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Abstract: In this work, we propose two methods to design a dynamic periodic event-triggered
controller that stabilizes nonlinear plants using static state feedback. The design methodology
begins by assuming the knowledge of a continuous-time state-feedback controller that stabilizes
the nonlinear plant. Considering an event-driven controller updation, the resultant closed-loop
plant is modelled as a hybrid system. Two approaches are proposed for the event-triggering
mechanism (ETM) depending on continuous availability of states. Each method provides an
ETM and an upper bound on the sampling period that ensures closed-loop stability. We provide
some remarks comparing the two approaches and substantiate them through an illustrative
example.
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1. INTRODUCTION

Digital implementation of control systems in a plant typ-
ically involves sampling available states or outputs and
executing the computed control inputs at the actuators.
Usually the sampling and execution of control tasks is
periodic giving way to sampled-data control systems. A
possible drawback of these systems is that periodic con-
trollers provide needless inputs even when the performance
is satisfactory. In most cases, this results in unnecessary
energy consumption and actuator wear. Compared to the
traditional approach, event-triggered control (ETC) has
been shown to significantly reduce the number of sam-
plings (and controller updates) in Nesic et al. [2009], Mazo
et al. [2010] and the references therein. Central to ETC,
however, is the design of ETM that makes decisions on
signal transmission and controller updation. Usually ETM
is evaluated continuously which leads to usage of more en-
ergy resources than intended defeating the primary motive
of ETC. To overcome the necessity of continuous monitor-
ing, in recent years a new approach termed periodic event-
triggered control (PETC) has been proposed where the
ETM is evaluated periodically, see Heemels et al. [2015].

PETC for linear plants has been studied via three ap-
proaches, namely: 1) impulsive system approach; 2) per-
turbed linear system approach; and 3) piecewise linear
system approach, see Heemels et al. [2013]. However, in
this work we are interested in nonlinear systems and as
mentioned in Heemels et al. [2015], several stability results
obtained for linear plants are difficult to generalize to
nonlinear plants. Instead, emulation-based approaches are
pursued to build PETC schemes for nonlinear plants with
a focus on designing the sampling period and the ETM.

? This work was supported by NSERC and an Alberta EDT Major
Innovation Fund.

One way to construct a PETC scheme is to start from
an existing continuous-time event-triggered controller that
stabilizes the nonlinear plant, see Postoyan et al. [2013].
The discussion in this case is focused on re-designing the
ETM and systematically designing the sampling period, or
its bounds, that ensures stability. Alternatively relaxing
the assumption on existence of a continuous-time event-
triggered controller, Wang et al. [2016] started with an
existing continuous-time state feedback controller and
focused on designing ETM. In this method, the design of
sampling periods was a consequence of the hybrid systems
approach adopted.

Contrary to Postoyan et al. [2013] and Wang et al. [2016],
this work proposes two methodologies to construct dy-
namic PETC schemes for stabilizing nonlinear plants with
state feedback. Dynamic event-triggered control, intro-
duced in Girard [2015], has been shown to have potential
in significantly reducing the number of events triggered for
the same level of performance compared to static ETC, see
Borgers et al. [2016], Dolk et al. [2017], Yu et al. [2019].
Dynamic PETC for linear systems was first discussed in
Borgers et al. [2017]. To the best of our knowledge, dy-
namic PETC scheme for nonlinear systems has not been
investigated yet.

The two methods proposed in this paper differ in the
construction of dynamic ETM; one requires continuous
availability of states of the plant and the other relaxes
this assumption. We start by assuming the knowledge of
an existing static state-feedback controller that stabilizes
the nonlinear plant. Subsequently, we define auxilliary
variables that facilitate the formulation of dynamic ETM
evaluated at specific sampling instants (event-verifying
instants). The dynamic ETM and an upper bound on
the sampling period, called maximum allowable sampling
period (MASP), is obtained as a consequence of stability
analysis.
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This paper is organized as follows. Section 2 introduces
some standard notations and specific definitions used in
the paper. The description and formulation of the problem
is addressed in Section 3. Section 4 discusses two methods
of dynamic PETC schemes providing stability analysis
in each case. An illustrative example discussing the two
methods is provided in Section 5 followed by conclusive
remarks in Section 6.

