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Abstract: Autonomous systems will share data to enrich their environmental model and
provide cooperative functionality. However, as shared data might be imprecise or inaccurate,
its failure characteristics have to be analyzed by the receiving system before using the data. A
corresponding failure model for describing failure characteristics was proposed by Jäger et al.
(2018), but is limited to one-dimensional sensory data. In this work, we extend the failure model
to support multi-dimensional feature data as well. We exemplary evaluate the approach by
modeling the failure characteristics of a lane detection system of a simulated car. By comparing
it to state-of-the-art failure modeling techniques, we can show that the model accurately predicts
failure amplitudes of previously unseen tracks even when trained on limited data.
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1. INTRODUCTION

Continuously exchanging individual state variables (speed,
position) and environmental information (detected lane
properties in uncharted areas, location of construction
sides) between autonomous cars improves the overall
safety and performance significantly. Received information
extend the local environment model beyond the range
of local sensors and facilitate proactive path planning or
cooperative convoying Hobert et al. (2015). From a safety
perspective, however, the flexible handling of externally
aggregated data is a challenging task. On the one hand,
quality information about its failure characteristics be-
comes available solely at run-time while safety is tradition-
ally analyzed at design-time. On the other hand, current
standards, such as EN 302 637-2 V1.4.1, only target driver
assistance functionalities rather than autonomous cars and
therefore define only coarse quality metrics (e.g. symmetric
confidence intervals (ETSI TS 102 894-2 V1.3.1)) for a
limited set of exchanged information. Contrarily, Jäger
et al. (2016) exemplary identified the need for detailed
descriptions of failure characteristics of external data when
used in autonomous systems and define abstract failure
semantics. These can be shared along with external data
and matched with a system’s fault tolerance during a run-
time safety analysis to maintain its safety, e.g. by rejecting
insufficiently accurate data. Jäger et al. (2018) refine the
idea by postulating that abstract failure semantics need to
be represented in terms of concrete failure models. Con-
sequently, they develop a generic (sensor) failure model
(GFM) as a detailed description of failure characteristics,

which can be shared along with sensory data at run-
time. This enables the receiving system not only to take
uncertainties into account while planning, but also to check
that the data’s failure characteristics will not result in any
safety violations. Furthermore, they provide a data-driven
processing chain for constructing GFMs.

However, the approach proposed by Jäger et al. (2018)
has two drawbacks. Firstly, the failure model and the
processing chain, were designed and evaluated regarding
one-dimensional sensory data only. Contrarily, coopera-
tive systems will share multi-dimensional feature data as
well (e.g. detected lanes). Secondly, the presented failure
model uses artificial neural networks, which are black box
models and therefore not interpretable. In safety-critical
applications, however, interpretability of employed models
is mandatory.

Thus, the present work aims at closing these gaps. We
extend the GFM and its processing chain to support multi-
dimensional feature data. Furthermore, we adapt the em-
ployed function approximation scheme to use polynomials,
which have a clear interpretation.

The text is structured as follows: The next section will
discuss exemplary state-of-the-art approaches on sensor
failure modeling. We firstly review general approaches
before we introduce the generic failure model of Jäger et al.
(2018). In Section 3 we extend the generic failure model
and its processing chain to overcome its drawbacks. The
extended GFM is evaluated in Section 4 by modeling fail-
ures of a lane detection system of a simulated car. We can
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show that its modeling performance outperforms state-
of-the-art approaches while maintaining interpretability.
The last section summarizes the contributions and states
possible directions for future work.

2. STATE OF THE ART

In this section we briefly discuss the state of the art
on modeling sensor failures. We firstly review general
approaches in the next subsection before we introduce the
generic failure model of Jäger et al. (2018) in the second
subsection.

2.1 Sensor Failure Modeling

A sensor, considered as an individual system, is designed
to provide observations of a certain phenomenon. In case of
deviations between the provided observation ô and the true
value of the phenomenon o, the sensor fails to adhere to its
specification meaning that a sensor failure has occurred.

