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Abstract: In the context of control and estimation under information constraints, restoration entropy
measures the minimal required data rate above which a system can be regularly observed. The observer
here is assumed to receive its state information through a communication channel of a finite bit-rate
capacity. In this paper, we provide a new characterization of restoration entropy which does not require
to compute any temporal limit, i.e., an asymptotic quantity. Our new formula is based on the idea of
finding an adapted Riemannian metric on the state space that allows to ‘see’ the decisive quantity that
determines the restoration entropy — a certain type of Lyapunov exponent — in only one step of time.
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1. INTRODUCTION

The past few decades have witnessed a substantially growing
attention to networked control systems (Hespanha et al., 2007;
Heemels et al., 2010) and related problems of control and/or
state estimation via communication channels with constrained
bit-rates; for extended surveys of this area, we refer the reader
to (Matveev and Savkin, 2009; Yiiksel and Basar, 2013; An-
drievsky et al., 2010) and references therein.

One of the fundamental concerns in this context is to find
a minimal data rate between the communication peers under
which remote state estimation (Wong and Brockett (1997), see
also Fradkov et al. (2015) for a related problem) is feasible;
in other words, the receiver is able to reconstruct the current
state of the remote system in the real time regime if and only
if data about this state is updated by means of a bit flow whose
intensity exceeds that “threshold” rate. Loosely speaking, this
communication rate has to exceed the rate at which the system
“generates information”, while the latter concept is classically
formalized in a form of entropy-like characteristic of the dy-
namical system at hands. The related mathematical results are
usually referred to as Data Rate Theorems (see, e.g. (Nair et al.,
2007; Matveev and Savkin, 2009; Matveev and Pogromsky,
2019) and references therein) - their various versions coexist
to handle various kinds of observability and models of both the
plant and the constrained communication channel.
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Those results deliver a consistent message that the concept
of the topological entropy (TE) of the system and its recent
offshoots provide the figure-of-merit needed to evaluate the
channel capacity for control applications; the mentioned mod-
ifications of TE are partly aimed to properly respond to mis-
cellaneous phenomena crucial for control problems, like un-
certainties in the observed system (Savkin, 2006; Kawan and
Yiiksel, 2017, 2018), implications of control actions (Colonius
et al., 2013; Hagihara and Nair, 2013; Colonius and Kawan,
2009), the decay rate of the estimation error (Liberzon and
Mitra, 2018), or Lipschitz-like relations between the exactness
of estimation and the initial state uncertainty (Matveev and
Pogromsky, 2019). Keeping in mind relevance of communi-
cation constraints in modern control engineering, constructive
methods to compute or finely estimate those entropy-like char-
acteristics take on crucial not only theoretical but also practi-
cal importance. Several steps have been done in this direction
in (Pogromsky and Matveev, 2011; Matveev and Pogromsky,
2019; Hafstein and Kawan, 2019), where corresponding upper
estimates were found by following up the ideas of the second
Lyapunov method. Moreover, it was shown that for some par-
ticular prototypical chaotic systems of low dimensions, these
upper estimates are exact in the sense that they coincide with
the true value of the estimated quantity.

Whether these inspiring samples of precise calculations are
mere incidents, or implications of specific traits of very special
either systems or their classes, or, conversely, are particular
manifestations of a comprehensive capacity inherent in the em-
ployed approach? Confidence in the last option would consti-
tute a rationale for undertaking special efforts aimed to fully
unleash the potential of this approach via its further elaboration.
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The primary goal of the current paper is to answer the posed
question; we show that among the above options, the last one is
the true one. This is accomplished via a sort of a converse result
that is similar in idea to celebrated converse Lyapunov theo-
rems. An outcome is viewed as setting a theoretical benchmark
and opening the perspective for the respective research direc-
tion. Among various descendants of TE, we pick the so-called
restoration entropy (Matveev and Pogromsky, 2019) to deal
with. Like the second Lyapunov method, this concept is much
inspired by the concerns of control theory; this may be viewed
as a “bedrock” of the fact that this method and concept appear
to be closely linked by both direct and converse theorems. To
complete the picture of the respective “direct” part, we also
extend some core results of (Matveev and Pogromsky, 2019)
on the case of a discrete-time plant. The tractability of the de-
veloped approach is confirmed by closed-form computation of
the restoration entropy for the celebrated Landford system (see,
e.g., (Belozyorov, 2015)). Meanwhile, computation or even fine
estimation of TE and the likes has earned the reputation of an
extremely complicated matter (Downarowicz, 2011).

