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Abstract: We combine the low-power high-gain observer recently proposed in Astolfi and
Marconi (2015) with the updated-gain technique used in Andrieu et al. (2009). The resulting
adaptive low-power high-gain observer inherits the advantages of both techniques and can be
used to address the state-estimation problem for Lipschitz systems in lower triangular form with
nonlinearities having a Lipschitz constant that depends on a known external input.

1. INTRODUCTION

The state-estimation problem for nonlinear systems in
lower-triangular form can be systematically addressed
by using the so-called high-gain observers, see, e.g.,
Emel’Yanov et al. (1989), Tornambe (1992), Deza et al.
(1992). This observers are characterized by having an
output injection terms which scales with increasing power
of a (positive) high-gain parameter. This one has to be
chosen large enough to dominate the Lipschitz constants of
the nonlinear terms. In this case, asymptotic convergence
of the estimation error is ensured. When the Lipschitz
constants depends on external inputs, adaptive techniques
for the on-line tuning of the high-gain parameter have been
proposed in Andrieu et al. (2009); Sanfelice and Praly
(2011); Alessandri and Rossi (2015). Although the good
robustness properties with respect to model perturbations
of high-gain observers, their use for the state observa-
tion of systems of large state dimension is limited due
to important drawbacks: the sensitivity to high-frequency
measurement noise, Astolfi et al. (2016); the peaking phe-
nomenon, Astolfi et al. (2018b); Khalil (2017); possible
implementation issues to the large powers of the high-gain
parameter multiplying the output injection term, Astolfi
and Marconi (2015); Khalil (2017). To address these issues,
a new class of observers, denoted as low-power high-gain
observers, has been recently proposed in Astolfi and Mar-
coni (2015); Astolfi et al. (2018b); Wang et al. (2017). The
new technique proposes an interconnected cascade of high-
gain observers of dimension two in which the high-gain
parameter shows up with powers 1 and 2, regardless the
dimension of the system state dimension. The resulting
observer dimension, however, is nearly doubled. Other
techniques, addressing one or some of those drawbacks,
have been proposed in Boizot et al. (2010); Teel (2016);
Khalil (2017); Astolfi et al. (2017, 2018a); Cocetti et al.
(2018); Tréangle et al. (2019).

The objective of this work is to investigate the use of
adaptive gains in the context of low-power high-gain ob-
servers proposed by combining the updated-gain technique

described in Andrieu et al. (2009) with the cascade struc-
ture proposed in Astolfi and Marconi (2015). We provide
sufficient conditions for the design of an adaptive law that
tunes on-line the high-gain parameter according to the
Lipschitz constant of the nonlinear terms to be dominated.
Similar to Andrieu et al. (2015), we suppose that such
Lipschitz constants depends on known external inputs.
Asymptotic convergence of the estimation error is estab-
lished. Numerical simulations are then presented to show
that asymptotic estimation can be achieved with values of
the high-gain parameter much lower than a constant-gain
structure, for which, very conservative bounds are needed.

Notation R denotes the real numbers. Given x ∈ Rn, y ∈
Rm, we compactly denote (x, y) := (x>, y>)>.

2. PROBLEM STATEMENT

In this paper are considered single-input single-output
nonlinear systems in the following lower triangular form

ẋ1 = x2 + φ1(u, y),
...

ẋi = xi+1 + φi(u, y, x2, ..., xi),
...

ẋn = φn(u, y, x2, ..., xn),
y = x1,

(1)

where x = (x1, . . . , xn) ∈ Rn is the state of the system,
y ∈ R is the measured output and u ∈ Rm is a known
input. In this work, the presence of input disturbances or
measurement noise are ignored, although all the analysis
could be done to cover such case. The nonlinear functions
φi, i = 1, . . . , n, satisfy the following Lipschitz condition.

