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Abstract: Research in epidemiology often focusses on designing interventions that result in the
number of infected individuals asymptotically approaching zero, without considering that this
number may peak at high values during transients. Recent research has shown that a set-based
approach could be used to address the problem, and we build on this idea by applying the theory
of barriers to construct admissible and invariant sets for an epidemic model. We describe how
these sets may be used to choose intervention strategies that maintain infection caps during
epidemics. We also derive algebraic conditions of the model parameters that classify a system
as being either comfortable, comfortable-viable, viable, or desperate.
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1. INTRODUCTION

Epidemics have classically been modelled by so-called com-
partmental models, where the state variables represent the
proportion of individuals that belong to a certain class
(susceptible, infected, recovered, exposed, vaccinated, etc.)
with their interaction governed by ordinary differential
equations (ODEs). See for example Brauer and Castillo-
Chavez (2001) and Hethcote (2000). Research in the man-
agement of epidemics have usually focused on the stability
properties of these ODEs under (stationary) interventions.

Control theory has been applied in this classical ODE
setting, with researchers often analysing optimal control
problems that optimise a trade-off between peak propor-
tion of infected members and the cost of intervention, see
for example Culshaw et al. (2004), Hansen and Day (2011),
Hethcote and Waltman (1973), Kirschner et al. (1997).
There has also been much recent interest in the modelling
of epidemics as complex networks, see Pastor-Satorras
et al. (2015), and Nowzari et al. (2016) for a survey of
control-theoretic approaches to manage epidemics.

The mentioned papers that analyse optimal control prob-
lems aim at minimising the infected population by im-
posing a relevant cost (soft constraint). Some work has
been done on analysing the size of disease outbreaks, see
Miller (2008) for a stochastic-model setting. However, to
our knowledge, the only papers that address maintaining
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hard constraints on the infected population are those by
De Lara and Salcedo (2016, 2019), which we briefly discuss.

De Lara and Salcedo (2016) first proposed the use of
viability theory, Aubin (2009), to address the problem of
maintaining a hard infection cap. They found the viability
kernel for the Ross-Macdonald model, Anderson et al.
(1991), which describes the dynamic behaviour of a vector-
borne disease (a vector is an agent, such as a mosquito,
that transmits disease-causing pathogens). They defined
three cases that may occur, namely the comfortable, viable
and desperate cases, which correspond to inequalities on
the system parameters. In particular, the viable case
corresponds to when there exists a nontrivial 1 viability
kernel. In this case, the authors describe a special part
of the boundary of the set, arguing that it is given by a
solution of the system obtained with a particular input.

In this paper we use the theory of barriers, as developed in
De Dona and Lévine (2013) and Esterhuizen et al. (2020),
to analyse the Ross-Macdonald model subjected to state
and input constraints. We derive necessary conditions that
must be satisfied by the admissible set 2 or the maximal
robust positively invariant set (MRPI) 3 for the system.

1 neither empty nor equal to the constraint set
2 The admissible set is the set of initial conditions such that there
exists at least one admissible control for which the corresponding
integral curve satisfies the state constraints for all times (see Defini-
tion 1). It is called the viability kernel in viability theory
3 The MRPI is the set of initial conditions for which the state
constraints are always satisfied, regardless of the admissible input
(see Definition 3).
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When these sets are non trivial it is easy to find them:
one merely needs to solve a differential equation over
some interval of time. Intervention strategies that maintain
infection caps can then be determined depending on the
set that the state belongs to. We elaborate on this point
at the end of Section 2.

