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Abstract: In this paper, we study the stabilization of dynamic systems with uncertain
equilibrium states and in the presence of bounded control. We propose state and output
derivative feedback control schemes to stabilize the dynamic system, and to drive the system
states to its true equilibrium state even when the location of such equilibrium is uncertain.
Control bounds in the feedback control are also considered in this paper, and stability conditions
are derived for the cases when the control energy is bounded, and when the maximum control
is bounded. Stability conditions are derived in the form of matrix inequalities for both cases of
control bounds, and numerical methods are discussed to synthesize feasible control solutions.
The effectiveness of the proposed method is illustrated by an experimental implementation.

Keywords: Dynamic output feedback, nonlinear control, bounded control, continuous control,
convex optimization

1. INTRODUCTION

Knowledge of the equilibrium states plays a vital role
in the analysis and control of dynamic systems, as it
provides a resting point around which the stability of the
system is evaluated. However, finding the exact value of
the equilibrium points of dynamic systems is non-trivial
as it involves solving systems of complex nonlinear equa-
tions with uncertain parameters. The equilibrium points
may also not be fixed, but change with the time-varying
dynamics of the system. Therefore, conventional control
methodologies, which require exact knowledge of the equi-
librium states, are ineffective in controlling systems with
uncertain equilibrium states. Uncertainty in the equilib-
rium points may require a non-zero steady state control
signal to stabilize the system at a non-equilibrium point,
resulting in greater energy consumption by the actuator
(Arthur et al. (2018)).

Time-delayed feedback control has been explored in Pyra-
gas (1992) to control nonlinear systems with uncertain
equilibrium states. A time-delay feedback control scheme
for stabilizing chaotic systems under unstable periodic
orbits is presented in Pyragas (1992), Pyragas (1995) and
Pyragas (2001). In Kokame et al. (2001b,a), the authors
extended these results to the control of nonlinear systems
with uncertain steady states. An analytical method for
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selecting the appropriate controller gains and time-delay
constant is presented in Hövel and Schöll (2005), and an
optimization based technique is used in Chen and Yu
(1999) to determine the time-delay constant of the time-
delay feedback controller for chaotic systems.

Adaptive control techniques can also be used to control
nonlinear systems with uncertain equilibrium points by
tracking the unknown equilibrium states. In Arthur et al.
(2018) and Bazanella et al. (2000), the authors developed
an adaptation mechanism to determine the true equilib-
rium point, and then control the system using conventional
methods of state transformation and feedback control. On
the other hand, the effects of bounded control on the sta-
bility of the closed-loop system are not taken into account,
although actuator constraints were cited as a primary
motivation for developing a solution for compensating the
uncertain equilibrium.

State-derivative feedback control has been considered for
the control of nonlinear systems without explicit knowl-
edge of the equilibrium states (Shigekuni and Takimoto
(2013)). State-derivative has been considered as a special
case of the state difference control in Kokame et al. (2001a)
and Ulsoy (2015). In some practical applications, the state-
derivative signals can even be more accessible than the
state measurement signals, as accelerometers provide ac-
cess to acceleration measurements in applications such as
vibration control, vehicle suspension systems (Abdelaziz
and Valás̆ek (2004)). In Abdelaziz and Valás̆ek (2005), a
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state-derivative feedback controller is proposed for stabi-
lizing linear systems, and these results are extended to
include robustness to dynamic uncertainties in Assunção
et al. (2007); Faria et al. (2009); Abdelaziz (2010). How-
ever, to the best of our knowledge, the problem of bounded
state-derivative control has not been considered in the
context of uncertain equilibrium states.

In feedback control applications to practical systems, it is
often the case that we require a bounded control input for
stabilization. The requirement for bounded control arises
due to energy conservation and actuator saturation. The
literature on bounded control is extensive. Control laws
for stabilization of linear systems with bounds on input
energy and peak are derived in Boyd et al. (1994). Global
stability of stable linear systems with actuator saturation
is discussed in Klai et al. (1993). For unstable and control-
lable systems, a control law for local stabilization is derived
in Gomes da Silva et al. (2003). To increase the region
of stability, antiwindup control is used in Grimm et al.
(2003); da Silva and Tarbouriech (2005). Robust control in
the presence of sensor actuation is investigated in Turner
and Tarbouriech (2006). In this paper, the feedback control
under control input constraints will be considered for the
state and output derivative feedback control framework.

In this paper, we investigate the design of state and
output derivative feedback controllers to stabilize dynamic
systems with uncertain equilibrium states, and subject to
control constraints. Stability conditions are derived for the
cases when the euclidean norm and the infinity norm of
the control input is bounded. The technical results of this
paper are verified through experimental implementation
on a magnetic levitation test-bed.