Assumption 1. There exists a continuous function Ω :
Rm → R≥0 such that the following is satisfied

|φi(u, y, x̂2, ..., x̂i)−φi(u, y, x2, ..., xi)| ≤ Ω(u)

i∑
j=2

|x̂j −xj |

(2)
for all i = 1 . . . , n, and all (x̂, x, y, u) ∈ Rn×Rn×R×Rm.
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In other words, the Lipschitz constant of φi depends on the
value of u. We recall that under Assumption 1, standard
high-gain observer design Khalil and Praly (2014) can be
applied only if u is living in some known compact set
U ⊂ Rm. When the knowledge or an estimate of U is
not available, standard techniques fails to work because
domination arguments cannot be applied, in other words,
a lower bound for the high-gain parameter cannot be
established because the Lipschitz constant is unknown. In
such case, adaptive techniques need therefore be employed.
Therefore, in the rest of the paper, we will suppose that
u lives in a bounded but unknown compact set U for all
t ≥ 0. This scenario can be also of interest to improve on-
line the performances of the observer when the estimate
of U is too “rough”, namely to select the lowest possible
high-gain parameter ensuring estimate convergence. The
aim of this work is to combine the low-power high-gain
observer approach Astolfi and Marconi (2015) with the
updated-gain approach employed in Andrieu et al. (2009).

3. MAIN RESULT

In order to present the construction of the observer, we
first need to define, as in Astolfi and Marconi (2015), the
following matrices. In particular, let (A,B,C) a triplet in
prime form of dimension 2, that is

A :=

(
0 1
0 0

)
, B :=

(
0
1

)
, C := (1 0) ,

and let the matrices Fi, Qi, N , be defined as

Fi :=

(
−ki1 1
−ki2 0

)
, Qi :=

(
0 ki1
0 ki2

)
, N :=

(
0 0
0 1

)
where ki1, ki2 > 0 are some coefficients to be selected.
Finally, let the matrices M,D of dimension 2n− 2 be

M :=



F1 N 0 . . . . . . 0

Q2 F2 N
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . . Qi Fi N

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . Qn−2 Fn−2 N
0 . . . . . . . . . 0 Qn−1 Fn−1


, (3)

D := diag(1, 2, 2, ..., n− 1, n− 1, n). (4)

As shown in (Astolfi and Marconi, 2015, Lemma 1), it is
possible to select the coefficients ki1, ki2 > 0 so that the
matrix M defined in (3) is Hurwitz. Moreover, it is also
possible to arbitrarily select its eigenvalues. However, for
the purpose of this work, we need some extra properties
stated by the following lemma.

Lemma 1. Consider matrices M,D defined in (3), (4).
There exist coefficients ki1, ki2 > 0 for i = 1, ..., n − 1,
µ, p̄, p, ᾱ, α > 0 and a symmetric positive definite matrix
P such that

pI ≤ P ≤ p̄I,

PM +M>P ≤ −µP,
αP ≤ PD +DP ≤ ᾱP.

(5)

Proof. The proof is deferred to Section 4.2 where a
constructive procedure for designing ki1, ki2 is presented.

Nevertheless, one can always follow the procedure pre-
sented in (Astolfi and Marconi, 2015, Lemma 1) to assign
the eigenvalues of M , and then verify, a posteriori, the
existence of a P satisfying (5), see Section 5. �

The structure of the proposed low-power high-gain ob-
server with updated gain has therefore the following form

ξ̇i = Aξi +Nξi+1 + Φ1(u, y, x̂) + Λ(L)Ki(y − Cξ1),
...

ξ̇i = Aξi +Nξi+1 + Φi(u, y, x̂)
+Λ(L)Ki(B

>ξi−1 − Cξi),...

ξ̇n−1 = Aξn−1 + Φn−1(u, y, x̂)
+Λ(L)Kn−1(B>ξn−2 − Cξn−1),

x̂ = Γξ
(6a)

where ξ ∈ R2n−2 is the state of the observer, x̂ is its state-
estimate with Γ := blkdiag (C, . . . , C, I2) ∈ Rn×(2n−2),
the matrices A,B,C,N that have been defined above,

Ki := (ki1 ki2)
>

, Λ(L) := diag(L, L2), and the functions
Φi are defined as

Φi(u, y, x̂) :=

(
φi(u, y, x̂2, ..., x̂i)
φi+i(u, y, x̂2, ..., x̂i)

)
with the functions φi defined in system (1). Finally,
L > 0 denotes the high-gain parameter which is updated
according to the following differential equation

L̇ = L
(
λ1(λ2 − L) + λ3Ω(u)

)
(6b)

with λ1, λ2, λ3 > 0 some parameters to be properly chosen,
and Ω the functions defined in Assumption 1. We can
state now the main result of this work concerning the
convergence of observer (6).