The possible ways in which such deviations instantiate
for a certain sensor is known as its failure characteristics
and are commonly described by failure models. They vary
in level of detail, which motivated Jäger et al. (2016) to
group them in four failure semantics (Arbitrary Failures,
Bounded Failures, Modeled Failures, or None)

The None failure semantics is satisfied only by ideal
sensors emitting no measurement failures. It poses the
strongest assumption (ô = o) on provided sensor observa-
tions and thereby dismisses the need for a failure model.

On the contrary, a sensor providing no information about
its failure characteristics satisfies only the weakest failure
semantics of Arbitrary Failures. For instance, sensors that
provide Transducer Electronic Data Sheet (TEDS) (Song
and Lee, 2008) to facilitate plug-and-play applications are
not obligated to provide any description of their failure
characteristics. Thus, they can satisfy only an Arbitrary
Failures semantics.

The optional parts of TEDS, on the other hand, allow
sharing manufacturer-defined data. It can be used to
share a minimal description of failure characteristics, e.g.
uncertainty margins (Taylor and Kuyatt, 1994) in the form
of ±f . These limit the true value o to be within an interval
[ô− f, ô+ f ] around the sensor observation ô at any time
and thereby satisfy the Bounded Failures semantics. Due
to the lack of further information, one has to assume an
uniform distribution of sensor failures f in this case.

Therefore, approaches satisfying the Modeled Failures se-
mantics aim at providing more complete descriptions, e.g.
by explicitly stating the distribution of sensor failures. El-
nahrawy and Nath (2003), for instance, assume a Gaussian
distribution with zero mean and a fixed standard deviation
for failures of one- and multi-dimensional sensors in a
sensor network. Adding knowledge about the distribution
of sensor failures enables to reason about the validity of
sensor readings, which they use to clean noisy sensor read-
ings. Similarly, Rauscher et al. (2016) assume a Gaussian
distribution of failures of depth cameras. However, they
model the distribution’s standard deviation as a function
of the measured depth using quadratic polynomials to
represent value-correlations of sensor failures.

Fagbemi et al. (2019) take a more complex approach. They
consider a Gaussian distribution of failure amplitudes
f ∼ N (µ, σD) as the Noise failure type (ôNoise = o + f),
which is one out of nine failure types comprising their
failure model. Moreover, they define failure types such
as Scaling (ôScaling = σ · o), which affects a sensor ob-
servation multiplicative, or Bias (ôBias = o + β) which
has an additive effect. Their work is embedded into a
simulation of unmanned air systems which renders the
presented failure model application specific and requires
experts to manually determine the model’s parameters
(e.g. σ, β). Nevertheless, failure type based failure models
can be found throughout the literature. Heredia et al.
(2008) present a failure model comprising five linguisti-
cally defined failure types for an fault detection isolation
(FDI) system for an autonomous helicopter. Ni et al.
(2009) present linguistic definitions of nine failure types
for sensor networks and propose different features, e.g.
mean, variance, and gradient, for modeling them. Jäger
et al. (2014) describe features to detect four failure types
(Outlier, Constant Offset, Constant Noise, Stuck-At-Zero)
using artificial neural networks.

2.2 Generic Sensor Failure Model

Another approach satisfying the Modeled Failures seman-
tics is the generic failure model of Jäger et al. (2018).
Defining a time series of failure amplitudes over the dis-
crete time index k ∈ N0 as f(k, ok) = ôk − ok, they take
a data-driven approach. They define the failure model M
as a set of failure typesM = {F1, . . . , FN} with |M| = N
where each failure type Fn consists of a state-function
sn(k, ok) and a failure amplitude fn(k, ok). Here, ok ∈ Rb

denotes the true value of the observed phenomenon while
ôk is the (possibly faulty) sensor observation, as before.
Note that in Jäger et al. (2018) the number of dimensions
is restricted to b = 1.