The paper is organized as follows. Sect. 2 offers largely infor-
mal introduction to the issues raised in this paper. Sect. 3 injects
the complete rigor into the problem setup and presents the main
assumptions. Sections 4 and 5 contain the main results, which
are illustrated by an example in Sect. 6.

2. STATE ESTIMATION VIA LIMITED
COMMUNICATION, IN OUTLINE

To better highlight the incentive for this study, we first recall
some relevant existing results on the remote state estimation
via communication channels with limited bit-rate capacity. The
goal of this overview is to shed a light on how a particular
choice of the Riemannian metric in the state space can facilitate
the solution of the state estimation problem. To this end, we
consider the following discrete-time dynamical system

z(t+1) =(z(t), t=0,1,2,..., z(0)e K CR". (1)
Here ¢ is a continuously differentiable mapping on R" and K
is a given compact set of initial states that are of our interest.

Throughout the text, ! stands for the ¢-th iterate of ¢ and K (t)
is the time-t image of the set K, i.e., K(t) := ©!(K).

We consider the case where state estimation involves two
remote peers, say Alice and Bob. The both are aware of the
dynamics ¢ and the set K. The difference between the peers
is that Alice has full access to the current state x(t) (either via
direct measurement or computation from z(0) and ¢), whereas
Bob has not, and his only option is to rely on data sent by
Alice. The problem stems from the fact that the channel of
communication between Alice and Bob has limited data rate
capacity: on average, no more than c bits can be conveyed from
Alice to Bob per unit time. So at best, only an approximate
value of z(t) is affordable to Bob, since the full knowledge
about z(t) is substantiated by infinitely many bits. The goal
of Bob is to consecutively build an estimate of x(¢) at times
t = 0,1,... with an acceptable accuracy. Alice should be
cooperative and build the sequential messages e(t),t = 0,1, ...
to Bob in a way favorable for achieving that goal.

Overall success in this endeavor depends not only on operation
of the peers but also on the channel data rate capacity c: there
is a critical value c.; of ¢ below which any measures have no
chance for success. To be definite in defining c.;, we borrow

the model of data rate capacity from (Matveev and Savkin,
2009, Sect. 3.4). In other words, we assume a uniform bound
by (7) on the total number of bits that can be transferred, in any
way, via the channel within any time interval of duration 7. At
the same time, it is not possible to transmit less than b_ () bits.
Finally, we assume that the average numbers of bits per unit
time calculated from both b, and b_ converge to a common
limit ¢ as 7 — oo, which is called the channel capacity:

c:= li_}rn by (1)/T. )

A detailed discussion of this definition and relevant examples
are available in (Matveev and Savkin, 2009, Sect. 3.4).

The critical value c; might depend on the requested quality
of estimation. Various grades of this quality are discussed in
(Matveev and Pogromsky, 2016) and embodied in the defini-
tions of various kinds of observability; to address the issue
specifically, we shall focus on the regular observability. It as-
sumes that both peers are given a common initial estimate z(0)
of the state and a common known bound é ~ 0 on its accuracy:

z(0) € Bs(2(0)), ©)
where B;(&) is the ball with a radius of § centered at £. Suppose

that the peers can act so that as time progresses, the current
estimation error is kept proportional to its initial value ¢:

x(t) € B:(2(t)), ¢=G9, t>0. “)
Here G does not depend on ¢, § ~ 0, and z(0),2(0) € K
satisfying (3), but (4) should hold for all of them. The role
of Alice is to compose messages to Bob that fit the channel
capacity c. Bob converts the messages received until ¢ into an
estimate Z(¢). If (4) can be achieved via the channel at hands,
the system is said to be regularly observable via it. The infimum
of ¢’s over such channels is called the regular observability rate
Rio (Matveev and Pogromsky, 2016) and is fully defined by
o, K. Our interest is on how to compute R, from ¢ and K.