Our contributions are as follows:

• We analyse the system with bounds on the propor-
tion of humans and mosquitoes. If the mentioned
sets are non trivial, then they also give informa-
tion on whether limits on the proportion of infected
mosquitoes can be maintained.
• In addition to defining the comfortable, viable and

desperate cases for epidemic models, we introduce
the comfortable-viable case, which occurs when the
system has a nontrivial MRPI.
• Using the main result from the theory of barriers, we

are able to state inequalities on the system parame-
ters under which each case occurs.
• We reproduce the conditions derived by De Lara

and Salcedo (2016) for the comfortable, viable and
desperate cases, showing that they are obtained by
setting the mosquito cap, x̄1, equal to one.
• It is interesting to note that similar to De Lara

and Salcedo (2016), we describe certain parts of
the boundaries of the sets (the “barriers”) as being
made up of special system curves, not only for the
admissible set but also for the MRPI: they satisfy a
maximum/minimum-like principle.
• The comparisons between the admissible set and the

MRPI may lead to interesting conclusions concern-
ing the epidemic management, thus building on the
results of De Lara and Salcedo (2016).

The outline of the paper is as follows. In Section 2 we
present a summary of the theory of barriers along with
other mathematical preliminaries, such as our notation.
In Sections 3 we present an in-depth analysis of the
Ross-Macdonald model, the main contributions being the
conditions that determine the different system cases. In
Section 4 we present a numerical example. We discuss
how the obtained sets may be used in the management
of epidemics in Section 5, and conclude the paper in
Section 6.

2. SUMMARY OF THE THEORY OF BARRIERS

We briefly summarise the results as presented in De Dona
and Lévine (2013) and Esterhuizen et al. (2020).

We consider the following constrained nonlinear system:

ẋ(t) = f(x(t), u(t)), (1)

x(t0) = x0, (2)

u ∈ U , (3)

gi(x(t)) ≤ 0,∀t ∈ [t0,∞[, i = 1, 2, . . . , p, (4)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm denotes the
input, and U is the set of Lebesgue measurable functions
that map the interval [t0,∞[ into a compact and convex set
U ⊂ Rm. The initial condition is specified by x0 and the
gi’s are the constraint functions. Briefly, the assumptions
are that the functions f and gi for i = 1, . . . , p are
C2 with respect to their arguments on appropriate open

sets; that all solutions of the system remain bounded on
finite intervals; and that the set {f(x, u) : u ∈ U} is
convex for all x. See De Dona and Lévine (2013) and
Esterhuizen et al. (2020) for more details. It is easy to
verify that the system under study in this paper satisfy
these assumptions.

We will use the notation xū to denote a solution to (1)
with input ū ∈ U , where the initial condition is clear from
context. We denote x(u,x0,t0)(t) as the solution of (1) at
time t, with initial condition (2) at t0 and input (3). We
introduce the following sets:

G ,{x : gi(x) ≤ 0, ∀i ∈ {1, 2, ..., p}}, (5)

G− ,{x : gi(x) < 0, ∀i ∈ {1, 2, ..., p}},
G0 ,{x ∈ G : ∃i ∈ {1, 2, ..., p} s.t. gi(x) = 0},

and by I(x) = {i : gi(x) = 0}, the indices of active

constraints at x. Furthermore, we denote by Lfg(x, u) ,
Dg(x)f(x, u) the Lie derivative of a continuously differen-
tiable function g : Rn → R with respect to f(., u) at the
point x. Given a set S, its boundary is denoted by ∂S and
SC denotes its complement. By R≥0 we refer to the set of
nonnegative real numbers.

Definition 1. The admissible set of the system (1)-(4),
denoted by A, is the set of initial states for which there
exists a u ∈ U such that the corresponding solution to
(1)-(2) satisfies the constraints (4) for all future time.

A ,
{
x0 ∈ G : ∃u ∈ U , x(u,x0,t0)(t) ∈ G ∀t ∈ [t0,∞[

}
.

Definition 2. A set Ω ⊂ G is said to be a robust positively
invariant set (RPI) of the system (1)-(3) provided that
x(u,x0,t0)(t) ∈ Ω for all t ∈ [t0,∞[, for all x0 ∈ Ω and for
all u ∈ U .

Definition 3. The maximal robust positively invariant set
(MRPI) of the system (1)-(4) contained in G, is the union
of all RPIs that are subsets of G. Equivalently 4

M ,
{
x0 ∈ G : x(u,x0,t0)(t) ∈ G, ∀u ∈ U , ∀t ∈ [t0,∞[

}
.