The remainder of this paper is organized as follows.
Section 2 introduces the control problem considered in
this paper. In Section 3 the state-derivative controller
is introduced, and design procedures for the controller
gains are presented for the control cases under bounded
control energy and bounded infinity norm. In Section 4
design procedure for output-derivative feedback controller
is presented for the case of bounded input infinity norm.
In Section 5 an experimental implementation illustrates
the effectiveness of the proposed method. Conclusions and
discussions on future works are presented in Section 6.

Standard notations are used throughout the paper. The
transpose of a matrix A is represented as AT . For a matrix
X, Xij represents its (i, j)th element. The Euclidean norm
of a vector u is represented as ‖u‖, and the corresponding
induced norm for a matrix X is ‖X‖. The infinity norm of
a vector u is represented as ‖u‖∞, and the corresponding
induced norm for a matrix X is ‖X‖∞. The positive-
definiteness (or semi-definiteness) of a matrix P is specified
as P > 0 (P ≥ 0).

2. PROBLEM STATEMENT

Let us consider a nonlinear system given by

ẋ = f(x, u, p),

y = g(x),
(1)

where x ∈ Rn, u ∈ Rnu and y ∈ Rny are the state,
input and output vectors respectively. Let p be a vector
of unknown model parameters, and define x0 ∈ Rn as the

nominal equilibrium point of the nonlinear system (1) for
a nominal value of p, p = p0,

f(x0, 0, p0) = 0.

The actual equilibrium point xp depends on the actual
value of p, f(xp, 0, p) = 0, and it is therefore uncertain.

When the nominal equilibrium x0 equals the true equilib-
rium of (1), a stabilizing control can be obtained under a
mild controllability condition in a state feedback form

u(t) = −K(x(t)− x0). (2)

The feedback gain K stabilizes the linear approximation
of the nonlinear system (1) about the equilibrium point
x0,

δẋ(t) = Aδx(t) +Bu(t),

δy = Cδx(t),
(3)

where δx(t) = x(t)− xp, A ∈ Rn×n, B ∈ Rn×nu and C ∈
Rn×ny are the Jacobian matrices ∂f(x, u)/∂x, ∂f(x, u)/∂u
and ∂g(x)/∂y evaluated at the equilibrium point xp,
respectively.

On the other hand, when the true value of the parameter p
and the corresponding equilibrium point xp are uncertain,
the control law (2) is no longer implementable. For small
enough perturbation p from p0, using the nominal equi-
librium information in (2) may stabilize the system at a
non-equilibrium point due to continuity, but it would also
require a non-zero steady state control input to the plant
(Shigekuni and Takimoto (2013)). A continuous non-zero
steady state control action will result in greater continuous
control effort, which can significantly degrade performance
and stability for systems with strict actuator constraints
(Arthur et al. (2018)). Therefore, conventional state feed-
back controllers are not effective for stabilizing system
with uncertain equilibrium points.

Actuators in practical applications are commonly subject
to operating constraints such as limited power and peak
output. Ignoring these constraints during the controller
design process results in degraded performance and even
instability of the controlled system. The challenges of
actuator constraints are even more urgent for systems with
uncertain equilibrium states, in which operating around
a non-equilibrium point of the system may demand a
continuous non-zero control effort by the actuators.

3. STATE-DERIVATIVE FEEDBACK CONTROL

State-derivative feedback controllers have been considered
for stabilizing dynamic systems (1) when the true equi-
librium state information is known or uncertain during
implementation. The state-derivative feedback controller
is given by

u(t) = −Kδẋ(t) = −Kẋ(t), (4)

where K ∈ Rnu×n is the controller gain. Note that (4)
does not require information of the equilibrium point for
implementation. Therefore, even if the true equilibrium
point shifts from its nominal value x0, the state-derivative
controller can stabilize the system at the true equilibrium
by driving δx to zero.

Using state-derivative feedback controller for the system
in (3), we get

δẋ = Aδx−BKδẋ,
(I +BK)δẋ = Aδx.
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For full rank I +BK, the closed loop system is given by,

δẋ = (I +BK)−1Aδx. (5)

The objective is then to design a feedback controller (4)
such that the closed-loop system (5) is stable and the input
is constrained to a specified level. The assumptions and
lemmas that will aid the derivation of our main results are
discussed below,

Assumption 1. The equilibrium state xp of (1) is an iso-
lated equilibrium, and the state matrix A is full rank.

Remark 2. We have considered I +BK to have full rank.
If the system (A,B) is controllable then a K can always be
found to make (I +BK) full rank (Abdelaziz and Valás̆ek
(2004)).