In order to respect the communication rate ¢, Alice and Bob can
agree upon the communication protocol which is organized in
epochs of duration 7, where the quantity 7 is sufficiently large.
The first step to proceed is to cover the set ™ [Bs(Z(0)) N K]
with d-balls such that the size of the covering meets the given
channel capacity: Alice can inform Bob of her choice from
elements of the covering via sending a packet of messages
7(7) = [e(0), ..., e(r)] via the channel. She uses this to inform
Bob about the element (ball) that contains the current state x(t),
and Bob defines the estimate Z(t) as the center of this ball. As
aresult, (4) is ensured witht = 7 and G = 1.

To extend (4) to all ¢, the above actions are repeated, first from
7 to 27, then from 27 to 37, and so on. Then (4) becomes
true for t = 7k, k = 0,1,.... To fill the remaining gaps, the
“trivial” observer Z(t + 1) = ¢[Z(¢)] is run from Z(7k) for
t =r7k,...,7(k+1)—1. Since the maps ’(-) are Lipschitz on
K (7k) in many cases (with a constant G that does not depend
ont =0,...,7), this ensures (4) for all ¢.

Being directly inspired by practical needs, the communication
protocol operates with balls that are defined with respect to a
common, Euclidean metric. So the idea to assign an individual
Riemannian metric tensor to any point z and to modify the
foregoing via dealing with the respective “balls” whose shapes
critically change over the space may look as a complication, and
nothing else. Meanwhile, it is shown in (Matveev and Pogrom-
sky, 2016) that such an assignment may serve as a basis for
constructive estimation, or even exact analytical computation
of Ry.
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Specifically, let P(x) stand for the positive definite matrix
associated with the Riemannian metric tensor at the point z
(Chavel, 2006). According to (Matveev and Pogromsky, 2016),

1
max sup

R < =
0= 2 d=1,...n rEK >

{Avd(m) + i logy A (x)} .5

Here K> := |Jioy K (t) and Avg(z) := vglp(z)] — va(z) is
the one-step-increment of a d-dependent function vg : R™ —
R, whereas A1 (z) > ... > A, () are the roots of the following
algebraic equation:

det[De(x) " P(p(x))Dp(x) — AP(x)] = 0 (6)

and Dy(x) is the Jacobian matrix of ¢ at the point . Finally,
(5) is true for any set v1(-), ..., v, (-) of bounded functions.

The formula (5) is largely constructive. This trait, intelligent
choices of P := [P(-),v1("),...,vn(")], and simple lower
bounds on R;, permitted to find a closed-form expression of R,
in terms of the parameters of some celebrated chaotic systems,
as is shown in (Matveev and Pogromsky, 2016).

Inspired by these precedents, this paper aims to explore the
principal potentiality of the outlined “Riemannian metric” ap-
proach. In particular, this paper is to judge whether the afore-
mentioned closed-form computations should be viewed as acci-
dental successes or there are solid reasons to expect something
like this in general and so to invest in developing technical
tools needed to implement this approach. We shall show that the
second option holds, and offer relevant technical developments.