2. PRELIMINARIES

Denote R to be set of real numbers, Z to be the set of
integers then R≥0 = [0,∞) and Z≥0 = {0, 1, 2, . . . }. Let |x|
be the Euclidean norm of an n-dimensional vector x ∈ Rn.
A continuous function α : [0, a)→ R≥0 is said to be of class
K if it is strictly increasing and α(0) = 0. Further, α is said
to be of class K∞ if α(r) → ∞ as r → ∞. A continuous
function β : [0, a)×R≥0 → R≥0 is said to be of class KL if
for a fixed r ∈ R≥0, β(·, r) belongs to classK and for a fixed
s ∈ [0, a), β(s, ·) decreases to zero. The Clarke derivative,
in Clarke [1983], is defined as follows: for a locally Lipschitz
function U : Rn → R and a vector v ∈ Rn, U◦(x, v) :=

lim suph→0+,y→x
U(y+hv)−U(y)

h . For a C1 function U(·),
the Clarke derivative U◦(x, v) reduces to the standard
directional derivative 〈∇U(x), v〉, where 〈·, ·〉 is the inner
product and∇U(·) is the classical gradient. This definition
is useful to treat locally Lipschitz functions which are
not differentiable everywhere, specifically applicable for
Lyapunov functions defined in our study.

The following lemma is used to show asymptotic stability
via Lyapunov analysis that is discussed in Section 4.
Lemma 1. (Clarke [1983], Liberzon et al. [2014]). Consider
two functions U1 : Rn → R and U2 : Rn → R that have
well-defined Clarke derivatives for x ∈ Rn and v ∈ Rn.
Introduce three sets A := {x : U1(x) > U2(x)},B := {x :
U1(x) < U2(x)}, Ω := {x : U1(x) = U2(x)}. Then for any
v ∈ Rn, the function U(x) := max{U1(x), U2(x)} satisfies
U◦(x; v) = U◦1 (x; v) for x ∈ A, U◦(x; v) = U◦2 (x; v) for
x ∈ B, and U◦(x; v) ≤ max{U◦1 (x; v), U◦2 (x; v)} for x ∈ Ω.

3. PROBLEM FORMULATION

Consider the following nonlinear plant model
ẋ = f(x, u), (1)

where x ∈ Rn is the state and u ∈ Rm is the control
input. The function f : Rn × Rm → Rn is assumed to
be locally Lipschitz continuous. It is assumed that the full
state vector x is measured, and thus there exists a static
state-feedback controller stabilizing the origin of (1):

u = κ(x), (2)
where κ : Rm → Rn is the controller gain function.

Due to the limited communication resources, we imple-
ment the controller in (2) in a periodic event-triggered
manner. Define a time sequence {si}∞i=0 that is used to
check event occurrence such that

ε ≤ si+1 − si ≤ T, (3)
for all i ∈ Z≥0. The upper bound T > 0 is to be designed,
and the minimum time ε ∈ (0, T ] between the two consec-
utive event-verifying instants, si and si+1, is decided by
the hardware constraints. Further, let {tk}∞k=0 ⊂ {si}∞i=0

be a subsequence denoting the triggering instants whose
construction is discussed shortly.

When an event occurs at time tk according to some
designed event-triggering condition, the state x(tk) will
be broadcasted to the controller node that updates the
control signal. Denote x̂(t) := x(tk), t ∈ [tk, tk+1), as
the latest broadcasted state. The periodic event-triggered
state-feedback controller is then given by

u = κ(x̂). (4)

In this work, we will implement a dynamic periodic event-
triggering condition, which involves the following piecewise
continuous auxiliary variable η ∈ R≥0 governed by

η̇ = fc(η, x, e), t ∈ [si, si+1);

η(t+) = gs(η, x, e), t ∈ {si} \ {tk};
η(t+) = gt(η, x, e), t ∈ {tk};