While a failure type’s state function describes when a fail-
ure type is active (sn(k, ok) = 1) or inactive (sn(k, ok) =
0), its failure amplitude fn(k, ok) describes the effect the
failure type has on the sensor observation. All failure types
F1, . . . , FN of a model M are independent and therefore
impose each other additively:

f(k, ok) =

N∑
n=1

sn(k, ok) · fn(k, ok) (1)

In other words, the failure types decompose an overall
failure amplitude f(k, ok) into several, failure type specific
failure amplitudes fn(k, ok) ∈ Rb. For the n-th failure type
fn(k, ok) is defined as

fn(k, ok) = pn((k − k0)/Kn) ·mn(k, ok) (2)

where k0 is the time step at which the failure type
was activated and Kn is the duration for which it is
active. The function pn((k − k0)/Kn) ∈ [−1, 1]b is a
normalized, deterministic failure pattern. It enables the
GFM to not only model Noise-like failure characteristics,
but also to represent pattern that evolve over time. Hence,
dependencies between failure amplitudes at different time
steps can be represented. To model the stochastic nature
of a failure type, the failure pattern pn is scaled by
mn(k, ok) ∈ Rb. The value of this function follows a time-
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and value-correlated random distribution (Jäger et al.,
2018)

mn(k, ok) = σ(k, ok) ·Q(u) + µ(k, ok) (3)
The distribution of the function values is represented by
its inverse cumulative distribution function (or quantile
function) Q(u) ∈ R, u ∈ [0, 1]. In other word, by pro-
visioning an appropriate function Q(u) an uniformly dis-
tributed random variable u can be transformed to follow
an arbitrary distribution. As this mapping is static, that is,
not dependent on time step k or value ok, the transformed
random variable is multiplied by σ(k, ok) ∈ Rb and shifted
by µ(k, ok) ∈ Rb to introduce such correlations. Conse-
quently, these functions represent the standard deviation
and mean of the transformed distribution. Note that the
use of quantile functions renders the GFM to be a gener-
ative model.

For representing the functions describing a failure type,
Jäger et al. (2018) employ Radial Basis Function (RBF)
networks (Kruse et al., 2016), a variant of artificial neural
networks, that can be used for universal function approx-
imation (Park and Sandberg, 1991).

To increase the applicability of the failure model, the
authors additionally present a processing chain capable
of extracting a failure model from a given series of failure
amplitudes f(k, ok).

Jäger et al. (2018) evaluate the processing chain and the
generic failure model by representing the failure charac-
teristics of an one-dimensional infra-red distance sensor.
They show that the failure model out-performs uniform
and normal distributions and performs similar to Multi-
Layer Perceptrons(MLP) (Kruse et al., 2016).

3. EXTENSION TO THE MULT-DIMENSIONAL
CASE

The generic failure model of Jäger et al. (2018) is limited
to one-dimensional data by its use of quantile functions
Q(u), see Eq. (3). In general, given a random variable X,
quantile functions map a probability u ∈ [0, 1] to the value
x ∈ R for which Q−1(x) = P (X ≤ x) = u is true. For
one-dimensional random variables, the quantile function
can be constructed by inverting its cumulative distribution
function such that P (X ≤ Q(u)) = u. In case of a multi-
dimensional random variable, however, x ∈ Rb is a vector,
which implies that Q(u) needs to map from a scalar to a
vector (Q : [0, 1] ⇒ Rb). As this function is not injective
in general, we can not invert the cumulative distribution
function for constructing the quantile function.

Hence, for extending the GFM to support multi-dimen-
sional feature data, we firstly discuss different approaches
to multi-variate quantile functions in the next subsection.
Deeming the approach of standard construction as most
suitable, we apply it to the GFM for representing multi-
variate qunatile functions in Section 3.2. In the last subsec-
tion, we briefly discuss extensions that are required for the
processing chain to construct multi-dimensional GFMs.

3.1 Multi-Variate Quantile Functions

The main challenge when defining multi-variate quantile
functions is that no natural ordering for dimensions greater
than one exists (Serfling, 2002; Belzunce et al., 2007).

Several approaches to circumvent this problem where
proposed. For instance, Liu et al. (1999) use statistical
depth-functions and defined quantiles as their superlevel
sets. However, as these are thereby sets of vectors and not
unique vectors, they are unsuitable for use in the GFM.
In contrast, Chaudhuri (1996) consider a vector u ∈ [0, 1]b

instead of a scalar probability to realize a unique mapping
[0, 1]b ⇒ Rb based on norm minimization. However, the
interpretation of ||u|| as a probability does not hold for
b > 1 (Serfling, 2002).

