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Abstract: Many control problems contain time-varying or parameter-varying dynamics. With
model predictive control (MPC), it is possible to include known plant variations into the
controller for improving control performance. Unfortunately, perfect knowledge of the plant
is rarely available and the accurateness of models may change over time and operating points.
Robust control approaches consider worst-case realizations with a static model which ensure
constraint satisfaction and stability but may yield conservative performance. The control
algorithm presented in this paper uses anticipative information about future uncertainties and
varying models to improve control performance while ensuring stability and feasibility. Possible
system trajectories are bounded by polytopic tubes and recursive feasibility is achieved by
the use of a terminal set. The controller properties are evaluated in a numerical example and
compared to a similar control algorithm.
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1. INTRODUCTION

Model predictive control (MPC) is a popular control
technique for systems with state and input constraints.
The control task is formulated as an online optimiza-
tion problem which allows an explicit handling of system
constraints. At each sample step, a sequence of control
inputs over a finite prediction horizon gets calculated
but only the first element will be used. For linear time-
invariant systems, there exist efficient algorithms which
ensure asymptotic stability and feasibility of the problem
for all times, e.g. in (Rawlings and Mayne, 2015).
The main reason for using feedback control is the exis-
tence of uncertainty regarding additive disturbances and
modeling errors. These uncertainties are explicitly con-
sidered in robust MPC, where recursive feasibility and
stability can be assured despite bounded uncertainties.
When uncertainty in the system dynamics is present, the
number of possible state trajectories grows exponentially
over the prediction horizon. There exist several approaches
in robust MPC to reduce this growth in computational
complexity.
Early algorithms describe the plant uncertainty in its
impulse response using FIR models (Zheng and Morari,
1993) where the filter coefficients lie in a bounded range.
Other approaches use linear matrix inequalities (LMIs) to
find robustly stabilizing control laws. In (Kothare et al.,
1996), all possible system realizations have to lie in a
convex polytopic set and a state-dependent state-feedback
law is computed online. In order to reduce the compu-
tational burden, a state-feedback law and a terminal set
are computed offline in (Kouvaritakis et al., 2000). On-
line, free control moves over the prediction horizon are
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determined by solving a simple optimization problem. In
(Rawlings and Mayne, 2015, Ch. 3.5), the multiplicative
uncertainty is formulated as an additive disturbance which
yields low computational complexity. Due to a worst-case
considerations of the disturbance, this approach is rather
conservative. A robust MPC formulation which considers
all extreme state trajectories is described in (Pannocchia,
2004). Although the number of decision variable is low, the
number of constraints grows rapidly with the length of the
prediction horizon. An approach using multi-parametric
programming is presented in (Bemporad et al., 2003)
which has very low online complexity. Robust multi-stage
approaches, e.g. in (Subramanian et al., 2018), yield low
levels of conservatism but the number of constraints grow
exponentially with the prediction horizon.
Algorithms using high-complexity polytopes as tubes, e.g.
in (Evans et al., 2012), may yield less conservative results
than using ellipsoidal tubes based on LMIs. In addition,
the online problem can be formulated as an ordinary
quadratic problem and the number of constraints grows
linearly with the length of the prediction horizon. A tube-
based MPC algorithm based on vertex control laws is
proposed in (Brunner et al., 2013) and (Hanema et al.,
2016), where a control input is computed for every vertex
of the model uncertainty and state tube at each prediction
step. Set-inclusion methods for constructing tubes are used
in (Evans et al., 2012) and (Fleming et al., 2015) where
half-spaces of tubes are scaled online based on deviations
from a nominal model and the current state.
In some control applications, information about the cur-
rent and/or future system realizations are available, for
example weather forecasts for renewable energy systems,
maps and forward-looking sensors for vehicles, and tem-
perature predictions for chemical reactions. This informa-
tion can consist of nominal predicted models and error
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bounds on the models. Incorporating this information in
the MPC problem leads to an anticipative behavior which
may improve control performance compared to a static
nominal model and uncertainty. There exists only few lit-
erature about robust MPC with a varying nominal model
which is summarized next.
When the current realization of the uncertainty can be per-
fectly measured, the system is said to be linear-parameter-
varying (LPV). In (Suzukia and Sugie, 2006), anticipative
behavior of an LPV system is achieved by bounding the
rate of variation of the system dynamics. A very flex-
ible parametrization of the uncertainty is described in
(Hanema et al., 2016), where one can choose from perfect
knowledge of the future to arbitrarily fast variations of
the plant. In addition, the algorithm can be tailored to
handle LPV and robust control problems. As a downside,
no nominal prediction model can be incorporated.
Another anticipative MPC approach is presented in (Gon-
zalez et al., 2011), where perfect knowledge of the time-
varying system dynamics is assumed but additive distur-
bances are allowed. Moreover, the tubes are based on on-
line reachable set calculations which are computationally
expensive.
This work extends the robust MPC algorithm presented
in (Fleming et al., 2015) to use information about future
system evolutions. The tube cross-section presented in
this paper depends on the anticipated evolution of the
plant instead of the worst-case uncertainty. In contrast
to (Hanema et al., 2016), a nominal system model and
a quadratic cost function are used which can be beneficial
in many control applications. In addition, a reduction of
constraints can be expected due to a different method of
constructing tubes. Knowledge of future plant realizations
can vary from perfect, full knowledge to a robust setting
with arbitrarily fast variations of the plant. As the con-
troller is robustly designed, it can recover to a robust
control mode after is has operated with information about
future plant realizations.
This paper has the following structure: The notations
used in this paper are described in Section 2. Section
3 provides the description of the uncertain system, the
time-varying uncertainty and the separation into nominal
and error dynamics. In Section 4, time-varying polytopic
tubes are derived which bound the error evolution over the
prediction horizon. A terminal set for the tube parameters
and nominal states is considered in Section 5. The MPC
algorithm using time-varying tubes is presented in Section
6 and illustrated by a numerical example in Section 7.