Theorem 1. Consider system (1) and observer (6). Sup-
pose u is a (locally integrable) bounded signal for all
t ≥ 0. Let the coefficients ki1, ki2, i = 1, . . . , n − 1 be
chosen according to Lemma 1, and let λ1, λ2, λ3 > 0 be
selected so that λ1 < µ

ᾱ , λ2 ≥ 1, and λ3 ≥ 2p̄(pα)−1%

with % =
√

2(2n − 3). Then, for any initial condition
(x(0), ξ(0)) ∈ Rn × R2n−2, L(0) ≥ λ2 any corresponding
solution defined for all t ≥ 0 satisfy

lim
t→∞

|x(t)− x̂(t)| = 0.

Proof. The proof is deferred to Section 4.1. �

Some qualitative comments of the result of Theorem 1 are
given now.

About Assumption 1. If the state x(t) of system (1) is
supposed to evolve in a known compact set X ⊂ Rn for
all t ≥ 0, then Assumption 1 can be relaxed by asking
inequality (2) to hold for all (x̂, x, y, u) ∈ X×X×Y ×Rm
where Y is the projection of X on the first coordinate.
Then, as commonly done in high-gain observer design
approaches, see, e.g., Astolfi and Marconi (2015) or Khalil
and Praly (2014), one can implement the observer (6a) by
using a saturated version of φi on X. Note however that
in practice, the compact set X usually depends on U .

Alternative design. Recall that y = x1. Hence, in order
to improve the sensitivity to measurement noise, one may
want to implement the observer (6a) by using x̂1 instead
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of y in the functions Φi. However, this is possible only by
strengthening Assumption 1 as follows

|φi(u, x̂1, ..., x̂i)− φi(u, x1, ..., xi)| ≤ Ω(u)

i∑
j=1

|x̂j − xj |

for all i = 1, . . . , n and all (x̂, x, u) ∈ Rn × Rn ××Rm. In
such case, the result of Theorem 1 still holds.

Asymptotic convergence. Theorem 1 establishes the asymp-
totic convergence of the estimation error thus ensuring
that system (6) is an asymptotic observer for plant (1).
With respect to standard results on high-gain observers,
see Khalil and Praly (2014) or Astolfi and Marconi (2015),
exponential convergence, uniform with respect to the ini-
tial estimation error, is not established since we are not
assuming u in (1) to evolve in known compact sets. It
would be possible to give more precise statements by
reinforcing Assumption 1.

Peaking phenomenon. Since we do not assume to know a
compact set where the state x of system (1) is evolving,
we cannot follow the idea in Astolfi et al. (2018b), in
which the use of saturation functions is exploited to
deal with the peaking phenomenon. Nevertheless, peaking
phenomenon can be attenuated by tuning the parameters
of the dynamics of L, as shown in the simulations of
Section 5.

Design of the parameters. The parameters λ1, λ2, λ3 define
the dynamics of L, and in particular, its speed of conver-
gence, its sensitivity to u and the DC-gain with respect to
the constant u. Theorem 1 provides sufficient conditions
for the choice of the parameters for the convergence of the
observer (6) which may be very conservative. In practice,
we have the following phenomena.

• The ratio λ3

λ1
modulates the values of L: larger ratios

correspond to larger values of L.
• For a given constant ratio λ3

λ1
, larger values of λ1, λ3,

provide a faster response of L to variations of the
input u.
• For given constant λ1, λ3, smaller values of λ2 de-

crease the steady-state value of L in case of constant
input u.

In conclusion, the design of λ1, λ2, λ3 depends on the type
of response we desire on the estimation error and such
choice modulates the peaking phenomenon, the rate of
convergence, the sensitivity to variations of u and the
sensitivity to measurement noise in steady-state. More
comments are given in Section 5.

4. PROOFS

4.1 Proof of Theorem 1

Consider the differential equation (6b) governing the dy-
namics of L in which all λi’s are positive. First of all,
if L = λ2, then L̇ = Lλ3Ω(u) ≥ 0. Since L(0) ≥ λ2,
this implies that for all t on the time existence of the
solutions, L(t) ≥ λ2. On another hand, if u is bounded
then Ω(u) is bounded as well. Let BΩ := supt∈[0,∞) Ω(u)

and L̄ := λ3

λ1
BΩ + λ2. If L ≥ L̄, then L̇ ≤ 0. This implies

that L(t) is defined for all t ≥ 0 and we conclude that

L(t) ∈ [λ2,max{L(0), L̄}] for any u bounded and any
L(0) ≥ λ2.