We introduce the sets:

[∂A]− , ∂A ∩G−, [∂M]− , ∂M∩G−,
where [∂A]− and [∂M]− are called the barrier and invari-
ance barrier, respectively. These parts of the boundaries of
the sets have the property that for every point x̄ ∈ [∂A]−
(resp. x̄ ∈ [∂M]−) there exists an input, ū ∈ U , such
that the resulting integral curve runs along [∂A]−, (resp.
[∂M]−), and satisfies a minimum/maximum-like principle.
Moreover, if the curves eventually intersect the boundary
of the constraint set, then this must happen in a tangen-
tial manner. These facts are summarised in the following
theorem.

Theorem 1. Under the assumptions in De Dona and
Lévine (2013) and Esterhuizen et al. (2020), every integral
curve xū on [∂A]− (resp. [∂M]−) and the corresponding
input function ū satisfy the following necessary conditions.
There exists a nonzero absolutely continuous maximal
solution λū to the adjoint equation:

λ̇ū(t) = −
(
∂f

∂x
(xū(t), ū(t))

)T
λū(t),

4 shown in Esterhuizen et al. (2020), Proposition 2
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such that

min
u∈U
{λū(t)T f(xū(t), u)}

= λū(t)T f(xū(t), ū(t)) = 0 (6)(
resp. max

u∈U
{λū(t)T f(xū(t), u)}

= λū(t)T f(xū(t), ū(t)) = 0
)
, (7)

for almost all t. Moreover, if xū intersects G0 in finite time,
we have:

λū(t̄) = (Dgi∗(z))T , (8)

where

min
u∈U

max
i∈I(z)

Lfgi(z, u) = Lfgi∗(z, ū(t̄)) = 0 (9)(
resp. max

u∈U
max
i∈I(z)

Lfgi(z, u) = Lfgi∗(z, ū(t̄)) = 0
)
, (10)

t̄ denotes the time at which G0 is reached, and z ,
x(ū,x̄,t0)(t̄) ∈ G0.

These necessary conditions may be used to construct the
sets A andM as follows. First, identify so-called points of
ultimate tangentiality (located on G0) via the conditions
(9) or (10). To be less verbose, in the sequel we will also
refer to these points as tangent points. Then, consider
the system’s Hamiltonian, H(x, λ, u) , λT f(x, u), and
determine the input realization ū corresponding to the
integral curve along [∂A]− or [∂M]− using the Hamil-
tonian minimisation/maximisation condition, (6) or (7).
Finally, find the integral curves along [∂A]− or [∂M]− by
integrating the system and adjoint dynamics backwards
from the tangent points.

Having found the sets A andM for a constrained system,
information can be determined from the location of the
system’s current state. If the state is located in M, then
the system is safe: the state constraints are guaranteed to
be maintained for all time, regardless of the input function.
If the state is located in A, then the system is potentially
safe: it is possible to specify an input function such that
the state constraints are always satisfied. If the state is
located in AC, the system is unsafe: the state constraints
are guaranteed to be violated sometime later, regardless
of the input function chosen. We will say more on how
these facts translate into epidemic management strategies
in Section 5.

We note that the conditions of the theorem are necessary,
and so it may be that certain parts of the obtained curves
need to be ignored. Thus, we will refer to integral curves
obtained via the necessary conditions as candidate barrier
and candidate invariance barrier curves.

We also note that the adjoint λū associated with a bar-
rier/invariance barrier curve xū is the normal of a hyper-
plane that evolves along the curve. From (6) and (7) we
see that λū is perpendicular to the curve, a fact we will
use in Lemma 2.

3. ANALYSIS OF ROSS-MACDONALD MODEL

In this section we carry out an analysis of a constrained
Ross-Macdonald model, using the conditions of Theo-
rem 1.