(5)

where e = x̂ − x is the transmission error with e(tk) =
0, k ∈ Z≥0 upon event occurrence. The functions fc, gs, gt :
R≥0×Rn×Rn → R are to be designed with fc(0, x, e) ≥ 0
for all x, e ∈ Rn. The considered dynamic ETM, evaluated
at si, is a condition in the following form:

tk+1 = min{t > tk | t ∈ {si}∞i=0, gs(η, x, e) < 0} (6)
which results in the generation of subsequence {tk}∞k=0.
The schematic in Fig. 1 depicts the two sequences. With-
out loss of generality, we assume that the event is triggered
at the initial instant, i.e., e(0) = 0 and t0 = s0 = 0.

Let τ ∈ R≥0 keep track of the time elapsed since the last
event-verifying instant with the dynamics:{

τ̇ = 1, when τ ∈ [0, T ];

τ+ = 0, when τ ∈ [ε, T ].

We thus model the complete system as the following hybrid
system model:

flow map: q̇ = F (q), q ∈ C;

jump map: q+ ∈ G(q), q ∈ D,
(7)

where the augmented state q := (x, e, τ, η), the sets
C := {q ∈ R2n+2 | τ ∈ [0, T ], η ∈ R≥0};
D := {q ∈ R2n+2 | τ ∈ [ε, T ], η ∈ R≥0}, (8)

and the functions

F (q) =

 f(x, κ(x+ e))
−f(x, κ(x+ e))

1
fc(η, x, e)

 ,

G(q) =




x

0

0

gt(η, x, e)

 , gs(·) < 0;


x

e

0

gs(η, x, e)

 , gs(·) > 0;




x

0

0

gt(η, x, e)

 ,


x

e

0

gs(η, x, e)


 , gs(·) = 0.

(9)
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si+0 si+1 si+2 si+3 si+15 si+16 si+17 si+18

tk tk+1 tk+2

Fig. 1. Sequence of event-verifying instants si and trigger-
ing instants tk.

Here, the flow set C is such that the system flows between
any two event-verifying instants, say [si, si+1], and jumps
at the event-verifying instants, i.e., at both {si, si+1}. It is
important to note that the flow map F (q) and the jump
map G(q) in (9), are continuous and outer semi-continuous
respectively. This construction in addition to C and D
being closed subsets ensures nominal well-posedness of the
hybrid model in (7), see Goebel et al. [2012].

The main objective of this work is to design the upper
bound T and functions fc, gs, gt in (5) such that the closed-
loop system in (7) is asymptotically stable, that is, there
exists a KL-class function β such that for any initial state
x(0, 0),

‖ϕ(t, j)‖ ≤ β(‖x(0, 0)‖ , t+ j),

for all t ∈ R≥0 and j ∈ Z≥0 with ϕ := (x, e).

4. MAIN RESULTS

In this section, we will provide two kinds of dynamic
periodic event-triggering conditions based on different
assumptions on the system. In the first one, the ETM is
supposed to read the state continuously (while the event
is still checked for at discrete event-verifying instants,
si). For the second kind, an ISS-Lyapunov function with
a linear decay rate will be used explicitly in the event-
triggering condition.

4.1 Method I

To design the upper bound T and dynamics of η, we
start by introducing two assumptions, similar to those in
Wang et al. [2016], made on the hybrid system in (7).
Assumption 1: For the closed-loop system in (7), there
exist locally Lipschitz functions W : Rn → R≥0 and
V : Rn → R≥0, αW , ᾱW , αV , ᾱV , αV ∈ K∞, a continuous
function H : R → R≥0, and constant L, γ > 0 such that
the following holds:

(1) For any e ∈ Rn, αW (‖e‖) ≤W (e) ≤ ᾱW (‖e‖);
(2) For any x ∈ Rn and almost all e ∈ Rn,

〈∇W (e),−f(x, κ(x+ e))〉 ≤ LW (e) +H(x);

(3) For any x ∈ Rn, αV (‖x‖) ≤ V (x) ≤ ᾱV (‖x‖);
(4) For almost all x ∈ Rn and any e ∈ Rn,

〈∇V (x), f(x, κ(x+ e))〉 ≤ − αV (‖x‖) + γ2W 2(‖e‖)
−H2(x).

