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Abstract: We consider the problem of stability enhancement of an undamped flexible beam
with a tip mass in presence of input delay and random disturbances. In absence of delay this
problem is classically solved through output feedback based on a suitable approximation of an
infinite-dimensional Kalman filter. To cope with the presence of input or output delays we derive
and compare two solutions, one based on a predictor from estimates in the past and the other
one based on a filter with delayed measurements. An identical delay bound in closed form is
derived for both solutions and we show that by an appropriate choice of the control gain it is
possible to stabilize the system in presence of arbitrarily large delays. A modular structure is
proposed for the case of arbitrary gain and delay bound. Finally, we consider the problem of
deriving a finite-dimensional approximation of the predictor.
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1. INTRODUCTION

Flexible 1D structures such as flexible robot arms, an-
tennas, etc. are widely used in flexible manipulators,
aerospace industry and many others industrial applica-
tions. For this reason the vibration control of such struc-
tures has been widely investigated in the last decades
(Balakrishnan, 1991; Conrad and Morgül, 1998; Ge et al.,
2011; Guo et al., 2008; Guo and Jin, 2013; Jin and Guo,
2019; Smyshlyaev et al., 2009). In recent years this control
problem has been studied also for distributed systems
affected by sensor or actuator time delay. It has been
known for long time that control systems for hyperbolic
PDE can be destabilized even by small delays (Datko,
1988; Fridman and Orlov, 2009), and this makes the
extension of techniques developed for finite-dimensional
systems particularly challenging. In our context Guo and
Yang (2009) proposed a solution for the case of delay in
observations by means of an infinite-dimensional observer
used to estimate the delayed beam configuration and a
predictor to compensate the delay. In practice, the com-
putation of the predictor is equivalent to solving at each
time point a PDE having the observer estimate as the
initial value. This is reminiscent of the reduction approach
used in the context of finite-dimensional systems (Artstein,
1982; Manitius and Olbrot, 1979). The same approach has
been recently proposed for general distributed parameter
linear systems with output delay in Mei and Guo (2019). In
Shang and Xu (2012) a similar approach is used in the case
of input delay when the input contains both delayed and
un-delayed feedback and the state (i.e. the configuration
of the beam) is available. Finally, in Liu et al. (2018) a

backstepping method is proposed for the case of input
delay and known state.

In contrast with these approaches we recast the control
problem in presence of input delay for a Eulero-Bernoulli
beam as a linear stochastic PDE with delays by fully
considering the presence of disturbances on the measure-
ments and actuators. The proposed control law differs from
previous proposals because it is based on the closed-loop
predictor, in analogy with a method used for the finite-
dimensional case (Cacace et al., 2016). Our aim is to obtain
a control law amenable of a finite-dimensional implemen-
tation and simple to compute, and therefore more suited
for practical applications. In Section 2 we summarize the
results of Balakrishnan (1991) for the control problem
without delay. Two related versions of the output-feedback
control based on the use of the closed-loop predictor are
presented in Section 3. The finite-dimensional implemen-
tation is described in Section 4 and conclusions follow.

2. PROBLEM DESCRIPTION

This section describes the continuum infinite-dimensional
model of the flexible structure and the solution of the
corresponding optimal control problem in absence of de-
lays developed by Balakrishnan (1991). For simplicity of
presentation only planar beam deflections are considered.
This model has been extensively studied in the literature
(see for example Benchimol (1978); Guo (2001); Gupta
(1980); Germani et al. (2006)) and is well suited for the
description of large flexible space systems characterized by
the practical absence of damping and gravity. Consider a
homogeneous, uniform, undamped Euler-Bernoulli beam
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of length 2l, clamped at −l and with a free end at l where
a tip mass m is concentrated. Let w(t, s) be the deflection,
t ≥ 0, s ∈ [−l, l], and w′, w′′, . . . its space derivatives.