Lemma 3. If the closed loop system (5) is stable with
Lyapunov function V = δxTPδx for a matrix P > 0, then
the condition δxT (0)Pδx(0) ≤ 1 implies δx(t) ∈ E for all
t > 0, where E =

{
ξ|ξTPξ ≤ 1

}
(Boyd et al. (1994)).

Lemma 4. Consider two matrices X and Y with appropri-
ate dimensions and a symmetric invertible matrix Γ. The
following property holds

XTY + Y TX ≤ XTΓX + Y TΓ−1Y. (6)

3.1 State-Derivative Feedback Control under Bounded
Control Energy

In this subsection, we consider the case where the Eu-
clidean norm of the control effort is bounded,

‖u‖ ≤ µ,
for some µ ∈ R, and derive necessary conditions for the
stability of the derivative feedback system. The stability
conditions are introduced in the form of matrix inequalities
in the following theorem, which is presented without a
proof because of space constraints.

Theorem 5. If there exists a matrix Q > 0 ∈ Rn×n and a
constant σ ∈ R such that

AQ+QAT − σBBT < 0, (7)[
Q −(σ/2)A−1B
∗ µ2I

]
≥ 0, (8)[

1 δxT (0)AT

∗ Φ

]
≥ 0, (9)

where Φ = Q − (σ/2)BBTA−T − (σ/2)A−1BBT +
(σ2/4)BBTA−TQ−1A−1BBT , then the control law u =
(σ/2)BTA−TQ−1δẋ(t) subject to the bounding condition
‖u‖ ≤ µ stabilizes the system (3) for the initial condition
δx(0).

3.2 State-Derivative Feedback Control under Bounded
Input Infinity Norm

Next, we consider the case where the control is subject to
the bounding condition,

−µ ≤ ui ≤ µ,
for elements of the control vector u = [ui], i = 1, ..., nu,
and some µ > 0 ∈ R. The above bounding condition is
equivalent to a bound on the infinity norm of the control

‖u‖∞ ≤ µ.
We proceed to extend the results of Theorem 5 to bound
the infinity norm of the input vector. The proof is omitted
because of space constraints.

Theorem 6. If there exist matrices Q > 0 ∈ Rn×n, X ∈
Rnu×nu and a constant σ ∈ R such that

AQ+QAT − σBBT < 0, (10)[
X −(σ/2)A−1B
∗ Q

]
≥ 0, (11)

Xii − µ2 ≤ 0, (12)[
1 δxT (0)AT

∗ Φ

]
≥ 0, (13)

where Φ = Q − (σ/2)BBTA−T − (σ/2)A−1BBT +
(σ2/4)BBTA−TQ−1A−1BBT and i = 1, ..., nu, then the
control law u = (σ/2)BTA−TQ−1δẋ(t) stabilizes the sys-
tem (3) for the initial condition δx(0) and subject to the
bounding condition ‖u‖∞ ≤ µ.

4. OUTPUT-DERIVATIVE FEEDBACK CONTROL

A dynamic output-derivative feedback controller of order
n is given by,

ż = (A+ LCA+BF + LCBF )z − Lẏ,
u = Fz,

(14)

where L ∈ Rn×ny and F ∈ Rnu×n are design parameters.
Note that δẏ = Cδẋ = Cẋ = ẏ around the uncertain
equilibrium, and the information of such equilibrium is
not needed for implementation of the dynamic controller.

Define error state as e , δx−z. The dynamics of the closed
loop system in terms of state x and error e are given by,[

δẋ
ė

]
=

[
A+BF −BF

0 A+ LCA

] [
δx
e

]
(15)

Theorem 7. If there exist matrices R,Q > 0 ∈ Rn×n,
Γ, X > 0 ∈ Rnu×nu , Y ∈ Rnu×n and Z ∈ Rn×ny such
that

RA+ATR+ ZCA+ATCTZT < 0, (16)

AQ+QAT +BY + Y TBT +BΓBT < 0, (17)

1−
[
δx(0)
e(0)

]T [
Q−1 0

0 R

] [
δx(0)
e(0)

]
≥ 0, (18)[

X Y Y
∗ Q 0
∗ ∗ QRQ

]
≥ 0, (19)

Xii − µ2 ≤ 0, (20)

where i = 1, ..., nu, then the output-derivative feedback
controller given by (14) with L = R−1Z and F = Y Q−1,
subject to the bounding condition ‖u‖∞ ≤ µ stabilizes
the system (3) for the initial conditions δx(0) and z(0) =
δx(0)− e(0).