In fact, the considered approach is similar in nature to the
second (direct) Lyapunov method of stability study (Matveev
and Pogromsky, 2016). These two techniques share a common
challenge that stems from the reliance on wisely inventing an
auxiliary object, i.e., P8 or a Lyapunov function. In particular,
a bad choice of *J3 results in an overly conservative estimate.
Though the theory of stability has not yet provided general tech-
niques for the construction of Lyapunov functions, the so-called
inverse Lyapunov theorems guarantee (under certain technical
assumptions) that the second Lyapunov method is in a sense
comprehensive and thus justify its persistent developing. In
this paper, we establish a similar in spirit “comprehensiveness”
by showing that under a clever choice of 93, the r.h.s. of (5)
approaches its Lh.s. as close as desired. Moreover, we disclose
and justify a way to simplify both (5) and search for a proper 3
via showing that without any loss of generality, Avg(-) can be
discarded by taking v4(-) = const. In future technical develop-
ments, this prioritizes the design of P(-) over that of vg(-).

3. RIGOROUS SETUP OF THE PROBLEM

In this paper, we adopt the following assumption.

Assumption 1. In (1), the map ¢ : R™ — R" is of class C"! and
the set K C R" is compact and forward-invariant.

The main idea behind the communication protocol described in
Sec. 2 gave rise to a quantity called in (Matveev and Pogrom-
sky, 2019) the restoration entropy hyes(, K) of the system
(1). Specifically, let a time duration 7, a state a € R", and a
“tolerance level” ¢ > 0 be given. The symbol p(7, a, d) stands
for the minimal number of open §-balls required to cover the
image 7 (Bs(a) N K). The restoration entropy is defined as

1
hees(p, K) := lim — lim sup log, p(7, a, 9). (7

T—=00T 604K
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Here, the existence of the limit is guaranteed by Fekete’s lemma
and is due to the easily verifiable subadditivity of the concerned
quantity in 7 (Matveev and Pogromsky, 2019). The interest in
(7) is caused, inter alia, by the equality hyes(p, K) = Ry, see
Theorem 8 in (Matveev and Pogromsky (2019)).

It is also shown there that the restoration entropy is an upper
bound for the classic topological entropy hyp of the system (1);
for the definition of Ay, see, e.g., (Adler et al., 1965; Katok,
2007; Downarowicz, 2011). Meanwhile, these two concepts are
not identical. For example, hyp < hres for the logistic map
(Pogromsky and Matveev, 2016a, Ex. 5.1). In (Kawan, 2019),
an exhaustive characterization of the systems with Ay = Fres
is obtained, and evidence is provided that hyp = hres is @
relatively rare occurrence.

Unlike hyop, there are other tools of the classic theory of non-
linear dynamics that can be directly linked with the restoration
entropy. These are the finite-time Lyapunov exponents

Ai(t, z) = logy ai(t, x),
where a1 (¢t,2) > ... > a,(t, ) stand for the singular values
of Dy'(x), put in nonincreasing order. That linkage is fairly
straightforward under the following.

Assumption 2. K = cl(int(K)).

Then (Matveev and Pogromsky, 2019)

rEK t—o0

1
hres(p, K) = max lim — Z max{0,A;(¢t,2)}, (8)
ti3
whereas only the following inequality holds in the general case:

. 1 n

; < 1 — ; .

hres(ip, K) < max flgrolo , Z;max{o, Ai(t,x)} 9)
i

However, a constructive practical evaluation of the limit in (8)

could be a challenging problem.

The Lyapunov exponents are also classically studied for dy-
namical systems on Riemannian manifolds where every state is
assigned with an individual metric tensor. Though this paper ad-
dresses the property (4) with a homogeneous, state-independent
metric, artificially transforming R”™ into a Riemannian manifold
with a spatially-varying metric tensor may much aid in comput-
ing the L.h.s. in (8) without taking any limits as ¢ — co.

To be specific, we denote by S the linear space of all symmetric
n x n matrices, and by ST C S the subset of the positive
definite elements of S. A continuous function P : K — ST
gives rise to a Riemannian metric on K by defining the state-
dependent inner product:

(v,w)pg == (P(x)v,w),
where (-, -) is the standard Euclidean inner product.