Now let us define the following change of coordinates

ξi 7→ εi :=

(
xi − ξi1
Li

,
xi+1 − ξi2
Li+1

)
∀ i = 1, . . . , n− 1,

ε := (ε1, . . . , εn−1) ∈ R2n−2. The ε-dynamics is then given
by (computations are omitted for space reasons)

ε̇ = LMε− L̇

L
Dε+ Ψ(L)∆Φ(u, y, x, x̂) (7)

where M,D are defined in (3), (4), Ψ(L) ∈ R2n−2×2n−2 is
defined as

Ψ(L) := diag

(
1

L
,

1

L2
,

1

L2
, ...,

1

Ln−1
,

1

Ln−1
,

1

Ln

)
,

and ∆Φ = (∆Φ1, . . . ,∆Φn−1), with ∆Φi = (∆Φi1,∆Φi2)
and ∆Φi(u, y, x, x̂) := Φi(u, y, x) − Φi(u, y, x̂), for all
i = 1, . . . , n − 1, where we omitted the arguments for
compactness. In order to obtain a bound for Ψ(L)∆Φ, first
recall that by definition of x̂i, ei, ε we have, for all L ≥ 1:

|xi − x̂i| = |xi − ξi1| = |ei1| = Li|εi1| ≤ Li|εi|
for all i = 2, . . . , n − 1 and |xn − x̂n| = Ln|ε(n−1)2| ≤
Ln|εn−1|. Therefore, by using the Lipschitz condition of
Assumption 1, we also have |φi(u, y, x) − φi(u, y, x̂)| ≤∑i
j=2 L

j |εj | which gives

|Ψ(L)∆Φ(u, y, x, x̂)| ≤
n−1∑
i=1

Λ(L)−1L−(i−1)|∆Φi|

≤
n−1∑
i=1

Ω(u)

(
L−i

i∑
j=2

Lj |εj |+ L−(i+1)
i∑

j=2

Lj |εj |

)
≤ %Ω(u)|ε|

for any (u, y, x, x̂) ∈ R×R×Rn×Rn and any L > 1, with
% defined in the statement of the theorem. Now, consider
the matrix P defined in Lemma 1, define V = ε>Pε and
compute its derivative along solutions of (7). We obtain

V̇ ≤ −
(
L(µ− λ1ᾱ) + λ1λ2α+

(
λ3α− 2

p̄

p
%

)
Ω(u)

)
ε>Pε.

Therefore, by selecting λ1, λ2, λ3 according to the state-
ment of the theorem, we obtain V̇ ≤ −εLV for some
ε > 0. This shows that |ε| converges exponentially to zero.
Furthermore, since L is bounded for all times, we deduce
that also |e| converge exponentially to zero. In light of the
definition of e and x̂ in (6), we conclude the statement of
the theorem.

4.2 Proof of Lemma 1

The proof of this result is a direct consequence of the next
Lemmas 2 and 3 which are the base case and the inductive
step of a mathematical induction. For this, let us introduce
the following matrices which will be used next

M1 := Fn−1, Mi+1 :=

(
Fn−i−1 N̄n−i
Q̄n−i Mi

)
i = 2, . . . , n− 1,

with N̄n−i ∈ R2×2i, Q̄n−i ∈ R2i×2 defined as

N̄n−i := (N> 0 ... 0)>, Q̄n−i := (Q>n−i 0 ... 0)>,

and the matrices Fi, Qi, N defined as in (3). By construc-
tion, Mn−1 = M . Finally, let us define

D′i := diag(n−i, n−i+1), D1 := D′1, Di+1 :=

(
D′i+1 0

0 Di

)
.
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By construction, Dn−1 = D, with D defined in (4). We
have the first following result.

Lemma 2. Consider the matrices M1 and D1. There ex-
ist coefficients kn−1,1 and kn−1,2 and a positive definite
symmetric matrix P1 such that

P1M1 +MT
1 P1 ≤ −ε1P1 (8)

α1P1 ≤ P1D1 +D1P1 ≤ ᾱ1P1 (9)

for some positive constants ε1, α1 and ᾱ1.