Proof. We choose a quadratic Lyapunov function V1(e(t))
= e(t)TRe(t), where R > 0 ∈ Rn×n. The time derivative
of V1 along the trajectories of (15) is given by,

V̇1(e(t)) = eT (RA+ATR+RLCA+ATCTLTR)e.

From the Lyapunov stability theorem, we get the stability
condition as,

RA+ATR+ ZCA+ATCTZT < 0, (21)

where Z = RL.

We choose a second quadratic Lyapunov function V2(δx(t))

= δx(t)
T
Pδx(t), where P > 0 ∈ Rn×n. The time derivative

of V2 along the trajectories of (15) is given by,
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V̇2(δx(t)) = δxT [AQ+QAT +BY + Y TBT ]δx

− δxTBY e− eTY TBT δx,
(22)

where Q = P−1 and Y = FQ. Using Lemma 4 we have,

−δxTBY e− eTY TBT δx < δxTBΓBT δx+ eTY TΓ−1Y e,
(23)

for Γ > 0 ∈ Rnu×nu , and thus, the derivative of Lyapunov
function (22) is bounded as,

V̇2(δx) ≤ δxT [AQ+QAT +BY + Y TBT +BΓBT ]δx

+ eTY TΓ−1Y e.

Let us define,

P = AQ+QAT +BY + Y TBT +BΓBT , (24)

ε = λmin(−P), (25)

Therefore,

V̇2 < −ε‖δx‖2 + ‖Γ−1/2Y e‖. (26)

From (21) we get that e(t) is asymtotically stable. There-

fore, it follows that V̇2 < 0 for

P < 0. (27)

We consider that the initial conditions for state and error
satisfy the LMI,[

δx(0)
e(0)

]T [
Q−1 0

0 R

] [
δx(0)
e(0)

]
≤ 1. (28)

From the condition ‖u‖∞ ≤ µ we get,

max
t≥0
‖u(t)‖∞ = max

t≥0
‖Fz(t)‖∞ ,

= max
t≥0

∥∥∥∥[F −F ]

[
δx(t)
e(t)

]∥∥∥∥
∞
.

(29)

Using Lemma 3 we get,

max
t≥0
‖u(t)‖∞ ≤ max

[δxT eT ]T∈E

∥∥∥∥[F −F ]

[
δx(t)
e(t)

]∥∥∥∥
∞
,

≤ max
[δxT eT ]T∈E

∥∥∥∥Y [Q−1 −Q−1] [δx(t)
e(t)

]∥∥∥∥
∞
,

≤
√

max(Y (Q−1 +Q−1R−1Q−1)Y T )ii,

≤ µ.
(30)

The above condition can be written as,

(µ2I − Y (Q−1 +Q−1R−1Q−1)Y T )ii ≥ 0, (31)

and,
Xii ≤ µ2. (32)

where i = 1, ..., nu. Using Schur’s complement on (31) we
get,  X Y Y

Y T Q 0
Y T 0 QRQ

 ≥ 0, (33)

which concludes the proof.

Remark 8. The inequalities (18) and (19) are not LMIs
because of the terms Q−1 and QRQ respectively. We can
instead convert the non-convex feasibility problem into a
nonlinear optimization problem, which can then be solved
using linearization methods. Replace (18) and (19) with,

1−
[
δx(0)
e(0)

]T [
P 0
0 R

] [
δx(0)
e(0)

]
≥ 0, (34)

and [
X Y Y
∗ Q 0
∗ ∗ S

]
≥ 0, (35)

respectively, where P = Q−1 and S = QRQ. Using the
procedure presented in Moon et al. (2001) and Zaheer
et al. (2014), a feasible solution to the matrix conditions
of Theorem 7 can be found by solving the nonlinear
optimization problem,

Minimize Trace(SU +QP )

subject to (16), (17), (20), (34), (35) and[
U P
∗ R

]
≥ 0,

[
S I
∗ U

]
≥ 0,[

Q I
∗ P

]
≥ 0.


(36)

A solution to the above cone complementarity opti-
mization problem can be reached using the linearization
method presented in Ghaoui et al. (1997).

5. EXPERIMENTAL RESULTS

To test the effectiveness of our proposed controller, we con-
sider a magnetic levitation test-bed (MagLev Model 730),
(Parks (1999)) as shown in Fig. 1. Magnetic levitation is
an application of electromagnetism and is the principle be-
hind high speed bullet trains. The MagLev system consists
of two magnetic disks (Disk #1 and Disk #2 at bottom
and top respectively) controlled by two coils (Coil #1 and
Coil #2 at bottom and top respectively). Schematic dia-
gram of the MagLev system indicating the polarities of the
coils and magnetic disks is shown in Fig. 1. Details on the
setup and operation of the MagLev system can be found in
Parks (1999). The knowledge of the magnetic equilibrium
is required for the stabilization of the disks. However, its
determination is difficult leading to uncertainties in its true
location. We will use our proposed controller, which does
not require the exact knowledge of equilibrium states to
stabilize the system to the true magnetic equilibrium in
the presence of these uncertainties.