Assumption 2: There exists a constant lα > 0 such that
ᾱV (‖s‖) ≤ lαH2(s) for all s ∈ Rn.

Items (3) and (4) in Assumption 1 imply that the system
ẋ = f(x, κ(x + e)) is input-to-state stable (ISS) with
respect to W (e), and V (x) is the corresponding ISS-
Lyapunov function.

Subsequently, to design the upper bound T , we introduce
the following concept of maximum allowable sampling
period (MASP). For a given λ ∈ (0, 1), define T0(λ) as

T0(λ) =



1

Lµr
arctan

r(1− λ)
2γλ

Lµ(1+λ)
+ λ2+1

λ+1

γ > Lµ

1− λ
Lµ(1 + λ)

γ = Lµ

1

Lµr
arctanh

r(1− λ)

2 γλ
Lµ(1+λ)

+ λ2+1
λ+1

γ < Lµ,

(10)

where r :=

√∣∣∣( γ
Lµ

)2 − 1
∣∣∣ and Lµ := L + µ with a

sufficiently small constant µ > 0. When λ and µ go to zero,
T0(λ) would become the MASP, see Nesic et al. [2009]. By
choosing an appropriate value for the design parameter λ,
the upper bound T = T0(λ) is determined. Furthermore,
we have the following lemma of T0(λ).
Lemma 2. (Nesic et al. [2009]). Let θ : R≥0 → R be the
solution to

θ̇(s) =

{
−2Lµθ(s)− γ(θ2(s) + 1), s ∈ [0, T0(λ)];

0, s > T0(λ),

with θ(0) = 1
λ . Then θ(s) is monotonically decreasing and

θ(s) = λ for s ≥ T0(λ).

The following theorem provides a method to design the
event-triggering condition in (5-6).
Theorem 3. Under Assumptions 1-2, if the functions in (5)
are given as
fc(η, x, e) =− βcη + σαV (‖x‖),
gs(η, x, e) =η + max{ρV (x), γλW 2(e)}

−max{ρV (x),
1

λ
γW 2(e)},

gt(η, x, e) =η + max{ρV (x), γλW 2(e)} − ρV (x),

(11)

where βc > 0, σ ∈ (0, 1), and ρ satisfies ργlα ≤ λ, then
the closed-loop system in (7) is asymptotically stable.

Proof. Consider the following Lyapunov function
U(q) = V (x) + max{γθ(τ)W 2(e), ρV (x)}+ η, (12)

where θ(·) is defined in Lemma 2. We start by considering
stability properties on the flow set, i.e., between two event-
verifying instants, and divide the analysis into three sub-
cases depending on the resultant Lyapunov function U(q).

Case I: When ρV (x) > γθW 2(e), one has

γ2W 2(e) <
γρV (x)

θ
≤ γρV (x)

λ
≤ V (x)

lα
,

which leads to
U◦ =V̇ + ρV̇ + fc(η, x, e)

≤(1 + ρ)
(
− αV (‖x‖) +

V (x)

lα
−H2(x)

)
+ fc(η, x, e)

≤− (1 + ρ− σ)αV (‖x‖)− βcη,
(13)

where the first inequality uses Assumptions 1 and 2.

Case II: When ρV (x) < γθW 2(e) then
U◦ =V̇ + 2γθW (e)Ẇ (e) + γθ̇W 2(e) + fc(η, x, e)

≤− αV (‖x‖) + γ2W 2(e)−H2(e) + fc(η, x, e)

+ 2γθW (e)(LW (e) +H(x))

− γW 2(e)[2Lµθ + γ(θ2 + 1)]

≤− 2µλγW 2(e)− (1− σ)αV (‖x‖)− βcη.