3.1 Ross-Macdonald model

We consider the following constrained model (Anderson
et al., 1991, p. 394) for a mosquito-borne disease:

ẋ1 = Amx2(1− x1)− ux1,

ẋ2 = Ahx1(1− x2)− γx2,

x1(t) ∈ [0, x̄1],

x2(t) ∈ [0, x̄2],

u(t) ∈ U , [umin, umax] ,

(11)

where x1 is the proportion of infected mosquitoes, x2 is the
proportion of infected humans, and u is the control which
encapsulates the natural mortality rate of the mosquitoes,
as well as the effects of fumigation. We let 0 < umin <
umax. The constants Am , apm ≥ 0 and Ah , aph

Nm

Nh
≥

0, where a denotes the biting rate, pm is the probability of a
mosquito being infected after biting an infected human, ph
denotes the probability of infection of a susceptible human
after being bitten by infected mosquito, Nm

Nh
is the ratio of

female mosquitoes to humans and γ denotes the human
recovery rate. The constants satisfy: a ≥ 0, Nm

Nh
≥ 0,

0 ≤ ph ≤ 1, 0 ≤ pm ≤ 1, γ ≥ 0. The bounds 0 < x1 ≤ 1
0 < x2 ≤ 1 denote the maximum tolerated proportion of
infected mosquitoes and humans, respectively.

3.2 Points of ultimate tangentiality

We label the state constraints as follows: g1(x) = x1 − x̄1,
g2(x) = −x1, g3(x) = x2 − x2, g4(x) = −x2, and the i-

th tangent point on the constraint gi as zi , (zi1, z
i
2)T .

Concentrating on g2 and g4, and invoking (10), we get:

max
u∈U
{Lfg2(z, u)} = −Amz2

2 < 0,

max
u∈U
{Lfg4(z, u)} = −Ahz4

1 < 0.

We see that at all points for which g2 and g4 are active
the state evolves (forwards in time) into the interior of
the constrained state-space regardless of the chosen input.
The constraint functions g1 and g3 are more interesting.
We see that:

max
u∈U
{Lfg1(z, u)} = Amz

1
2(1− x̄1)− uminx̄1,

and setting this to zero, we get a tangent point associated
with the MRPI at z1 = (x̄1,

uminx̄1

Am(1−x̄1) )T . Note that
uminx̄1

Am(1−x̄1) ∈ [0,∞[ for all x̄1 ∈ [0, 1]. Thus, z1 ∈ {x̄1} ×
[0, x̄2[ if and only if:

x̄1 <
Amx̄2

Amx̄2 + umin
. (12)

Similarly, minu∈U Lfg1(z, u) = 0 gives us

z1 = (x̄1,
umaxx̄1

Am(1− x̄1)
)T

associated with the admissible set, which is located on
{x̄1} × [0, x̄2[ if and only if:

x̄1 <
Amx̄2

Amx̄2 + umax
. (13)

Concentrating on g3, we get:

Lfg3(z, u) = Ahz
3
1(1− x2)− γx2, (14)

which is independent of the input, giving the tangent point
z3 = ( γx2

Ah(1−x2) , x2)T for both the admissible set and the
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MRPI. We note that γx2

Ah(1−x2) ∈ [0,∞[ for all x̄2 ∈ [0, 1].

Thus, z3 ∈ [0, x̄1[×{x2} if and only if:

x̄2 <
Ahx̄1

Ahx̄1 + γ
. (15)

3.3 Barrier curves

Invoking (6) and (7), we obtain:

ū(t) =

{
umax if λ1(t) ≥ 0

umin if λ1(t) < 0,

for the input associated with the admissible set, and

ū(t) =

{
umin if λ1(t) ≥ 0

umax if λ1(t) < 0,

for the input associated with the MRPI. The adjoint
equation is:

λ̇ =

(
Amx2 + u −Ah(1− x2)
−Am(1− x1) Ahx1 + γ

)
λ, (16)

with λ(t̄) = (1, 0)T associated with z1, and λ(t̄) = (0, 1)T

associated with z3.

We now state some lemmas that summarise important
aspects of the system’s barrier curves. We will use these
results in Proposition 8.