We first need the singular value equation for the matrix A(x) :=
Dy(z) in the metric (-, -) p. To obtain it, we observe that

(A(2)v, w) p @) = (P(p(2)) A(z)v, w)
= (v, A(2)" P(p(z))w) = (v, P(z)P(x) " A2)" P(o(2))w)
= (P(z)v, P(x) " A(2)" P(p(2))w)
= (v, P(2) 7 A(2) " P(p())w) pa-
Hence, the adjoint of A(z) w.r.t. (-, -) p is given by
A(z)” = P(2) ()" P(¢(x))
and the associated singular value equation is

det [P(z) ' A(z) T P(p(z))A(z) — M,] =0, (10)
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which is equivalent to

det [A(x) " P(¢(z))A(x) — AP(z)] = 0. (11)
Let af (z) > -+ > af’(x) > 0 stand for the square roots of
the solutions of this equation. These quantities are akin to the
above «;(t,r); in particular, o;(t,z) = ol (t,x), where I is
the constant function whose value is the n x n identity matrix.
An analog of equation (11) in continuous-time is available in
Pogromsky and Matveev (2011).

4. MAIN RESULT

In this section, we detail the afore-mentioned method for eval-
uating the restoration entropy h.es(, K) without taking any
limits as t — co. Specifically, we first present an upper estimate
on hyes(¢p, K) in terms of af” for an arbitrary positive definite
matrix function P. Second, we show that this estimate can be
made as tight as one wishes by a proper choice of the function
P. In other words, the proposed technique is exhaustive in the
sense that it is enough to compute h(p, K) with as high
exactness as desired. This is detailed by the following.

Theorem 3. Suppose that Assumption 1 holds. Then the fol-
lowing statements are true:

(i) Any map P(-) € C°(K,S™) gives rise to the following
upper bound on the restoration entropy of the system (1):

< P}
hres(ip, K) < gnea%z max{0,log, a; (x)}

(i1) Suppose that the set K satisfies Assumption 2 and the
Jacobian matrix Dg(x) is invertible for every z € K.
Then for any £ > 0, there exists P € C°(K,S™) so that

> P — e
hres(p, K) > r;qea;{(;max{o,logQ a; ()} —¢

In (i) and (ii), we assume that log, 0 := —o0.

Remark 4. By (ii), the following new and exact formula for A eg
holds under Assumption 2:

- P
hres (0, K) = Pec‘l)r(llf<,$+) anea%(; max{0,log, a; (z)}.
Corollary 5. Let the set K meet Assumption 2 and endow
6 = {p € CLR",R") : ¢(K) C K} with the C!-
topology. The restoration entropy hyes(, K) is an upper semi-
continuous function of the map ¢ € &, i.e., hyes(p, K) >

limg ., hres(¢, K) provided that ¢, p € &.

Indeed, for a fixed P(-), the quantities o/ () depend on the
point z and map ¢ € & continuously, as easily follows from,
e.g., the formulae at the beginning of Sect. 8 in (Pogromsky and
Matveev, 2011). Hence, the quantity

1 P
I;lea})((;max{(), ogy o ()}
1=

also depends on the map ¢ € & continuously. It remains to note
that the infimum (over P’s, in our case) of continuous functions

(of the argument ¢, in our case) is upper semi-continuous; see,
e.g., (Young, 1910, Ch. 3, Sect. 6).

Our proof of (i) in Theorem 3 is critically based on a recent
deep result of J. Bochi that is reported in (Bochi, 2018). The
proof of this statement is outlined in the Appendix.