(14)
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Case III: Finally, if ρV (x) = γθW 2(e) then from Lemma
1 it follows

U◦ ≤max{−ραV (||x||),−2µλγW 2(e)}
− (1− σ)αV (||x||)− βcη

(15)

Then based on the definition of U and Lemma 1, (13-14)
imply that there exists a positive function Γ : R → R≥0
such that

〈∇U(q), F (q)〉 ≤ −Γ(U(q)), q ∈ C, (16)
where Γ(s) is decided by ραV (s), βcs and max{2µλγs, (1−
σ)αV (s)}.
Next, we examine stability of the system on jump sets, i.e.,
at event-verifying instants. The analysis here is divided
into two cases depending on the triggering of an event
which is decided by the sign of gs(η, x, e), as defined in
(9).

Case I: When gs(η, x, e) ≥ 0, we have

U(G(q))− U(q) =V (x) + max{ρV (x), γ
1

λ
W 2(e)}

− V (x)−max{ρV (x), γθW 2(e)}
+ gs(η, x, e)− η

= max{ρV (x), γλW 2(e)}
−max{ρV (x), γθW 2(e)}

≤0,

(17)

where the last inequality is due to θ(τ) ≥ λ when τ ≤
T0(λ).

Case II: When gs(η, x, e) < 0, then we have
U(G(q))− U(q) =(1 + ρ)V (x) + gt(η, x, e)− V (x)

−max{ρV (x), γθW 2(e)} − η
≤0.

(18)

Combining (17-18) leads to
U(G(q))− U(q) ≤ 0, (19)

for all q ∈ D. Therefore, the proof is completed following
a similar line in Nesic et al. [2009] based on (16) and (19).

2

Remark 1: A static version of the triggering condition in
Theorem 3 can be given as

tk+1 = min{t ∈ {si}, t > tk|γW 2(e) > λρV (x)}, (20)
which has the similar form of that in Wang et al. [2016]. By
selecting ρ = λ

γlα
, one can see that there is a tradeoff be-

tween the event-verifying periods and the inter-event steps
(the number of verifying instants between two consecutive
events), that is, a smaller λ would increase T0(λ) but would
make it easier for the triggering condition (in Theorem 3
or (20)) to be satisfied.

Remark 2: By introducing the nonnegative variable η, the
dynamic triggering condition in Theorem 3 can discard
some transmissions even when γW 2(e) > λρV (x). Thus,
the capacity of dynamic triggering condition to increase
η plays a key role in prolonging the inter-event times.
From (11), fc(η, x, e) can provide some increment when
x is large, while gt(η, x, e) deals with the case of large e.
Note that η cannot increase by the jump with gs(η, x, e).

The main drawback of (11) is requiring the event trigger to
continuously read the state measurement and conducting
the integral operation. A direct solution is to modify
fc(η, x, e) as

fc(η, x, e) = −βcη. (21)
However, such an fc would impair the capacity to increase
η. The main problem of Method I is that the x-related part
of U in (12) cannot offer any decrease when the system
jumps. Thus, to solve this problem, some new Lyapunov
function should be applied.

4.2 Method II

In this subsection, we will provide another method to
design the dynamic triggering condition which only needs
to read the state x at the discrete event-verifying instants.
To this end, we revise Assumption 1 into the following
form.

Assumption 3: Suppose that Assumption 1 holds with
αV (‖x‖) = αvV (x).

Assumption 3 means that the Lyapunov function V con-
verges exponentially in the absence of measurement error
e. Then based on this assumption, we introduce the fol-
lowing theorem.
Theorem 4. Under Assumptions 2-3, if the functions in (5)
are given as

fc(η, x, e) =− βcη,
gs(η, x, e) =η + max{eaτρV (x), γλW 2(e)}

−max{ρV (x),
1

λ
γW 2(e)},

gt(η, x, e) =η + max{eaτρV (x), γλW 2(e)} − ρV (x),
(22)

where βc > 0 and design parameters ρ, a, b satisfy

a =
αvγlα
λ

, b = eaT0 , ρ =
λ

γlαb
, (23)

then the closed-loop system in (7) is asymptotically stable.

Proof. Consider the following Lyapunov function:
O(q) = V (x) + max{γθ(τ)W 2(e), eaτρV (x)}+ η, (24)

where θ(τ) is governed by Lemma 2. Similar to the analysis
in Method I, we first study the behavior of O between two
consecutive event-verifying instants.