Lemma 2. Consider the system (11) with x̄1 < 1 and
x̄2 < 1. There exists a candidate barrier curve associated
with A (resp. M), partly contained in G− and ending at:

• z1 = (x̄1,
umaxx̄1

Am(1−x̄1) )T
(

resp. z1 = x̄1,
uminx̄1

Am(1−x̄1) )T
)

if

and only if

Ah(Am + umax)x̄1 + γumax > AmAh, (17)

(resp. Ah(Am + umin)x̄1 + γumin > AmAh), (18)

• z3 = ( γx2

Ah(1−x2) , x2) if and only if

Am(Ah + γ)x̄2 + γumax > AmAh, (19)

(resp. Am(Ah + γ)x̄2 + γumin > AmAh). (20)

Proof. At the tangent point, z1, we have λ(t̄) = (1, 0)T ,
and thus ū(t) = umax on an interval before t̄ for the
input associated with A, and ū(t) = umin for the input

associated with M. From (16) we see that λ̇2(t̄) < 0,
implying that λ2(t) > 0 on an interval before t̄. Therefore,
the integral curve will evolve backwards into G− if and
only if ẋ2(t̄) < 0. Substituting the value for z1 we arrive
at the statements (17) and (18). The cases for z3 follow
similar arguments: we have λ(t̄) = (0, 1)T , and we see that

λ̇1(t̄) < 0, implying that λ1(t) ≥ 0 on an interval before
t̄. Thus, ū(t) = umax on an interval before t̄ for the input
associated withA, and ū(t) = umin for the input associated
with M. Because λ1(t) > 0 before t̄, the integral curve
will evolve backwards into G− if and only if ẋ1(t̄) < 0, see
Figure 1 for clarification. Substituting the value for z3 we
arrive at the statements. This completes the proof.

Lemma 3. Suppose the system (11) has candidate barrier
curves associated withA (resp.M) partly contained in G−
and ending at a tangent point, as in Lemma 2. Then, the
inequalities (13) (resp. (12)) and (15) cannot both hold.

Proof. Suppose (13) and (15) both hold. Then, it may be
confirmed that (17) and (19) both do not hold, implying

Fig. 1. Clarification of the proof of Lemma 2: knowing that
λ1(t) > 0 before the barrier intersects z3, we must
have ẋ1(t̄) < 0.

that there are no candidate barrier curves intersecting G−
associated with the admissible set, giving a contradiction.
Similarly, if (12) and (15) both hold, then (18) and (20)
both do not hold. This completes the proof.

Remark 4. Lemma 3 says that barriers (if they exist)
intersect either g1 or g3, but that there cannot exist two
barriers, with one intersecting g1 and the other g3.

Lemma 5. Suppose (19) (resp. (20)) does not hold. Then,
there cannot exist a barrier curve intersecting a point of
ultimate tangentiality on g1. Similarly, suppose (17) (resp.
(18)) does not hold. Then, there cannot exist a barrier
curve intersecting a point of ultimate tangentiality on g3.

Proof. Suppose (19) does not hold and there exists a
barrier curve, associated with A, intersecting a point
of ultimate tangentiality on g1. Then, (13) holds. From
Lemma 3 we know that (15) does not hold, thus:

x̄2 ≥
Ahx̄1

Ahx̄1 + γ
.

If we consider this inequality along with:

Am(Ah + γ)x̄2 + γumax ≤ AmAh,
we see that:

Ah(Am + umax)x̄1 + γumax ≤ AmAh,
and thus (17) is violated, leading to a contradiction. The
proof of the second statement follows along the same lines.

Remark 6. Lemma 5 is related to “desperate” cases, as we
will shortly see. Intuitively, it says that if x̄2 is so small
that the system becomes desperate, then it is not possible
to make x̄1 small enough for the system to not be desperate
any more.

3.4 Characterisation of the sets

De Lara and Salcedo (2016) characterised the Ross-
Macdonald system as being either comfortable, desperate
or viable. We show how the conditions for these cases can
be obtained from the analysis in Subsections 3.2-3.3, and
introduce a fourth case: the comfortable-viable case.