The equations of motion for magnetic disks are

mÿ1 + c1ẏ1 + Fm12 = Fu11 − Fu12 −mg,
mÿ2 + c2ẏ2 − Fm12 = Fu22 − Fu21 −mg,

(37)

where y1 and y2 are the position of Disk #1 and #2
respectively, m is the mass of magnets, ci is the damping
coefficient of magnet i, Fm12 is the force between Disks
1 and 2, Fuij is the force between from Coil i and Disk
j, and g is the acceleration due to gravity. The damping
coefficients c1 and c2 are assumed to be negligible. The
states of our system are chosen as x = [y1 ẏ1 y2 ẏ2]T and
input u = [u1 u2]T . The disk positions y1 and y2 are the
available output measurements.

For the desired resting point x0 = [0.02 0 −0.02 0]T ,
a bias current input u0 = [u10 u20]T is determined as
u0 = [0.5877 0.5877]T . The linearized dynamics of the
system about δx = x− x0 and δu = u− u0 is found as
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Fig. 1. MagLev Model 730 with schematic diagram.δẏ1δÿ1
δẏ2
δÿ2

 =

 0 1 0 0
a21 0 a23 0
0 0 0 1
a41 0 a43 0


δy1δẏ1
δy2
δẏ2

+

 0 0
16.06 0

0 0
0 16.06

[δu1δu2

]
,

δy =

[
1 0 0 0
0 0 1 0

]
[δy1 δẏ1 δy2 δẏ2]

T
,

(38)
where a21 = −477.4247, a23 = 0.0137, a41 = 0.0137 and
a43 = 477.3973.

5.1 Proportional-Integral Control

First, we stabilize the system using Proportional-Integral
(PI) controller and the results will be used as a reference
for comparison. The disks are stabilized at the nominal
location of [0.02 −0.02] as shown in Fig. 2. However, the
steady-state control signals δu1 and δu2 are not equal to 0
as shown in Fig. 3. Therefore, these disk positions do not
correspond to the true equilibrium associated with u10 and
u20 and a non-zero steady-state control effort is required to
maintain the system away from its true equilibrium which
is undesirable. Moreover, we can’t control the peak of input
and bounding conditions on control can cause instability
of the system.

0 1 2 3 4 5 6 7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 2. Output of MagLev system stabilized with PI
controller.

5.2 Dynamic Output-Derivative Control

To stabilize the magnetic disks at the true equilibrium,
we use Theorem 7 to design an output-derivative feedback
controller using the linearized equations of motion (38).
We find the value of output-derivative feedback controller
gains L and K for the bounding condition as ‖δu‖∞ ≤ 0.5.

0 1 2 3 4 5 6 7

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 3. Input to MagLev system stabilized with PI con-
troller.

We observe in Fig. 4 that the system is not stabilized at the
nominal equilibrium position of [0.02 −0.02] but rather at
[0.015 −0.041]. The steady-state control signals δu1 and
δu2 are 0 as shown in Fig. 5, which indicates that the
final resting positions of the disks are the true equilibrium
points associated with u10 and u20. The peak input level
is within the bounding condition level of the control input.

0 1 2 3 4 5 6 7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 4. Output of MagLev system stabilized at true equi-
librium position.

0 1 2 3 4 5 6 7

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 5. Input to MagLev system stabilized at true equilib-
rium position.

6. CONCLUSIONS AND FUTURE WORK

In this work, we investigated the state-derivative and
output-derivative feedback control for the stabilization of
dynamic systems with unknown or uncertain equilibrium
states, and in the presence of control input bounding
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constraints. The derivative feedback controller stabilizes
the system at the true equilibrium of the system, which
results in zero steady state control action.

The presented stability conditions for the derivative feed-
back system is verified by designing a controller for a
magnetic levitation test-bed. Experimental results showed
that the proposed control synthesis method can stabilize
the magnetic plates to their true equilibrium, in the pres-
ence of unknown magnetic equilibrium. The importance
of incorporating the bounded control conditions in the
control synthesis was highlighted through experimental
results by comparing the response of our proposed solution
to the responses with alternative control laws. Future work
will aim to extend the results of this paper to incorporate
robustness to dynamic uncertainties.
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