2kj − 1)rj
η
−2(kj−1)
j

+

b2i − I∑
j=i+1

b2j
εji

(2kj − 1)rj
η
−2(kj−1)
j

αi,
0 = α̇i + qi + riη

2ki
i − 2kiciηi + 2ki

i−1∑
i′=1

εii′ηiηi′

+ 2ki

I∑
j=i+1

εijηiηj

+ 2ki{b1 −
i−1∑
i′=1

b2i′ηi′ − b2iηi −
I∑

j=i+1

b2jηj}αi
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+ 2ki(2ki − 1)αi
1

2
σ̃2

+ αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ),

αi(T ) = qiT ,

0 = −r̄iη̄2k̄i−1
i + c̄i −

i−1∑
i′=1

ε̄I−1,i′ η̄i′ −
I∑

j=i+1

ε̄i,j η̄j

+

I∑
j=i+1

ε̄i,j η̄i
ε̄ji

(2k̄j − 1)r̄j
η̄
−2(k̄j−1)
j

+

b̄2i − I∑
j=i+1

b̄2j
ε̄ji

(2k̄j − 1)r̄j
η̄
−2(k̄j−1)
j

 ᾱi,
0 = ˙̄αi + q̄i + r̄iη̄

2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

i−1∑
i′=1

ε̄ii′ η̄iη̄i′

+ 2k̄i

I∑
j=i+1

ε̄ij η̄iη̄j

+ 2k̄i

b̄1 − i−1∑
i′=1

b̄2i′ η̄i′ − b̄2iη̄i −
I∑

j=i+1

b̄2j η̄j

 ᾱi,
ᾱi(T ) = q̄iT ,

Level I :

ηI =

(
−
∑I−1
j=1 εI,jηj + b2IαI + cI

rI

) 1
2kI−1

,

0 = α̇I + qI + rIη
2kI
I − 2kIcIηI + 2kI

I−1∑
i′=1

εIi′ηIηi′

+ 2kI{b1 −
I−1∑
i′=1

b2i′ηi′ − b2IηI}αI

+ 2kI(2kI − 1)αI
1

2
σ̃2

+ αI

∫
Θ

[(1 + µ̃)2kI − 1− 2kI µ̃]ν(dθ),

αI(T ) = qIT ,

η̄I =

(
−
∑I−1
j=1 ε̄I,j η̄j + b̄2I ᾱI + c̄I

r̄I

) 1
2k̄I−1

,

0 = ˙̄αI + q̄I + r̄I η̄
2k̄I
I − 2k̄I c̄I η̄I + 2k̄I

I−1∑
i′=1

ε̄Ii′ η̄I η̄i′

+ 2k̄I{b̄1 −
i−1∑
i′=1

b̄2i′ η̄i′ − b̄2I η̄I}ᾱI ,

ᾱI(T ) = q̄IT ,

whenever these equations admit a solution. �

Proof. This proof is omitted for brevity. It is developed
by following same technique as in Proposition 1. �

We observe that

• For εij 6= 0, ε̄ij 6= 0, the order of the play matters
because of the informational difference between the

decision-makers at different level of hierarchy in (7).
One open question that we leave for future inves-
tigation is to find the optimal ordering among all
permutations of heterogenous decision-makers.
• When all the εij and ε̄ij are zero, the Nash equilibrium

coincides with the bi-level solution, which also coin-
cides with any level hierarchical solution. The order
of the play and the informational difference does not
generate an extra advantage for the first mover in this
particular case.

CONCLUSIONS

We have studied a hierarchical mean-field-type game struc-
ture with state dynamics driven by jump-diffusion pro-
cesses and with non-quadratic cost functionals. We have
computed, in a semi-explicit manner, the Stackelberg equi-
librium corresponding to different scenarios. The consid-
ered cases comprise a bi-level case with multiple either
leaders or followers, and the case involving several levels.
Besides, a discussion about the circumstances under which
the Nash equilibrium coincides with the Stackelberg solu-
tion has been developed.
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