Case I: When eaτρV (x) > γθW 2(2), it follows that

γ2W 2(e) <
eaτγρV (x)

θ
≤ eaτV (x)

lαb

where b = λ
γlαρ

. Furthermore, we have

O◦ =V̇ + aeaτρV + eaτρV̇ + fc(η, x, e)

≤− αvV (x) + γ2W 2(e)−H2(x) + aeaτρV − βcη
+ eaτρ(−αvV (x) + γ2W 2(e)−H2(x)). (25)

According to (23), a is designed so that αv ≥ aeaτρ and
eaτ ≤ b since τ ≤ T0(λ). Then, (25) implies
O◦ =− αvρeaτV (x) + (1 + eaτρ)(γ2W 2(e)−H2(x))

− βcη

≤− αvρeaτV (x)− βcη + (1 + eaτρ)(
eaτ

b
− 1)H2(x)

≤− αvρeaτV (x)− βcη. (26)
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Case II: When eaτρV (x) < γθW 2(2), the derivation is
similar to (14) and results in

O◦ ≤− 2µλγW 2(e)− αvV (x)− βcη. (27)

Case III: When eaτρV (x) = γθW 2(2) from Lemma 1 it
follows
O◦ ≤max{−αvρeaτV (x),−2µλγW 2(e)− αvV (x)}

− βcη.
(28)

Next, consider analysis at jumps that occur at event-
verifying instants. Again, similar to Method I, we have
the following two cases depending on event occurrence.

Case I: When gs(η, x, e) ≥ 0, we have

O(G(q))−O(q) =V (x) + max{ρV (x), γ
1

λ
W 2(e)}

− V (x)−max{eaτρV (x), γθW 2(e)}
+ gs(η, x, e)− η

≤0.
(29)

Case II: When gs(η, x, e) < 0, it follows that
O(G(q))−O(q) =(1 + ρ)V (x) + gt(η, x, e)− V (x)

−max{eaτρV (x), γθW 2(e)} − η
≤0.

(30)

Therefore, the proof is completed by combining (26-30).

2

Remark 3: To implement the dynamic triggering condition
in Theorem 4, at each event-verifying instant si, i ∈ Z≥1,
the event trigger needs to record the time si − si−1 and
calculate ea(si−si−1). In the special case that the event is
detected periodically, both of them are constants that can
be determined offline.

Remark 4: Compared to Theorem 3, the method in this
subsection can provide some extra capacity to increase η
at the jump. Before the static condition γW 2(e) > λρV (x)
is violated, both gs(η, x, e) and gt(η, x, e) must enlarge the
value of η. This feature assists in improving the inter-event
time and avoids continuous reading of state measurements
between two successive event-verifying instants.

Remark 5: The main drawback of Method II is us-
ing the linear decay rate αv and its corresponding ISS-
Lyapunov function explicitly. Although Praly and Wang
[1996] showed that it is not restrictive to modify the ISS-
Lyapunov function in Assumption 1 to satisfy Assumption
3, note that if the ISS-Lyapunov function V for Method
II is derived by relaxing H(x) used in Assumption 1 for
Method I then this directly affects the gain γ associated
with the error e. This increased γ shrinks ρ in (23) and so
the event-triggering condition is easily violated compared
to that of Method I. This is demonstrated by the difference
in average numbers of triggers between Table 1 and Table
2 in the numerical example in Section 5.

Remark 6: If the plant in (1) is linear, then Assumption 3
is not necessary, since it is trivial to find a quadratic ISS-
Lyapunov function with a linear decay rate in Assumption
1. In this case, Method II would generate less events than
Method I with fc in (21). Thus, one may prefer to use

Method II when the nonlinearity of the plant is weak and
no state information is available to the ETM continuously.