Proof. The proof of the first inequality is based on the
construction proposed in (Wang et al., 2017, Lemma 2).

Consider in particular the system ξ̇1 = Fn−1ξ1 in which
ξ1 = col(ξ11, ξ12) ∈ R2. Let Θ(r) be a matrix of the
following form

Θ(r) :=

(
r 0
−r 1

)
, ∀ r ∈ R. (10)

Then, consider the following change of variables

ξ1 7→ η1 := Θ(r1)ξ1, η11 := r1ξ11, η12 := ξ12 − r1ξ11,

with r1 > 0 to be chosen, and select kn−1,2 = r1kn−1,1.
We obtain

η̇11 = −(kn−1,1 − r1)η11 + r1η12

η̇12 = −r1(η11 + η12).

Now choose the Lyapunov function V1 = |η1|2 =
ξT1 Θ(r1)TΘ(r1)ξ1, whose time derivative is given by

V̇1 = −2(kn−1,1 − r1)η2
11 − 2r1η

2
12.

By coming back in the ξ1-coordinates and by using Young’s
inequality, the above equality can be rewritten as V̇1 ≤
−ε1|ξ1|2 for any r1 > 0, and kn−1 > 2r1, with ε1 =
min(2r2

1(kn−1,1 − 2r1), r1). Therefore, by selecting

P1 := Θ(r1)>Θ(r1) =

(
2r2

1 −r1

−r1 1

)
,

the inequality (8) is verified and this completes the first
part of the proof.

Let us now show that the inequality (9) is verified with
the matrix P1 established above. First, we prove the upper
bound of (9). For this, note that

ᾱ1P1 − (P1D1 +D1P1) ≥ 0

is equivalent to(
2(ᾱ1 − (2n− 2))r2

1 −(ᾱ1 − (2n− 1))r1

−(ᾱ1 − (2n− 1))r1 ᾱ1 − 2n

)
≥ 0.

It implies the following conditions (positivity of the diag-
onal terms and of the Schur’s complement):{

ᾱ1 ≥ 2n,

2(ᾱ1 − 2n+ 2)r2
1 −

(ᾱ1 − (2n− 1))2

ᾱ1 − 2n
r2
1 ≥ 0,

(11)

which can be verified by selecting ᾱ1 in the set [2n − 1 +√
2; +∞[. Then, to show the lower bound of (9), we need

to find α1 > 0 such that

α1P1 − (P1D1 +D1P1) ≤ 0

Previous inequality leads to the conditions{
ᾱ1 ≤ 2n− 2,

2(ᾱ1 − 2n+ 2)r2
1 −

(ᾱ1 − (2n− 1))2

ᾱ1 − 2n
r2
1 ≤ 0.

(12)

Constant α1 that meet the inequality exists and have to

be in the set [2n−1−
√

2; 2n−2]. This shows the existence

of ᾱ1 > α1 > 0 satisfying inequality (9). Note that those
values are independent of r1 > 0. Consequently, the proof
of Lemma 1 is completed. �

We have now the following lemma concerning the matrices
Mi, Di defined at the beginning of this section..

Lemma 3. Assume there exist a symmetric positive defi-
nite matrix Pi and positive constants εi, αi and ᾱi such
that PiMi+M

T
i Pi ≤ −εiI and αiPi ≤ PiDi+DiPi ≤ ᾱiPi.

Then there exist coefficients kn−i−1,1 and kn−i−1,2 and a
positive definite symmetric matrix Pi+1 such that

Pi+1Mi+1 +MT
i+1Pi+1 ≤ −εi+1Pi+1 (13)

αi+1Pi+1 ≤ Pi+1Di+1 +Di+1Pi+1 ≤ ᾱi+1Pi+1 (14)
for some positive constants εi+1, αi+1 and ᾱi+1.