2l beam length
ρ mass density
σ cross-sectional area
E Young modulus
I beam cross section moment of inertia
m tip mass

Table 1. Parameters of the flexible beam PDE

The dynamics of the structure and the sensed data are
described by a stochastic PDE with boundary conditions
and by a measurement equation of the boundary rates
affected by a measurement error,

ρσẅ(t, s) + EIw′′′′(t, s) =0, s ∈ [−l, l] (1)

w(t,−l) = w′(t,−l) = w′′(t, l) =0 (2)

mẅ(t, l) + u(t) +Ns(t) =EIw(t, l) (3)

y(t) = ẇ(t, l) +No(t), (4)

where the meaning of the parameters is summarized in
Table 1, the boundary control u(t) ∈ R is applied at
the free end and affected by an actuator disturbance
Ns(t) modeled as Gaussian white noise with constant
spectral density ds, while the measurement y(t) ∈ R
is affected by a measurement noise No(t) with spectral
density do. Since the system is linear and the noise finite-
dimensional it seems appropriate to recast the problem in
the context of white noise theory, that provides a more
uniform conceptual framework. In this context the set of
finite energy signals L2([0, T ],He) on a separable Hilbert
space He (that for our case will be defined below) is
endowed with a finitely additive Gaussian measure with
identity covariance defined on the algebra of cylinder sets
of L2([0, T ],He) (see Balakrishnan (2012) for a rigorous
formulation of the white noise theory in the context of
linear systems). To represent a scalar white noise process
N(t) with spectral density D it suffices to take the sample
paths in L2([0, T ],R), and require that for every h ∈
L2([0, T ],R) the variable [N,h](T ) =

∫ T
0
N(t)h(t) dt is

Gaussian with zero mean and variance

E

(∫ T

0

N(t)h(t) dt

)2
 = D

∫ T

0

h2(t) dt, (5)

where the expected value E[·] is defined over L2([0, T ],R)
according to the probability measure induced by [N,h].

Clearly, when h(t) ≡ 1 then E[(
∫ T
0
N(t) dt)2] = DT .

Model (1)–(4) can be represented as an abstract wave
equation over a Hilbert space, where the main feature
is the inclusion of the boundary variable w(l) in the
beam “state” (see Balakrishnan (1991) for details). Let
H = L2([−l, l],R) × R be the Hilbert space of elements
x = [f, b]> endowed with the inner product

[x, y]H =

∫ l

−l
fx(s)fy(s) ds+ bxby, (6)

and consider the class S of L2 functions in [−l, l] compat-
ible with the boundary conditions (2) and having the first
four derivatives in L2,

S = {w ∈L2([−l, l],R) : w′, w′′, w′′′, w′′′′ ∈ L2([−l, l],R),

w(−l) = w′(−l) = w′′(l) = 0}. (7)

The boundary values must be interpreted in the sense of
the Sobolev spaces, and actually S = W 4,2

0 (−l, l) in the
usual notation for such spaces (Evans and Gariepy, 2015).
Clearly, for w ∈ S the element x = [w,w(l)] ∈ H, thus with
a slight abuse of notation we can write S ⊂ H. Moreover,
S is dense in H since the completion of S under the inner
product (6) yields H. System (1) with the measurement
equation (4) can be rewritten as

Mẍ(t)+Ax(t) +Bu(t) +BNs(t) = 0 (8)

y(t) =B∗ẋ(t) +No(t), (9)

with the following definition of the operators:

A : S → H, z =

[
w
w(l)

]
∈ S, Az =

[
EIw′′′′

−EIw′′′(l)

]
∈ H

(10)

M : H → H, z =

[
w
b

]
∈ H, Mz =

[
ρσw
mb

]
∈ H (11)

B : R→ H, z ∈ R, Bz =

[
0
z

]
∈ H (12)

B∗ : H → R, z =

[
w
b

]
∈ H, B∗z = b ∈ R. (13)

A is self-adjoint, non-negative definite, with bounded com-
pact inverse A−1 (Balakrishnan, 1991). B and its adjoint
B∗ are bounded and M is nonsingular, self-adjoint and
positive definite. Moreover, for x ∈ S,

[Ax, x]H =

∫ l

−l
w′′(s)2 ds. (14)

A first-order equation can be obtained from (8) by intro-

ducing the Hilbert spaceHe = D(
√
A)×H, dense inH×H,

with the inner product for X = (X1, X2), Y = (Y1, Y2),

[X,Y ]He
= [
√
AX1,

√
AX2]H + [MX2, Y2]H. (15)

If X2 = Ẋ1 and x1 ∈ S, that is, X1 is an admissible
deflection and X2 its time derivative, then ‖X‖2He

=
[X,X]He

is the double of the mechanical energy. System
(8)–(9) can be written as

Ẋ (t) =AX (t) + Bu(t) + BNs(t) (16)

y(t) =− B∗X (t) +No(t). (17)

with the operators

A : S × D(
√
A)→ He, A

[
x1
x2

]
=

[
x2

−M−1Ax1

]
(18)