Definition 4. We will say that the system (11) is:

• comfortable, provided M = A = [0, x̄1]× [0, x̄2],
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• comfortable-viable, provided A ⊂ [0, x̄1] × [0, x̄2],
M ⊂ [0, x̄1] × [0, x̄2], and (11) is neither desperate
nor comfortable
• viable, provided A ⊂ [0, x̄1]× [0, x̄2], M = {0} × {0},

and (11) is not desperate,
• desperate, provided M = A = {0} × {0}.

The comfortable and desperate cases occur when the sets
are trivial. The viable case occurs when M is trivial, but
A is not. The new comfortable-viable case occurs when
both sets are nontrivial.

Remark 7. The setM may also be considered a “comfort-
able” set, in the sense that the state will always remain
in it. We also note that, for the system (11), M is only
nontrivial if A is, and so the comfortable-viable case is a
special viable case. Hence our chosen name.

Proposition 8. The system (11) is:

• comfortable ⇔ both (13) and (15) do not hold.
• comfortable-viable ⇔ either (15) and (20) hold; or

(12) and (18) hold.
• viable ⇔ either (15) and (19) hold; or (13) and (17)

hold.
• desperate ⇔ (15) holds and (19) does not ⇔ (13)

holds and (17) does not.

Proof.

• The comfortable case occurs when the set [0, x̄1] ×
[0, x̄2] is invariant. Thus, we require

max
u∈U

Lfg1(x, u) ≤ 0 for all x ∈ {x̄1} × [0, x̄2]

and

max
u∈U

Lfg3(x, u) ≤ 0 for all x ∈ [0, x̄1]× {x̄2}.

The result then follows from the fact that
Amx2

Amx2 + umin
≤ Amx̄2

Amx̄2 + umin
for all x2 ∈ [0, x̄2],

and
Ahx1

Ahx1 + γ
≤ Ahx̄1

Ahx̄1 + γ
for all x1 ∈ [0, x̄1].

• The comfortable-viable case occurs when there exists
an invariance barrier curve contained in G− that
ends at a tangent point located either on [0, x̄1[×{x̄2}
or on {x̄1} × [0, x̄2[. (Recall, from Lemma 3, that
both cannot happen.) Thus, either there exists a
tangent point on g1 (condition (12)) along with a
curve contained in G− (condition (18)); or the point
is located on g3 (condition (15)) and the curve evolves
backwards into G− (condition (20)).
• Similar to the comfortable-viable case, the viable case

occurs when there exit barrier curves, associated with
the admissible set, contained in G− and ending at
tangent points on [0, x̄1[×{x̄2} or {x̄1} × [0, x̄2[.
• The desperate case occurs when the system is not

comfortable (thus there exists a tangent point on
[0, x̄1[×{x̄2} or {x̄1} × [0, x̄2[), and candidate barrier
curves, associated with the admissible set, are not
contained in G−. For g1, this is true if and only if
(13) holds and (17) does not hold. From Lemma 5 we
know that this is equivalent to (15) holding and (19)
not holding.

This completes the proof.

Proposition 8 may be summarised with the flow-diagram
shown in Figure 2.

Fig. 2. A flow-diagram summarising the use of Proposi-
tion 8 to classify the system.

Remark 9. In our characterisation of the sets we derive the
same conditions for the comfortable, desperate and viable
cases as those of De Lara and Salcedo (2016) where x̄1 = 1,
but using different arguments that use the conditions of
Theorem 1. To now construct the sets (for the viable and
comfortable-viable cases) one merely needs to integrate the
dynamics and adjoint equations backwards from z1 or z3

using ū until the resulting curve intersects a constraint.