Proof. Again, the proof of this lemma follows the same
construction of Pi+1 proposed in (Wang et al., 2017,
Lemma 3). Consider in particular system

ξ̇i+1 = Fn−i−1ξi+1 + N̄n−iχi

χ̇i = Miχi + Q̄n−iξi+1

where ξi+1 = (ξi+1,1, ξi+1,2) ∈ R2, χi = (ξ1, ..., ξi) ∈ R2i.
Let us make the following linear change of coordinate

ξi+1 7→ ηi+1 := Θ(ri+1)ξi+1

with Θ(r) is defined in (10) and ri+1 is a positive constant
to be chosen. By taking kn−i−1,2 = ri+1kn−i−1,1, the
system in the new coordinates can be rewritten as

η̇i+1,1 = −(kn−i−1,1 − ri+1)ηi+1,1 + ri+1ηi+1,2

η̇i+1,2 = −ri+1ηi+1,1 − ri+1ηi+1,2 + N̄n−iχi
χ̇i = Miχi + Γi(ηi+1,1 + ηi+1,2)

where Γi = col(kn−i,1, kn−i,2, 0, ..., 0). Consider now the
positive definite function Vi = χTi Piχi, with Pi given in
the statement of the lemma, and compute its derivative

V̇i ≤ −
1

2
εi|χi|2 + δ1ξ

2
i+1,2

for some positive constant δ1, independent of ri+1 and
kn−i−1,1. Then, consider the positive definite function

Wi+1 = |ηi+1|2 = ξi+1Θ(ri+1)TΘ(ri+1)ξi+1

whose time derivative is given by

Ẇi+1 ≤ −2r2
i+1[kn−i−1,1 − ri+1]ξ2

i+1,1 − 3
4ri+1ξ

2
i+1,2

+
1

ri+1
|χi|2.

Then, consider the Lyapunov function Vi + Wi+1. By
choosing ri+1 such that ri+1 = max{2δ1, 4

εi
} and kn−i−1,1

satisfying kn−i−1,1 > 2ri+1, and by combining together
previous inequalities, we obtain

V̇i + Ẇi+1 ≤−
εi
4
|χi|2 −

1

4
ri+1ξ

2
i+1,2

− 2r2
i+1(kn−i−1,1 − 2ri+1)ξ2

i+1,1.

Therefore, by selecting χi+1 = (ξi+1, χi) and

Pi+1 := blkdiag(P ′i+1, Pi), P ′i+1 := Θ(ri+1)>Θ(ri+1).

By differentiating the Lypaunov function

Vi+1,1 = χ>i+1Pi+1χi+1

we finally obtain V̇i+1 ≤ −εi+1|χi+1|2 in which

εi+1 = min

{
εi
4
, 2r2

i+1(kn−i−1,1 − 2ri+1),
1

4
ri+1

}
.

Therefore Pi+1Mi+1 + MT
i+1Pi+1 ≤ −εi+1Pi+1, showing

inequality (13) and completing the first part of the proof.
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Let us now show that the second inequality is verified
with the matrix Pi+1 that has been established. By the
statement of the lemma, we know there exist positive
constants αi, ᾱi such that αiPi ≤ PiDi + DiPi ≤ ᾱiPi.
Therefore, by using the definition of Pi+1 given above, we
compute (14). Its lower bound is given by

αi+1

(
P ′i+1 0

0 Pi

)
≤
(
P ′i+1D

′
i+1 +D′i+1P

′
i+1 0

0 PiDi +DiPi

)
while the upper bound is computed as(
P ′i+1D

′
i+1 +D′i+1P

′
i+1 0

0 PiDi +DiPi

)
≤ ᾱi+1

(
P ′i+1 0

0 Pi

)
.

Due to the triangular structure of previous expression, we
obtain the following two independent conditions equivalent
to (14){

α′i+1P
′
i+1 ≤ P ′i+1D

′
i+1 +D′i+1P

′
i+1 ≤ ᾱ′i+1P

′
i+1

αi+1Pi ≤ PiDi +DiPi ≤ ᾱi+1Pi
(15)

The second condition is verified for some ᾱi, αi by assump-
tion. Therefore, we focus on the first. Let us drop the
subscript i + 1 in the notation, and note that the matrix
P ′(= P ′i+1) previously defined has the same structure of
the matrix P1 defined in Lemma 2. We can re-use the same
arguments to show the existence of ᾱ′ > α′ > 0 satisfying
α′P ′ ≤ P ′D′+D′P ′ ≤ ᾱ′P ′, for α′ ∈ [2n−2i+1−

√
2; 2n−

2i] and ᾱ′ ∈ [2n − 2i + 1 +
√

2; +∞[ where n is the order
of the system. Thus, the two conditions being verified,
by selecting αi+1 = min(αi, α

′) and ᾱi+1 = max(ᾱi, ᾱ
′),

we show that both conditions in (15) are verified, thus
establishing inequality (14) and completing the proof of
Lemma 3. �

Finally, by applying iteratively Lemma 3 it is possible
to prove Lemma 1 by recalling that Mn−1 = M and
Dn−1 = D.