5. SIMULATIONS

As an illustrative example, the following locally Lipschitz
nonlinear plant is considered

ẋ = −x3 + 0.5x2 + u, u = −2x. (31)
The corresponding event-triggered controller takes the
form u = −2x̂. For the plant in (31), the correspond-
ing Lyapunov functions and relevant quantities for each
method are as follows:

Method I (M.I): Assumption 1 is satisfied with Lya-
punov functions V = x4

2 +2x2 andW = |e|, and quantities
H(x) = |x3 − 0.5x2 + 2x|, L = 2, αv(‖x‖) = 0.047x6 −
0.061x4 + 0.1892x2, γ = 2.049. Assumption 2 is satisfied
by choosing lα = 1. The ETM evaluates the sign of

gs(η, x, e) =η + max{0.34V (x), 1.73e2}
−max{0.34V (x), 2.62e2}.

(32)

Method II (M.II): In order to satisfy Assumption 3,
H(x) in Assumption 1 is considered to be of the form
H(x) = |px3 − 0.5x2 + rx|, p > 1, r > 2. The resultant
Lyapunov function satisfying the assumption is V = px4

2 +

rx2 with p = 1.97, r = 3.87 and αv is 0.08. Additionally
for Assumption 1, we also have W = |e|, L = 2, and
γ = 26.79. lα in Assumption 2 is chosen to be 1. The
ETM that evaluates the sign of gs(η, x, e), given by

gs(η, x, e) =η + max{0.003V (x), 2.12e2}
−max{7.7 · 10−4V (x), 337.3e2}.

(33)

In Fig. 2(a), the upper bound T = T0(λ) is plotted
as a function of design parameter λ for each method.
Stabilization of the plant using both methods is depicted
through the state trajectories in Fig. 2(b). As stated in
Remark 5 of Section 4, the increase in γ directly affects
the performance (namely, the average number of triggers)
of the method, as seen in (32), (33). Notice that the gain
γ in M.II is substantially higher than that in M.I and
the difference in no. of triggers of M.I in Table 1 and
those of M.II in Table 2 demonstrate its effect. Further,
we compare M.I and its variant M.I (σ = 0) with those
of Wang et al. [2016] and Postoyan et al. [2011]. The
performance measure is computed over 100 simulations of
20 secs each with a sampling period τ = T0(λ) = 0.05;
the initial condition x(0) for each simulation is randomly
picked from an interval [−3, 3]. The primary focus here is
to evaluate the ETMs, so ETMs in Wang et al. [2016] and
Postoyan et al. [2011] are adapted so as to fit the specific
example in (31). From Table 1 it can be inferred that a
dynamic periodic event-triggered controller can perform
better than a static periodic event-triggered controller
(namely, Wang et al. [2016]) and a continuous-time event-
triggered controller (namely, Postoyan et al. [2011]) for
nonlinear plants.

Subsequently, to make a comparison amongst the two
methods discussed in this paper, we first remove the effect
of gain γ. This is done by adopting Lyapunov functions
and related quantities of M.II to M.I as mod. M.I (σ 6= 0)
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Fig. 2. Plots depicting MASP curves and state trajectories
of Method I and Method II.

M.I M.I (σ = 0) Wang et al. [2016] Postoyan et al. [2011]

14.9 13.0 66.52 15.79

Table 1. Average no. of triggers over 100 sim-
ulations in 20 secs

M.II mod. M.I (σ 6= 0) mod. M.I (σ = 0)

360.58 343.04 348.22

Table 2. Average no. of triggers over 100 sim-
ulations in 20 secs

and mod. M.I (σ = 0). Table 2 provides performance
comparison of the ETMs of the two methods.

6. CONCLUSIONS

We proposed two methods to design dynamic periodic
ETM for nonlinear systems using state feedback and pro-
vide an upper bound on the sampling period that is
dependent on a user defined parameter. For each of the
methods, the design results in a closed-loop hybrid system
which is asymptotically stable. Since the dynamic ETM is
evaluated only at event-verifying (sampling) instants, the
scheme is easily implementable on digital platforms com-
pared to its continuous-time counterparts. A comparative
study on illustrative example supports the view that a
dynamic ETC is capable of reducing the number of events
triggered compared to its static counterparts. Finally, to
the best of our knowledge, this is the first work in literature
to study dynamic periodic ETC for nonlinear systems.
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