4. NUMERICAL EXAMPLE

We use the same model parameters as those estimated
in Appendix C of De Lara and Salcedo (2016), for
a dengue outbreak in Cali, Colombia. The parameters
are Am = 0.076608, Ah = 0.0722633, γ = 0.1, with
u ∈ [umin, umax] = [0.0333, 0.05]. We find the sets for
varying bounds on the state, see Figure 3. We see that
when the infection cap on both humans and mosquitoes
are high (x̄1 = 0.7, x̄2 = 0.7) we are in a comfortable case,
and the entire constraint set is robustly invariant. As we
decrease the human infection cap, keeping the mosquito
cap the same, we enter a comfortable-viable case (x̄1 = 0.7,
x̄2 = 0.2), where there exists a nontrivial admissible set
and MRPI. If we now decrease the mosquito cap we enter
a viable case (x̄1 = 0.15, x̄2 = 0.2) with the barrier curve
now intersecting g1 instead of g3, as it did previously.
Further decreasing the bound on the infected humans
(x̄1 = 0.15, x̄2 = 0.04) we enter a desperate case, and
no sets exist. In the bottom two plots we also indicate the
candidate barrier curves that evolve outside of G− from
tangent points (black dots), and that must be ignored.

5. MANAGEMENT OF EPIDEMICS WITH THE
OBTAINED SETS

We now describe how the results of our analysis may
be used to maintain infection caps during epidemics. If
the state is located in M, then it is guaranteed that
the infection caps will always be maintained regardless of
fumigation strategy, as long as the minimal fumigation
is always maintained. Thus, the set M is “comfortable”,
in the sense that only minimal resources are needed to
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Fig. 3. The MRPI and admissible set for system (11) under
a comfortable (x̄1 = x̄2 = 0.7), comfortable-viable
(x̄1 = 0.7, x̄2 = 0.2), viable (x̄1 = 0.15, x̄2 = 0.2) and
desperate case (x̄1 = 0.15, x̄2 = 0.04).

maintain the infection caps. If the state is located in the
interior of A, then any fumigation strategy may be used
for some period of time. However, if the state reaches the
barrier of the admissible set, [∂A]−, then the only way
to maintain the infection caps is to constantly use the
maximal fumigation rate, umax. If the system is in the
viable case, and the state is located at the infection caps
but still in A (i.e. the state is at [∂A]0) then there is some
freedom in the fumigation that may be used, but it is
advisable to use umax. If the state is located outside both
M and A, then it is impossible to maintain the infection
caps, and one is guaranteed to be violated in the future.
The only way to prevent this is to relax the infection caps,
or increase the maximal allowed fumigation.

To summarise, given the system parameters (Am and
Ah), along with fumigation bounds (umax and umin) and
infection caps (x̄1 and x̄2), fumigation strategies should be
implemented as follows. If the system is:

• comfortable, and x(t) ∈ [0, x̄1] × [0, x̄2], let u(t) =
umin.
• comfortable-viable and x(t) ∈M, let u(t) = umin.
• comfortable-viable and x(t) ∈ int(A), let u(t) = umin.
• comfortable-viable and x(t) ∈ [∂A]−, let u(t) = umax.
• viable and x(t) ∈ int(A), let u(t) = umin.
• viable and x(t) ∈ [∂A]0 ∪ [∂A]−, let u(t) = umax.

• any of the cases and x(t) ∈ AC, then relax infection
caps, or increase maximal fumigation.
• desperate, then relax the infection caps, or increase

maximal allowed fumigation.

It is interesting to note that the more freedom there
is in the fumigation rate, i.e. the larger the difference
between umin and umax, the more the sets differ, the ratio
Area(M)/Area(A) measuring the potential efficiency of
the fumigation rate.

6. CONCLUSION

We applied the theory of barriers to analyse the con-
strained Ross-Macdonald model of a vector-borne disease,
aiming to maintain the proportion of infected humans
and/or mosquitoes below specified caps. Building on the
work by De Lara and Salcedo (2016), we introduced the
maximal robust positively invariant set to the study of
epidemics, arguing that minimal resources are required to
maintain infection caps when the state is in this set. We
derived inequalities of the system parameters that may
be used to classify the system into one of four classes,
and we have constructed the sets for an example with
various infection bounds. Future research could focus on
analysing other epidemic systems such as the well-known
“compartmental” models, that include interventions such
as vaccination, Hethcote and Waltman (1973).
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