Finally, in the field of simulation, the approach of standard
construction (Joslin, 2012; Fernandez-Ponce and Suarez-
Llorens, 2003) generalizes quantile functions to multi-
dimensional data by using the indices of the dimen-
sions as an replacement for the natural ordering. Let
X = [X1, . . . , Xb] be a random vector in Rb and u =
[u1, . . . , ub] ∈ [0, 1]b then we can sample a random vector
X of distribution Q(u) as follows (Joslin, 2012):

x1(u1) = Q(X1)(u1)

x2(u1, u2) = Q(X2|X1=x1(u1))(u2)

. . .

xb(u1, . . . , ub) = Q(Xn|∩d−1
j=1

Xj=xj(u1,...,uj))
(ub)

Here, Q(Xi|...)(u) denotes the uni-variate quantile function
of the marginal distribution of the i-th component given
that all components j < i have values x1, · · · , xj . Thus,
a dependency structure based on the chosen ordering
of dimensions is imposed on the actual distribution of
the random vector. Note that, opposed to the previous
approach, the values u1, . . . , ub retain their interpretation
as probabilities.

3.2 Extending the Failure Model

Although the approach based on norm minimization and
the standard construction approach both facilitate the
usage of quantile functions within the GFM, the latter
retains a probabilistic interpretation of the elements of u.
Therefore, we use this approach to represent the quantile
function Q(u) ∈ Rb of the failure types of the GFM, see
Eq. (3). However, allowing b ≥ 1 renders the functions
µ(k, ok) and σ(k, ok) to be vector functions as well. This
extension is inline with the interpretation of µ(k, ok) ∈ Rb

which still provides the time- and value correlated mean
of the distribution. Contrarily, σ would be required to
provide a b×b covariance matrix. This squares the number
of values to represent by the σ function. Furthermore,
values apart from the diagonal of the covariance matrix
represent correlations between dimensions of the random
vector. As these are captured by the quantile functionQ(u)
and its internal dependency structure already, we assume
that these values are zero. Consequently, we define the
function σ(k, ok) ∈ Rb to provide an element-wise scaling
of the random vector produced by the quantile function
Q(u).

Besides the definition of the failure model, the function
approximation scheme employed for representing a failure
type’s functions is affected by allowing multi-dimensional
data as well. It has to support vector functions. While
this is the case for RBF networks, as proposed in Jäger
et al. (2018), they are considered as black box models and
therefore lack a clear interpretation.
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To overcome this drawback, we employ multi-variate and
multi-response polynomial regression. A polynomial rep-
resents the function G : RI =⇒ RR where I denotes
the number of independent variables and R denotes the
number of response variables. Given the order of the
polynomial as D ∈ N≥1, each response variable gr is
represented as:

gr = Φ0 +

I∑
i=1

D−(i−1)∑
d=1

∑
c∈Ci

Φz ·
∏
j∈c

xdj (4)

with Î = {i|i ∈ N≥1 ∧ i ≤ I} being the set of indices of

the independent variables and Ci =
(
Î
i

)
denoting the set

of their i-combinations. z is merely an index to distinguish
the parameters of the polynomial.

According to Eq. (4) a polynomial withD = 2, I = 2, R =
1 would be:

g = Φ0 + Φ1x1 + Φ2x2 + Φ3x
2
1 + Φ4x

2
2 + Φ5x1x2 (5)

As one can see, the response g is a weighted sum of
multiplicative combinations of the independent variables
and their powered versions. Thus, rearranging the elements
in matrices enables the multi-response polynomial to be
written as a linear system:

G = X̂ · Φ (6)

As the independent variables are directly reflected by the
X̂ matrix and their effect on the response variables are
explicitly stated by the Φ parameters, the interpretation
of a polynomial is clearer compared to artificial neural
networks as they were used by Jäger et al. (2018).

3.3 Extending the Processing Chain

Apart from the failure model, Jäger et al. (2018) intro-
duced a processing chain comprised of three steps to ex-
tract a GFM. The inputs to the processing chain are time
series of ground truth values ok and sensor observations ôk
from which failure amplitudes f(k, ok) = ôk − ok are cal-
culated. In accordance with the failure model, we shortly
review the steps and describe necessary adaptations to
support multi-dimensional data.