B : R→ He, Bu =

[
0

−M−1Bu

]
(19)

B∗ : He → R, B
[
x1
x2

]
= −B∗x2 (20)

Since [AX ,Y] = −[X ,AY], A is skew-adjoint, generates
a contraction semigroup and has a compact resolvent.
System (16) has the mild solution

X (t) = S(t)X (0) +

∫ t

0

S(t− σ)B(u(σ) +Ns(σ)) dσ (21)

where S(·) is the semigroup generated by A. The pair
(A,B) is “controllable” (see Balakrishnan (1991) for the
definition and details). In particular, this implies that if
∀t, B∗S∗(t)Y = 0, then Y = 0.
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Aγ = A− γBB∗ generates a strongly continuous strongly
stable semigroup Sγ(t) for all γ > 0, that is, ‖Sγ(t)x‖He

→
0 for any x. A stabilizing control is therefore

u(t) = −γB∗X (t) = −γẇ(t, l). (22)

Since ẇ(t, l) is not available due to the measurement
noise, the objective of reducing the boundary rates while
minimizing the control energy can be formulated as a LQG
problem with the objective function

J = lim
T→∞

E

[
1

T

∫ T

0

|BX (t)|2 dt+
λ

T

∫ T

0

|u(t)|2 dt

]
, (23)

where λ is the weight of the control law. The optimal
solution is

u∗(t) = − 1

λ
B∗PcX̂ (t), (24)

where X̂ (t) is the estimate of X (t) provided by the infinite-
dimensional Kalman filter (Balakrishnan, 1991)

˙̂X (t) =

(
A−

(
Pf
do

+
Pc
λ

)
BB∗

)
X̂ (t)− Pfd−1o By(t).

(25)
The operators Pc, Pf are the unique self-adjoint, non-
negative definite solutions of the steady state infinite-
dimensional Riccati equations of the filter and the control,
that can be determined in closed-form as

Pc =
√
λI, Pf =

√
dsdoI. (26)

Thus, γ = 1/
√
λ and

u∗(t) = − 1√
λ
B∗X̂ (t). (27)

With the control law (27) the processes X and X̂ are
asymptotically stationary and the optimal cost is J∗ =√
dsdo+

√
λds

m . For a generic u(t) the Kalman filter (25) is

˙̂X (t) = AX̂ (t) + Bu(t)− ds
d0
B
(
y(t) + B∗X̂ (t)

)
(28)

and the estimation error E(t) = X (t)− X̂ (t) is asymptoti-
cally stationary with bounded covariance operator R(t) =
E[E(t)E∗(t)] such that for any X ∈ He,

lim
t→∞

[R(t)X ,X ] = [PfX ,X ] =
√
dsdo‖X‖2. (29)

In particular, the asymptotic variance of the estimation
error at the boundary is limt→∞ E[|B∗E(t)|2] =

√
dsdo.

Remark 1. It must be noticed that in the deterministic
case the feedback law (22) ensures asymptotic stability
but not uniform (i.e. exponential) stability. It was proved
by Conrad and Morgül (1998) that the feedback

u(t) = −γẇ(t, l) + βẇ′′′(t, l) (30)

where γ and β are positive constants is sufficient to obtain
exponential stability. Moreover, Guo (2001) proved that
with (30) the eigenfunctions of the closed-loop generator
form a Riesz basis for He and provided an asymptotic
expression of closed-loop eigenvalues and eigenfunctions.
The approach that we present in the next section can
be extended to the feedback law (30) with the additional
advantage that the implementation is greatly simplified by
the presence of a Riesz basis. However, the implementation
of (30) is challenging in practical applications because
ẇ′′′(t, l) is difficult to measure and it is not part of the
state X (t). For this reason we study the simpler and more
realistic controller (22).