Proof of (i) in Theorem 3: We write of (t,z) > --- >
aP(t,x) > 0 for the square roots of the solutions \ of

det [(Dy'(2))" P(¢" () D' (z) — AP(x)] = 0.
We first show that there are constants C_, C';. for which

(12)

—o0o < C_ < Zmax{o,log2 af (t,z)}
i:ln (13)
- z:max{O,log2 a;(t,r)} < Cy < o0.
Indeed, the solutio;slof (10) are the eigenvalues of the matrix
P(x) 2 A(z)" P(p(2))' /2 P(p(2) 2 Alw) P () 1/
= B(z)" B(x),
where B(x) := P(p(z))"/? A(z)P(x)~/2. Hence,

n

n

Z max{0, log, al (t,z)} — Z max{0,log, a;(t,z)} =
i=1 i=1
1 maxogkgn wk(B(x))
089 .
maxo<k<n Wk (A((E))
Here wy(C) stands for the product of k largest singular values
of the square matrix C'if k¥ > 1; and wo(C) := 1. Using Horn’s
inequality (Boichenko et al., 2005, Prop. 2.3.1), we see that

wr(B(@)) < wr(P(p(@))?)wn(A(z) Jor(P(z) 7H/2).
Since the singular values continuously depend on the matrix
(Horn and Johnson, 2013, Thm. 2.6.4), the function

@ = wi(P(p(@))?)wr(P(x)"1/?)

is continuous as well. So its maximum on the compact set K is
attained and finite. This observation yields the upper estimate
in (13). The lower estimate is obtained likewise by applying
Horn’s inequality to wy, (A(x)). Thus we see that (13) does hold.

By combining (13) with (9), we get

. RS
hres(p, K)< max hﬂsogp n ; max{0,log, al (t,z)}.
Meanwhile, Assumption 1 and the generalized Horn’s inequal-
ity (Boichenko et al., 2005, Prop. 7.4.3)) imply that (¢, z) —
S max{0,log, af (t,x)} is a continuous subadditive cocy-
cle over . So by (Morris, 2013, Thm. A.3),

. 1« P

. < — .

hres(ip, K)< Inf max - E 1 max{0,log, a; (t,z)}
-

n

< log, af

< gé:}%(;max{o, og, a; ()},
=

which completes the proof. n

5. A CONTINUOUS-TIME ANALOG OF THEOREM 3

Consider a continuous-time system

= f(x) (14)
with the state x € R™ and a continuously differentiable r.h.s.
f:R™ — R™. As before, we assume that the admissible initial
states are restricted to a compact forward-invariant set K. In
this situation, the flow ©!(¢) = =z(¢, &) plays the role of the
map ¢ considered in the previous section. Here z(t,¢) is the
solution of the Cauchy problem x(0) = £ for the ODE (14).

This section aims at presenting a continuous-time analog of
Theorem 3. To this end, we consider a map P(-) that is defined
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and continuously differentiable in some open neighborhood of
K and assumes values in ST. For any such a map, we put the
entries of the matrix P as P, . (z) := ag’;* () f(x) and define
the z-dependent quantities o (z), i = 1,...,n as solutions of
the following algebraic equation:

det[Df(z) " P(z)+ P(z)Df(z)+

In the case of the continuous-time system (14), the formal
definition and discussion of the restoration entropy Aes(f, K)
is available in (Matveev and Pogromsky, 2019).

Theorem 6. Let the r.h.s. of (14) be continuously differentiable
and let the set K be compact and forward-invariant. Then the
following statements are true:

P(z)—AP(z)] = 0. (15)

(i) For any map P(-) with the described properties, the fol-
lowing inequality holds:

res(f? )

mameax{O of (x)}.

(ii) Suppose that the set K satlsﬁes Assumptlon 2. Then for
any ¢ > 0, there exists a map P(-) with the described
properties such that

hres(f, K) >

- 21n2

> 2112max2max{0 of (x)} —e.

Proof: Part (i) is immediate from Thm. 14 in (Matveev and
Pogromsky, 2019), where v4(x) := 0. The proof of (ii) goes
along the lines of the proof of (ii) in Thm. 3. ™

Like in the case of discrete time, analogs of Remark 4 and
Corollary 5 follow from Theorem 6.