Identifying Failure Types The goal of the first step is to
identify a preliminary set of N̂ failure types and their oc-
currences to facilitate a decomposition of the given failure
amplitudes f(k, ok) according to Eq. (1). In that endeavor,
an optimization based pattern recognition algorithm is
applied. The algorithm optimizes randomly generated pat-
terns to match the failure amplitudes f(k, ok) and to occur
as frequently as possible. The match between a failure type
and the failure amplitudes boils down to calculating the
area between both curves:

v1 =
∑
k

||f(k, ok)−
N̂∑

n=1

sn(k, ok) · fn(k, ok)||1 (7)

As the L1-norm can be evaluated for vector functions as
well, this step supports multi-dimensional data already.
Patterns that not exceed a predefined threshold of v1
are accepted as failure patterns and form, together with
their occurrences, a failure type. The algorithm generates
and optimizes failure patterns until v1 becomes zero.

Hence, the set M1 of N̂ failure types allow to completely
reconstruct f(k, ok) according to Eq. (1). The identified
failure types are passed to the second step.

Generalizing Failure Types The second step aims at
generalizing the obtained failure types. Failure types with
similar patterns or similar occurrences are identified and
merged into a single failure type. This causes a loss
of information. Thus, reconstructing failure amplitudes

according to Eq. (1) produces f̂(k, ok) instead of f(k, ok)
and the loss of information is assessed via:

v2 =
∑
k

||f(k, ok)− f̂(k, ok)||1 (8)

To limit the loss of information, the process is repeated
until v2 ≥ ε, where ε is a predefined threshold. Again,
extending the processing chain requires to evaluate Eq. (8)
for vector functions, which was solved for the previous step
already. The output of this step is the setM2 of N failure
types.

Parameterizing Failure Types To obtain the final set
of failure types, their functions (see Sec. 2.2) will be
represented by polynomials. The corresponding training
data for fitting these is extracted from the occurrences
of the generalized failure types using the sliding window
approach from Jäger et al. (2018), which allows to identify
time and value correlations. Furthermore, to increase the
robustness of the polynomials, we normalize the training
data to have zero mean and a standard deviation of one
before we apply Conjugate Gradient (Hestenes and Stiefel,
1952) to solve the linear system of Eq. (6) and obtain the
parameter matrix Θ for each polynomial. The output of
this step is the failure model M with N parametrized
failure types.

4. USE CASE: FAILURE MODELING OF A LANE
DETECTION ALGORITHM

The GFM and its extensions presented in the last section
are designed to be used in cooperative systems sharing
data about the environment and objects detected therein,
see Sec. 1. Specifically, in automotive scenarios, detected
lanes might be shared between vehicles to facilitate cooper-
ative sensing or even cooperative maneuvers. However, as
abstract representations of detected lanes are generated by
complex processing chains operating on inaccurate sensor
data, e.g. cameras, they exhibit failures as well (Hillel
et al., 2014). Thus, in this section we apply the GFM and
other state-of-the-art approaches ranging from uniform-
and normal distributions to artificial neural networks to
model the failure characteristics of the lane detection sys-
tem of a simulated, autonomous car.

The next subsection introduces the simulation setup that
was used to generate training data for designing the failure
models and test data to assess their performance. In
subsection 4.3 we present all approaches and their training
procedures before we discuss the applied evaluation metric
in Subsection 4.4. We present our results in Subsection 4.5.

4.1 Simulation Setup

For modeling failure characteristics, both, ground truth
data (ok) as well as sensor/feature data (ôk) have to be
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(a) Track 1 (b) Track 2 (c) Track 3

Fig. 1. Tracks on which the autonomous car was simulated.

available. To provide both, we simulate an autonomous
car on a scale of 1:10 on different tracks (see Fig. 1)
using Gazebo (Koenig and Howard, 2004). The software
facilitates simulating individual sensors, such as the car’s
front camera, which provides grayscale images of the road
to the lane detection system. The lane detection starts
by transforming received images into a birds-eye view,
see Fig. 2. To cope with noise and outliers, morphological
operations (erosion and dilation) are applied. Continuous
white areas in the resulting image are then assumed to be
lane markings and extracted as polylines. Finally, clothoids
are fitted as the finale representation of the detected lane
markings.