3. PREDICTOR-BASED OUTPUT FEEDBACK

In presence of a constant input delay δ > 0 (16)–(17)
becomes

Ẋ (t) =AX (t) + Bu(t− δ) + BNs(t) (31)

y(t) =− B∗X (t) +No(t). (32)

We compare two alternative strategies. The first one is
to use the filter introduced above to compute X̂ (t) from
y(t) and then a state predictor to compute the prediction

X̂ (t+δ). The second one is to modify the filter to compute

X̂ (t + δ) from y(t). We shall prove that both approaches
stabilize the system in the same delay range characterized
by the inequality Ω(γ, δ) < 1,

Ω(γ, δ) =

∫ δ

0

γ|B∗Sγ(s)B| ds, (33)

where Sγ(t) is the semigroup generated by Aγ . Notice that
B∗Sγ(s)B : R→ R is a scalar operator that goes to 0 for
s→∞ and (see (5.2) in Balakrishnan (1991)),∫ ∞

0

|B∗Sγ(s)B|2 ds <∞. (34)

Clearly, Ω(γ, 0) = 0 and Ω is monotonically increasing
with δ. A crucial property of Ω is that for any fixed δ,

lim
γ→0

Ω(γ, δ) = 0, (35)

that stems from the fact that for γ = 0 S0(t) = S(t) is a
contraction semigroup, i.e. ∀t ‖S(t)‖ ≤ 1.

3.1 State predictor

Assume that an estimate X̂ (t) is available for t ≥ −δ.
Theorem 1. Consider system (31)–(32) with the control
law

u(t) = −γB∗Sγ(δ)X̂ (t), t ≥ −δ (36)

where Sγ(t) is the semigroup generated by Aγ = A−γBB∗
and X̂ (t) is computed by (28) for t ≥ −δ. If Ω(γ, δ) < 1
then the closed-loop system is asymptotically stationary
with bounded covariance and such that E[X (t)]→ 0.

Proof. Replacing (36) in (31) we obtain for t ≥ 0

Ẋ (t) =AX (t)− γBB∗Sγ(δ)X̂ (t− δ) + BNs(t)
=AγX (t) + γBv(t) + BÑ(t) (37)

v(t) =B∗ (X (t)− Sγ(δ)X (t− δ)) (38)

Ñ(t) =γB∗Sγ(δ)E(t− δ) +Ns(t). (39)

The mild solution of (37) between t− δ and t > δ is

X (t) =Sγ(δ)X (t− δ) +

∫ t

t−δ
Sγ(t− s)B(γv(s) + Ñ(s)) ds.

(40)

Thus, for t > δ,

v(t) =

∫ δ

0

B∗Sγ(θ)B
(
γv(t− θ) + Ñ(t− θ)

)
dθ. (41)

Clearly, v ∈ L2([0, T ],R) and X ∈ L2([0, T ],He) for any T .
By exploiting the Minkowski inequality and the isometry
(5) we obtain for the expected value E[v2(t)]

1
2
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E[v2(t)]
1
2 ≤ Ω(γ, δ) sup

τ∈[t−δ,t]
E[v2(τ)]

1
2

+ γ

(∫ δ

0

(B∗Sγ(θ)B)2(B∗Sγ(δ)E(t− θ − δ))2 dθ

) 1
2

+
√
ds

(∫ δ

0

(B∗Sγ(θ)B)
2
dθ

) 1
2

≤ Ω(γ, δ) sup
τ∈[t−δ,t]

E[v(τ)2]
1
2 + ν(γ, δ), (42)

where ν(γ, δ) is finite, because for all s E[(B∗Sγ(δ)E(s))2]
is bounded and (34) holds. By taking the supremum of (42)

in [t− δ, t] and by denoting wk = sups∈[kδ,(k+1)δ] E[v2(s)]
1
2

we obtain for k ≥ 0

wk+1 ≤ Ω(γ, δ) max{wk, wk+1}+ ν(γ, δ) (43)

from which it follows that

wk ≤ w̄ = max

{
w0,

ν(γ, δ)

1− Ω(γ, δ)

}
, ∀k, (44)

and since Ω(γ, δ) < 1 we conclude that E[v2(t)] is uni-
formly bounded. SinceAγ generates a strongly stable semi-
group, it follows with standard arguments from (37) that
X (t) has bounded covariance operator for any t. In order
to prove that v is asymptotically stationary we start by ob-

serving that both Ñ and N̄(t) =
∫ δ
0
γB∗Sγ(θ)BÑ(t− θ)dθ

are asymptotically stationary processes. Define the projec-
tors Π>τ , Π<τ such that for x ∈ L2([0, T ],R), (Π>τx)(t) =
x(t) if t ≥ τ and 0 elsewhere (resp. (Π<τx)(t) = x(t) if
t ≤ τ and 0 elsewhere). Define moreover the processes
vs, v0 ∈ L2([0, T ],R) as

v0(t) =Π<δB∗ (X (t)− Sγ(δ)X (t− δ)) (45)

vs(t) =Π>δ

(
(Lv)(t) + N̄(t)