5. ACADEMIC EXAMPLE

In order to illustrate the interest of an observer designed as
explained in this paper, we consider the following system

ẋ1 = x2

ẋ2 = x3

ẋ3 = u sin(x2)− x2.

(16)

where u = ū sin(t), with ū > 0. In the simulation, the
initial conditions are selected as x(0) = (1, 2, 3). It is
possible to verify that system (16) verifies Assumption 1
with Ω(u) := 1 + |u|. For comparative purposes, we
considered a low-power high-gain observer (6a) with fixed
gain L (as in Astolfi and Marconi (2015)) and a low-
power high-gain observer with dynamic L given by (6b).
For both observers, the coefficients kij are chosen, by
following the procedure of (Astolfi and Marconi, 2015,
Lemma 1), as K1 = (1.5, 1.05), K2 = (1.5, 0.2632), so that
the eigenvalues of M in (3) are between −.5 and −1. It is
possible to verify the the matrix P defined as solution to
PM + M>P = −0.1I verifies Lemma 1 with p = 0.029,
p̄ = 3.301, µ = 0.3, α = 1.136, ᾱ = 7.342. Both observers
are initialized in the origin.

First, we recall that a low-power high-gain observer (6a)
with fixed L should take a value of L proportional to ū. If
ū is unknown, convergence for a constant given L cannot
be always ensured. This is shown in Figure 2, where, for

L = 5, ū is selected as ū = 5, ū = 15 and ū = 30: by
augmenting its value, convergence of the estimation error
|x− x̂| is no more ensured and divergence occurs. Figure 3
shows the evolution of the estimation error |x(t) − x̂(t)|
for the proposed low-power high-gain observer (6a) with
updated gain (6b), with λ1 = 0.2, λ2 = 1 and λ3 = 0.15,
in the same three cases ū = 5, ū = 15 and ū = 30.
Although convergences is always guaranteed, larger values
of ū results in a faster convergence rate. The evolution
of the gain L in the three different scenario is depicted
in Figure 4. Due to the oscillating behaviour of u, we
can observe that L has an oscillating behaviour around
L = 3.5, L = 8.5 and L = 16 respectively. Note that
even though L is increased, the peaking phenomenon is
not critically augmented as in the case of standard high-
gain observers with fixed L. Finally, in Figure 5 we studied
the influence of the parameters λi in the dynamics (6b) of
L for ū = 30. We can see that a decrease of the ratio λ1

λ3

causes an increase of the values of L. Similarly, an increase
of λ2 causes larger values of L. We recall, indeed, that
the conditions of Theorem 1 are only sufficient and not
necessary.

6. CONCLUSION

In this work we combined the techniques of adaptive gain
proposed in Andrieu et al. (2009) with the low-power
structure of Astolfi and Marconi (2015). The resulting
adaptive observer retains therefore the good properties
explored in Astolfi et al. (2018b), that is the implemen-
tation of a high-gain parameter with powers up to 2
regardless the dimension of the system state and the good
sensitivity properties with respect to measurement noise,
and, at the same time, provides a self-tuning strategy with
the aim of reducing the value of the implemented high-
gain parameter with respect to a constant-gain approach.
The adaptive law proposed in this work relies on the
assumption that the Lipschitz constants of the nonlinear
terms depend on a known external input. Future works
will study the active use of such external input to the
aim of further improving the performances in presence of
measurement noise; the development of an adaptive law
to address the case in which the Lipschitz constants of
the nonlinear terms depend also on the measured output
and the estimated state in addition to the input; the use
of different gains with separated dynamics, one for each
two-sized block of the observer, to obtain less conservative
conditions with respect to the ones in Assumption 1; the
use of the proposed adaptive observer in output feedback
stabilization contexts (Wang et al. (2015); Teel and Praly
(1994); Andrieu et al. (2008); Praly and Jiang (2004)).
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