Clothoids are favored representations for lane markings
due to their use in road constructions (Marzbani et al.,
2015). A clothoid is a curve with a linearly changing
curvature that can be described by three parameters: c0
describes the initial curvature of the curve, c1 describes
the curvature change along the curve and Θ describes
the orientation of the curve in a 2D coordinate frame.
These three parameters are considered as one observation
ôk = [c0, c1,Θ]. Note that we ignore the starting position
of the curve as we are focused on the failures affecting the
extracted clothoids itself.

For each detected lane in the image, a separate clothoid is
produced by the system. Thus, in our scenario the system
produces separate observations ôk for the left-left lane
(LL), left lane (L), and right lane (R).

Despite simulating the scenario, uncertainties inherently
present in the lane detection system cause failures in each
of the clothoid’s parameters, which we aim to model. For
instance, as one can see in the upper right corner of Fig. 2,
the perspective transformation of the camera image into
a birds-eye view causes the width of lane markings to
be doubled from 8 pixel to 16 pixels. The blurred lane
markings result in uncertain clothoid parameters, which
can be seen in Fig. 4a. It shows an excerpt of the failures
of the c0 parameter produced by the lane detection system
for Track 1 on the left-left lane.

4.2 Training and Test Data Aggregation

The simulation environment described in the last subsec-
tion facilitates the acquisition of ground truth data (i.e.
ideal observations o), which is available from the tracks,
and observations ô from the lane detection system. The

Table 1. Parameters of the tracks.

Track Radii in [m] Length in [m]

1 {1.12, 2.25, 2.41} 64

2 {1.41, 1.61, 1.91, 2.29} 28

3 {1.41} 34

8px

16px16px

Fig. 2. Exemplary topview projection of the front camera
image used during lane detection. While lane mark-
ings close to the car are sharp (width of 8 pixel), lane
markings in the top of the image are blurred (width
of 16 pixel) due to the perspective transformation.

difference between both constitutes the failure amplitudes
that we aim to model. We simulated the car on each
track for each driving direction (clock-wise, counter clock-
wise) for 250 seconds which resulted in approx. 12.000
observations. During the simulation, the velocity of the
car was set to 1 ms−1.

In contrast to our simulation setup, constructing failure
models for real-world lane detection systems would require
training and test data from real-world experiments. In this
case, facilitating training of failure models on a minimal set
of data while maintaining their generalization capabilities
is mandatory for tractable failure modeling approaches.
Following the same suit, we use only 1/3 of the available
data for training and 2/3 for testing. More specifically, we
use data obtained from Track 1 for training the failure
models. The data is assumed to contain most information
about the failure characteristics of the lane detection
algorithm due to its increased length and the number of
curves and their varying radii, see Tab. 1. Complementary,
data from Track 2 and 3 is used for testing.

4.3 Modeling Approaches

The training data comprised by failure amplitudes f(k, ok)
and ground truth data ok is used to design five failure
models, which are summarized in Tab. 2. Each model
represents the failure characteristics of the lane detection
system regarding the clothoid parameters c0, c1, and Θ.
Thus, a single model represents the failure amplitudes of
all lanes (LL, L, R).

The first approach is an uniform distribution that models
failure characteristics as the minimal and maximal failure
amplitude in each dimension. It is similar to the uncer-
tainty margins Taylor and Kuyatt (1994) and therefore
satisfies the Bounded Failures semantics and serves as a
baseline approach. The approach is trained by storing the
minimal and maximal failure amplitude of all parameters
contained in the training data.

In accordance with Section 2.1, the second approach is
a normal distribution which satisfies the Modeled Failures
semantics. It uses the mean and standard deviation of each
parameter to represent a failure characteristics.
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Table 2. Number of parameters of each model

Model Parameters
Time- and

Value-Correlated
Temporal
Pattern

Uniform 2× 3 No No

Normal 2× 3 No No

ICDF - No No

LSTM 2648 Yes Implicit

GFM 2653 Yes Yes

As both of these approaches lack in representing the true
distribution of failure amplitudes, the third approach is
an inverse cumulative distribution function (ICDF) which
is non-parametric but uses the training data directly. It
perfectly represents the distribution of failure amplitudes,
but can neither represent time- and value correlations nor
temporal failure patterns.