)
(46)

(Lv)(t) =

∫ δ

0

γB∗Sγ(θ)Bv(t− θ)dθ. (47)

Clearly, v = v0 + vs, vs = Π>δ(Lv + N̄) and

v = Π>δLv + v0 + Π>δN̄ . (48)

Next, 0 is not an eigenvalue of the operator I − Π>δL
because v = Π>δLv is possible only for v = 0. Therefore,
(I −Π>δL)−1 exists and v, that can be represented as

v = (I −Π>δL)
−1

(v0 + Π>δN̄), (49)

is asymptotically stationary because both v0 and N̄ are
asymptotically stationary. Again, by considering (37) is
easy to see that X is asymptotically stationary as well.
Finally, the exponential stability of E[v(t)] is obtained by
taking expectations in (41) and by using the same steps as

above. Since E[Ñ(t)] = 0, E[X (t)] is asymptotically stable.
2

Remark 2. Thanks to (35) the hypothesis Ω(γ, δ) < 1
can always be satisfied by taking γ sufficiently small. Or,
a stabilizing control exists for any δ. However, reducing
γ makes Aγ “less stable” since the damping ratio of
disturbances is reduced as well.

Remark 3. The implementation of (36) requires to predict

the whole state X (t + δ) as Sγ(δ)X̂ (t) from the filter

estimate X̂ (t) and then to use its boundary value at l in
the feedback.

The result of Theorem 1 can be used to prove the stability
of a related stochastic PDE with delay.

Corollary 1. Consider the process W(t) ∈ He evolving for
t ≥ δ with the equation

Ẇ(t) =AW(t)− γSγ(δ)BB∗W(t− δ)

+ B
(
Ñ(t)− Sγ(δ)Ñ(t− δ)

)
(50)

If Ω(γ, δ) < 1 then W is asymptotically stationary with
bounded covariance and such that E[W(t)]→ 0.

Proof. Consider system (37) and let W(t) = X (t) −
Sγ(δ)X (t− δ) so that v(t) = B∗W(t). From (40) it follows

W(t) =

∫ δ

0

γSγ(s)B
(
v(t− s) + Ñ(t− s)

)
ds. (51)

In the hypothesis, v is asymptotically stationary with
bounded variance and |E[v(t)]| is exponentially stable, thus
W is asymptotically stationary with bounded covariance
and E[W(t)]→ 0. But W satisfies

Ẇ(t) =Ẋ (t)− Ẋ (t− δ)
=AγX (t) + γBB∗W(t) + BÑ(t)− Sγ(δ)AγX (t− δ)
− γSγBB∗W(t− δ)− Sγ(δ)BÑ(t− δ)

=AW(t)− γSγ(δ)BB∗W(t− δ)

+ B
(
Ñ(t)− Sγ(δ)Ñ(t− δ)

)
, (52)

where we have used AγSγ(t) = Sγ(t)Aγ , and the thesis
follows. 2

Remark 4. It is not difficult to prove that Corollary 1
holds for the generic equation

Ẇ(t) = AW(t)− γSγ(δ)BB∗W(t− δ) + BN(t) (53)

where N ∈ L2(Ω×R+,R) is an asymptotically stationary
scalar stochastic process with bounded variance.

3.2 Output-based predictor

The main drawback of the control law (36) is the need of

computing Sγ(δ)X̂ (t), a prediction of the distributed state
from the estimate. Clearly, this entails a significant com-
putational cost that must be added to the implementation
of the filter (28). In this section we describe an output-
feedback control law based on an auxiliary system that
merges filtering and prediction. In this case the semigroup
Sγ occurs in the gain term of the predictor, but is applied
to a finite dimensional correction term that contains the
boundary value. The new control law is

u(t) =− γB∗Θ(t), t ≥ −δ (54)

Θ̇(t) =AγΘ(t)− γSγ(δ)B (y(t) + B∗Θ(t− δ)) , t ≥ 0
(55)

with Θ(τ) = Sγ(τ + δ)Θ(−δ) as initial condition for
τ ∈ [−δ, 0], Θ(−δ) ∈ He being an arbitrary element. The
value Θ(t) of the controller is an estimate of X (t+ δ).