6. EXAMPLE: THE LANDFORD SYSTEM

Consider the following system:
t=(a—1lz—y+zxz
y=z+(a—Dy+yz
i=az— (22 +y* + 2°)

z,y,2 €R, a>0 (16)

This system is attributed to Landford and was studied in many
publications, see, e.g. (Belozyorov, 2015). It is well known that
the system (16) has only two equilibrium points:

01 [0 0 0} 5 OQZ[O,O,G]T.
The value a = 2/3 is of particular interest, since then there is a
heteroclinic orbit connecting the equilibria (Belozyorov, 2015).
Let K be some compact forward-invariant set of (16).
Remark 7. In K, we necessarily have z > 0.

Indeed, if z(0) < 0, then the third equation of (16) implies
that the corresponding solution escapes to —oo in finite time
(2 < —22).

The Jacobian matrix is given as follows:

a—1+=2 -1 x
Df(z,y,z) = 1 a—1+2 vy
—2x -2y a-—2z

For equation (15), we take the positive definite matrix *

1 For a more detailed treatment of the metric in this form for related problems
of stability of forced oscillations, see (Pogromsky and Matveev (2016b)).

10 0 9
P(x,y,z) = Pye?(@v:2) — lO 10 1 exp () -7
001/2

a
H—/ —w
=Py
Straightforward calculations yield that
[a—14+2 -1 z i
PDf@)=| 1 eTiEE v e
—x —y (a —22)
[a—1+ 2z 1 —z ]
Df(:L‘)TP: 1 a—1+Z 1 _y euy’
x Yy (a —22)
and therefore
Df(z)"P + PDf(x)
2(a—1+42) 0 0
:ew[ 0 2(a—142) 0 ]
0 0 a—2z

At the same time,

P—_)\P= (2ZA>ewP0
a

10 0
2
(E)ew((az—xz—gf—z?)—)\) lOl 0 ]
a 001/2

Finally, the solutions of (15) can easily be found:

2.2 .9
M =20a—2:) 4222 "8 7Y

a
222 (220)
<———22+2a < 2a, (18)
a
2.2 2
Nos=2(a—1+z)+22 "2~ 7V
a
222
<——+4242(a—-1)<2(2a—-1). 19
a

By (i) of Theorem 6, the following upper estimate holds true:

1
hres K S
(%) 2In2

max [max{0, A1} + 2 max{0, A2 3}]

1
= 3 max{m;{mx Al 2m}z{1x 2,3, mlé(mx(/\l +2X23)}

Maximizing A\; + 2z 3 over z € R yields

—4.
T,y,2 2

By using (18) and (19), we thus arrive at the following.

1
max(A; +2Xg3) < max <6a — 446z — 622> — ja
a

Theorem 8. Let K be a compact forward-invariant set of the
system (16) with a > 2/3. Then

2(2a — 1)

hres(K) <
es(K) < In2

Our next step is to derive a lower estimate for h..s(K) under
an extra assumption imposed on the set K. We start with
the calculation of the proximate entropy around the system
equilibria (for the definition of the proximate entropy, see
(Matveev and Pogromsky (2019))). Calculating the eigenvalues

of Df(0O;), i = 1,2 one can easily derive that
1 a f0<a<l1
HL(O) = ln2{ 3a—2 ifa>1
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10 if0<a<1/2
Hp(02) = {Q(Qa— 1) ifa>1/2
. 2(2a — 1
max{Hp,(01), H,(O2)} =20 HL(02) = %'

The last relation together with Corollary 12 in (Matveev and
Pogromsky (2019)) and Theorem 8 gives the following result.

Theorem 9. Assume that @ > 2/3. Let K be any compact
forward-invariant set for system (16), which satisfies Assump-
tion 2 and the inclusion Oy € int K. Then

2(2a — 1)

fires (K) = In 2

At this point it is worth mentioning that the matrix P from
(17) not only provides an upper estimate of the restoration
entropy according to the statement (i) of Theorem 6, but also
gives a Riemannian metric for which the lower estimate (see
the statement (ii) of Theorem 6) holds true with ¢ = 0.
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