Thus, we train a Long Short-Term Memory (LSTM) net-
work, a variant of recurrent neural networks, which proved
useful in predicting time series, e.g. for traffic speed (Ma
et al., 2015). In contrast to the other approaches, the
LSTM network is a discriminative model that directly
predicts a failure amplitude f(k, ok). To match the number
of independent parameters of the GFM (see Tab. 2), we
designed the network to have 23 LSTM neurons followed
by a fully-connected, linear layer providing the three-
dimensional output.

Lastly, we applied the processing chain (see Sec. 3.3) to
extract a GFM. Starting with polynomials of order D = 7,
we could reduce D to 5 for polynomials representing failure
patterns and D = 3 for polynomials representing the
scaling functions in Eq. (3) while maintaining the models
performance. The processing chain identified 7 failure
types with 379 parameters each.

The models are summarized in Tab. 2. As one can see, the
uniform and normal distributions require the least amount
of parameters to be determined, but have limited power for
representing failure characteristics. The ICDF approach,
although capable of representing the true distribution,
requires no parameters but directly uses the training
data. In contrast, only the LSTM and GFM approaches
facilitate representing time- and value-correlations as well
as (implicit or explicit) temporal patterns. The increased
complexity, however, requires an increased number of
parameters, which in turn require an appropriate amount
of training data.

4.4 Evaluation Metric

We follow the idea of Jäger et al. (2018) to assess the
performance of the constructed failure models. Firstly,
we apply Monte-Carlo simulations to predict failure am-
plitudes fx(k, ok) with x ∈ {Uniform, Normal, ICDF,
LSTM, GFM }. In a second step, we compare the pre-
dicted failure amplitudes fx(k, ok) with the original fail-
ure amplitudes f(k, ok) generated by the lane detection
system. The comparison is based on a sliding window
approach which defines a time interval [kw, kw + Kw] of
size Kw. The size of the window was set to Kw = 120
to match the time needed for the car to pass a curve
and thereby capture value-correlations within the failure
amplitudes. To assess them appropriately, we shifted the

Table 3. Results from Track 1

Model LL L R Σ Rank

Uniform 49.82 51.7 54.21 311.45 5

Normal 4.11 2.54 3.11 19.52 4

ICDF 2.98 0.68 0.77 8.86 2

LSTM 3.48 1.94 1.25 13.34 3

GFM 1.01 0.66 0.32 3.97 1

Table 4. Results from Track 2

Model LL L R Σ Rank

Uniform 49.44 52.35 55.49 314.57 5

Normal 3.26 2.37 3.15 17.57 4

ICDF 2.05 0.39 0.49 5.87 2

LSTM 2.7 1.55 1.26 11.03 3

GFM 1.2 0.33 0.22 3.5 1

Table 5. Results from Track 3

Model LL L R Σ Rank

Uniform 47.38 47.52 53.44 296.7 5

Normal 4.56 1.61 3.12 18.58 4

ICDF 4.43 0.82 0.83 12.16 2

LSTM 3.94 2.19 2.09 16.44 3

GFM 2.01 0.88 0.91 7.59 1

window with a step size of 12 which produces an overlap
of 90% between subsequent windows. In each window we
consider the predicted and the original failure amplitudes
as two random distributions. Jäger et al. (2018) use the
Kolmogorov-Smirnov (KS) statistic for comparing them.
However, as the statistic is restricted to one-dimensional
data, we employ the Cramer-von-Mises statistic which was
extended to multi-dimensional data in Baringhaus and
Franz (2004). Applying it to each window of the sliding
window approach yields a time series of scalar values.
By calculating the mean over all windows, we obtain a
separate assessment value for each lane (LL, L, R) and
each track (1,2,3), see Tab. 3-5. In general, greater values
indicate a greater mismatch between the original failure
amplitudes f(k, ok) and the predicted failure amplitudes
fx(k, ok). However, one can not assume a linear relation-
ship, that is, a doubled performance value does not directly
imply a doubled mismatch between predicted and original
failure amplitudes.