Theorem 2. Consider system (31)–(32) with the control
law (54)–(55). If Ω(γ, δ) < 1 then the closed-loop system
is asymptotically stationary with bounded covariance and
such that E[X (t)]→ 0.

Proof. Let us denoteW(t) = X (t)−Θ(t−δ) the prediction
error. System (31)–(32) with the control law (54)–(55) can
be written for t ≥ 0 as

Ẋ (t) =AX (t)− γBB∗Θ(t− δ) + BNs(t)
=AγX (t) + γBB∗W(t) + BNs(t). (56)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7686



The dynamics of W(t) is, for t ≥ δ,
Ẇ(t) = Ẋ(t)− Θ̇(t− δ)

=AγX (t) + γBB∗W(t) + BNs(t)−AγΘ(t− δ)
+ γSγ(δ)B (−B∗X (t− δ) +No(t− δ) + B∗Θ(t− 2δ))

=AW(t)− γSγ(δ)BB∗W(t− δ)
+ BNs(t) + γSγ(δ)BNo(t− δ), (57)

and W is asymptotically stationary with bounded covari-
ance and E[W(t)]→ 0 in virtue of Corollary 1 (see Remark
4). From (56) descends that the same holds for X . 2

Remark 5. When the delay affects the output rather than
the input the predictor Θ in (55) can be used to estimate
X (t) from y(t − δ). The only difference is that in the
correction term of (55) y(t) is replaced by y(t− δ). Notice
that the control law remains the same. Thus the approach
proposed in this section solves both the input delay and
the output delay problems. The presence of both delays
can be easily solved in the same way.

Remark 6. The main difference between (55) and the
Kalman filter (28), is the presence of the delayed term
and that B is replaced by Sγ(δ)B. The implementation of
the term containing the semigroup predictor Sγ(δ) in (55)
is however meaningfully simpler than in (36). In the latter

case, Sγ(δ) is applied to the whole distributed state X̂ (t).
In contrast, in (55) Sγ(δ) is applied to a vector having
0 in the distributed component and the scalar correction
term y(t)−B∗Θ(t−δ) in the boundary condition ẇ(t, l). In
other words, Sγ(δ)By is the solution in δ of the closed-loop
dynamics starting from a null initial condition except for
the speed at the end boundary which is y.

3.3 Modular predictor

Theorem 2 states that for any delay is always possible to
find a stabilizing γ > 0. However, as highlighted in Remark
2, large delays require small gains and consequently a
limited attenuation of the noise effect. To overcome this
effect it is possible to resort to a modular, or cascaded,
predictor, as in the finite-dimensional case (Cacace et al.,
2016). The idea is to partition the delay obtaining a
sequence {δi}, i = 0, . . . ,m, such that

∑
i δi = δ and

Ω(γ, δi) < 1 for any i. The elements of the partition are
not necessarily identical, but we adopt the obvious choice
δi = δ/m. With this choice it is always possible to find m
such that Ω(γ, δ/m) < 1 for any γ, δ, that is, the choice
of the gain can be decoupled from the delay. The i-th
predictor Θi(t) aims at predicting X (t + m−i+1

m δ), thus
Θ1(t) predicts X (t+ δ). The structure of the predictors is

Θ̇i(t) =AΘi − γB∗Θ1

(
t− i− 1

m
δ

)
− γSγ

(
δ

m

)
B
(
yi(t) + B∗Θi

(
t− δ

m

))
, (58)

where yi(t) = −B∗Θi+1(t) for i < m and ym(t) = y(t).
The proof of the following result is similar to the proof of
Theorem 2 and is omitted for space reasons.

Theorem 3. Consider system (31)–(32) with the control
law u(t) = −γB∗Θ1(t), where Θ1 is the first element of
the modular predictor (58), i = 1, . . . ,m. If Ω(γ, δ/m) <
1 then the closed-loop system is asymptotically stable
in mean and asymptotically stationary with bounded
covariance.

4. FINITE-DIMENSIONAL IMPLEMENTATION

In this section we study how to implement the controllers
introduced in the previous section, and in particular we
describe a Galerkin approximation of the output-based
predictor introduced in Section 3.2. For the case δ = 0
of Section 2 a finite-dimensional implementation of the
filter (25) is described in Germani et al. (2006), where
it shown that the closed-loop system is stable with any
order of approximation of the filter. We follow the same
approach, based on the subspaces generated by the natural
modes of vibration of the structure that are obtained
as the solutions of the following generalized eigenvalues-
eigenfunctions problem,

Aφi = ω2
iMφi, (59)

that form anM -orthogonal basis forH, i.e. [φi,Mφj ]H = 1
iff i = j. The solutions of (59) can be obtained by
standard computations (see for example Erturk and Inman
(2011), Appendix C). Let Vn = span{φ2, . . . , φn}, and
Πn : H → Vn be the operator

Πnx =

n∑
i=1

[x,Mφi]Hφi. (60)

Let moreover

Wn = span

{[
φi
0

]
,

[
0
φj

]
, i, j = 1, . . . , n

}
(61)

Πe
n : He →Wn, Πe

nX =

[
Πnx1
Πnx2

]
, X =

[
x1
x2

]
. (62)

With these definitions (i) Πn is an idempotent opera-
tor; (ii) x − Πnx is M -orthogonal to Vn; (iii) Π∗nx =∑n
i=1[x, φi]HMφi; (iv) Πe

n is an orthogonal projector on
Wn; (v) the sequence {Πe

n} converges strongly to the
identity operator in He, that is

lim
n→∞

‖Πe
nX − X‖He

= 0, (63)

see Germani et al. (2006). The control law (54)–(55) can be
approximated by the following finite-dimensional control
law obtained by projecting on the space Wn,

u(t) =− γB∗Πe
nΘn(t), t ≥ −δ (64)

Θ̇n(t) =Πe
nAγΠe

nΘn(t)− γΠe
nSγ(δ)B

· (y(t) + B∗Πe
nΘn(t− δ)) , t ≥ 0. (65)

An element X = [x1, x2]> ∈ He and its projection Πe
nX

can be represented in the orthonormal basis {φi} as

X =


∞∑
i=1

[x1,Mφi]Hφi

∞∑
i=1

[x2,Mφi]Hφi

 , Πe
nX =


n∑
i=1

[x1,Mφi]Hφi

n∑
i=1

[x2,Mφi]Hφi

 .
(66)

Thus, from Aφi = ω2
iMφi we get

Πe
nAγΠe

nX =

 Πnx2

−
n∑
i=1

ω2
i [x1,Mφi]Hφi − γΠnBx2(l)

 ,
(67)

and [Bx2(l),Mφi]H =
∑n
k=1 φi(l)φk(l)[x2,Mφk]H. Anal-

ogously, let c(t) = y(t) + B∗Πe
nΘn(t − δ) ∈ R be the

correction term in (65). We get the representation
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Πe
nSγ(δ)Bc(t) =


n∑
i=1

[
(Sγ(δ)Bc(t))1 ,Mφi

]
H φi

n∑
i=1

[
(Sγ(δ)Bc(t))2 ,Mφi

]
H φi

 . (68)

Given n, a finite-dimensional representation of Θn =
[θ1, θ2]> in (65) is obtained with a vector Zn ∈ R2n,

Zn(t) =

[
[θ1(t),Mφi]H
[θ2(t),Mφi]H

]
=

[
Zn,1(t)
Zn,2(t)

]
. (69)

A dynamical equation for Z(t) can be obtained from (65),
(67), (68) in the form

Żn(t) = AznZn(t) +Bznc(t), (70)

where Azn ∈ R2n×2n, Bzn ∈ R2n×1 are given by

Azn =

[
0 In
−Ω2 −γξnξ>n

]
, Bzn =

[
coli

[
(Sγ(δ)B)1 ,Mφi

]
H

coli
[
(Sγ(δ)B)2 ,Mφi

]
H

]
.

(71)

Here, Ω2 = diag{ω2
i }, and ξn = coli{φi(l)} ∈ Rn. Notice

that for any γ > 0, n ≥ 1, the eigenvalues of Azn have
negative real parts (see Theorem 5.3 in Germani et al.
(2006)). The control input (64) can be computed in this
scheme as u(t) = −γ[0, ξ>n ]Zn(t). The constant matrices
Azn, Bzn can be computed off-line, thus making the finite-
dimensional controller easy to compute.

5. CONCLUSIONS

We have described a predictor-based controller for the
Euler-Bernoulli beam with input delay with nice formal
properties and endowed with a computationally cheap
finite-dimensional implementation. Further work is needed
to prove the stability of the prediction error and of the
closed-loop system under the finite-dimensional approxi-
mation of the controller.
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