4.5 Results

The results are summarized in Tab. 3-5. Tab. 3 assess the
models performance regarding their training data while
Tab. 4 and 5 assess their performance when applied to
previously unseen scenarios.

As one can see, the uniform distribution achieves the
worst performance. This matches the state-of-the-art dis-
cussion where the uniform distribution, as part of the
Bounded Failures semantics, is considered to carry only
limited information about a sensor’s failure characteristics.
Similarly, the normal distribution assumes a predefined
distribution and calculates mean and standard deviation
to be the most likely fit. The summed performance values
over all three lanes on each track show that this assump-
tion results in much greater performance compared to a
uniform distribution. The ICDF follows this trend as it is
capable of perfectly representing the true distribution of
failure amplitudes. However, comparing its performance
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Fig. 3. Failures of the Θ parameter of the right lane markings on Track 2 averaged over approximately 6 rounds.
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Fig. 4. Excerpt of failures amplitudes of the c0 parameter of the left-left lane markings of Track-1.

values to those achieved by the LSTM and GFM uncovers
a disadvantage of the Cramer-von-Mises statistic. The
ICDF approach is ranked higher than the LSTM model
despite its inability to represent temporal patterns or value
correlations. This is underlined in Fig. 4 where excerpts
of the failure amplitudes of the c0 parameter for Track
1 are shown. While the LSTM network as well as the
GFM model are capable of representing the negative Spike
pattern around k = 1000, the ICDF model produces only a
Noise pattern. The same behavior can be observed for the
Θ parameter when simulating failure amplitudes for Track
2 (see Fig. 3), which results in an almost homogeneous
colorization of the track in case of the ICDF approach. In
contrast, the LSTM and GFM model represent value cor-
related failure amplitudes and therefore predict negative
failures for Θ in right-hand bends and positive failures in
left-hand bends. However, the LSTM network misses to
model the noise behavior of the real failure amplitudes,
see Fig. 4.

This shows the advantage of the GFM, where a separate
failure type captures this behavior and therefore repro-
duces the failure amplitudes more realistically.

A similar statement can be made about the minimal and
maximal failure amplitudes. As shown exemplary in Fig. 3,
the GFM can predict outliers to occur in curves resulting
in dark red and green spots. The LSTM network, on the
other hand, under estimates their magnitude and therefore
produces more faint colors. This underlines the ranks in
Tab. 3-5, where the GFM is ranked first.

5. CONCLUSIONS AND FUTURE WORK

The present work focuses on extending the generic failure
model (GFM) proposed by Jäger et al. (2018) to sup-
port multi-dimensional feature data. In that endeavor,
we identified the use of quantile functions as the limi-
tation of the GFM. By employing multi-variate quantile
functions based on the approach of standard construction

and adapting the processing chain for constructing GFMs
accordingly, we overcame the limitation. Moreover, we
introduced polynomials to represent the functions of the
GFM, which ensures interpretability of the model. By
applying the GFM to model the failure characteristics
of a lane detection system of a simulated car, we could
show that the GFM outperforms commonly used failure
models (uniform distribution, normal distribution) and
even achieves a modeling performance comparable to Long
Short-term Memory (LSTM) networks. Most importantly,
these results were achieved by training the GFM using
only data from one track while predicting failure ampli-
tudes for two previously unseen tracks. This underlines
the generalization capabilities of the proposed model.

In future work, we aim at exploiting these generalization
capabilities. We plan to construct artificial tracks that
yield the minimal amount of training data while providing
a maximal performance of the trained GFM. Such an arti-
ficial track shall further be used as a template for finding
suitable tracks for real-world experiments. To facilitate
this work, the evaluation metric based on the Cramer-
von-Mises statistic has to be refined further to resolve
contradictions as raised in the last section.

Another direction for future work will be the run-time
safety analysis. For that, the use of polynomials in GFMs
enables us to consider confidence bands (Scheffe, 1999)
to (i) state the goodness of fit during training the failure
model and (ii) as a means to predict upper and lower
bounds of failure amplitudes along with the most likely
failure amplitude. The thereby increased interpretability of
the GFM shall be used during the abstract run-time safety-
analysis of Jäger et al. (2016) based on failure semantics
to maintain safety in cooperative systems.
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