2. NOTATION

A set which is convex, compact and contains the origin
in its interior is called a C-set. The identity matrix In is
of dimension n × n, and a vector containing only ones or
zeros is denoted as 1 or 0, respectively.
The scaled C-set γS is defined as γS = {x |V x ≤ γ1} with
S = {x |V x ≤ 1}, γ ∈ [0,∞) and V ∈ RnV×nx . For a λ-
contractive C-set S and system xk+1 = f(xk) holds that
if x ∈ S then xk+1 ∈ λS with λ ∈ [0, 1). The set is called
invariant for λ = 1.
The transpose of a matrix Q is written as Q′. In addition,
the notation ‖x‖Q = x′Qx is used and ‖x‖∞ denotes the
maximum norm. The spectral radius of a square matrix
X is defined by ρ(X) = max(abs(eig(X))) and the joint

spectral radius as ρ̂(M) for a family of matrices M.
In addition, Co{(·)} denotes the convex hull formed by the
corresponding vertices.

3. SYSTEM DESCRIPTION

Consider a discrete-time linear time-varying (LTV) system

xk+1 = Akxk +Buk (1)

with the system plant Ak ∈ Co{A(j)
k |j ∈ N[1,nP]}. The

time-varying vertex plant realizations A
(j)
k at each time

step k are given by

A
(j)
k =

nP∑
i=1

(θ
(j)
k )

i
A(i),

nP∑
i=1

(θ
(j)
k )

i
= 1 , (θ

(j)
k )i ∈ R[0,1], (2)

where (·)i denotes the ith vector row and A(i) is a vertex
of the convex set of all possible plant realizations known

offline. The time-varying scheduling parameters θ
(j)
k form

the scheduling set Θk = Co{θ(j)
k |j ∈ N[1,nP]} which

describes all potential plant realizations at time step k.
The set Θ = Co{θ(i)| i ∈ N[1,nP]} ⊇ Θk contains all
possible scheduling parameters. In addition, x ∈ X ⊆ Rnx

denotes the state vector and u ∈ U ⊆ Rnu the input vector.
The state and input constraints are given by the compact
sets X and U which are expressed as

Fxk +Guk ≤ 1 . (3)

A linear feedback law

uk =

{
Kxk + ck, k = 0, . . . , N − 1 ,

Kxk, k = N, . . . ,∞ (4)

is used to pre-stabilize the system and ck denotes free con-
trol moves over the prediction horizon determined by the
MPC algorithm. The linear feedback K has to be chosen
such that it stabilizes asymptotically all systems defined
by the vertices A(i). Minimizing the worst-case cost in the
unconstrained case is a reasonable objective for selecting
K, e.g. with the method described in (Kouvaritakis and
Cannon, 2015, Ch. 3.2). Pre-stabilizing helps to reduce
the effect of uncertainty over time as the system’s eigen-
values usually get smaller and bounds on errors tighter. In
addition, it also enables the computation of invariant sets
in case of unstable plants.
The state xk can be separated into xk = zk +ek with zk as
the nominal state and ek as the error. Using (1) and (4),
one can write

xk+1 ∈ Co{A(j)
k xk +BKxk +Bck|j ∈ N[1,nP]}

= Co{(A(0)
k +BK)zk + (A

(j)
k +BK)ek+

∆
(j)
k zk +Bck|j ∈ N[1,nP]}

(5)

for k ∈ N[1,N−1], where the vertex plant A
(j)
k is divided

into a nominal model A
(0)
k ∈ Co{A(j)

k |j ∈ N[1,nP]} and the

uncertainty ∆
(j)
k = A

(j)
k − A

(0)
k . Separating into nominal

and error part yields

zk+1 = (A
(0)
k +BK)zk +Bck , (6a)

ek+1 ∈ Co{(A(j)
k +BK)ek + ∆

(j)
k zk|j ∈ N[1,nP]} . (6b)

with A
(j)
k = A

(0)
k + ∆

(j)
k and k ∈ N[1,N−1]. Defining

Φ
(j)
k = A

(j)
k +BK gives

zk+1 =

{
Φ

(0)
k zk +Bck , k = 0, . . . , N − 1 ,

Φ
(0)
k zk, k = N, . . . ,∞

(7)
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for the nominal state trajectory and

ek+1 ∈ Co{Φ(j)
k ek + ∆

(j)
k zk|j ∈ N[1,nP], k ∈ N[0,∞)} (8)

for the error term.

4. POLYTOPIC TUBES

Trying to directly evaluate (8) leads to a number of
constraints which grows exponentially over the prediction
horizon. In order to overcome this issue, the tube-based
approach described in (Fleming et al., 2015) can be used.
Using a set-inclusion method based on Farkas’ Lemma,
one can ensure that the error is bounded by consecutive
polytopic tube cross-sections.

Proposition 1. (Dorea and Hennet, 1999) Given two poly-
topes S1 = {x |F1x ≤ g1} and S2 = {x |F2x ≤ g2}, then
S1 ⊆ S2 if and only if there exists a non-negative matrix
H such that HF1 = F2 and Hg1 ≤ g2.

In order to increase the region of attraction, a slow growth
of the tube cross-sections is desired. This can be achieved
by computing an autonomous, robust contractive set for
the uncertain system (1).

Definition 2. A set S ⊆ X is called robust λ-contractive
for system (1) with u = Kx ∈ U if ∀x ∈ S : (A(i) +
BK)x ∈ λS, ∀i ∈ N[1,nP].

Let S be parametrized as S = {ek|V ek ≤ 1} with V ∈
RnV×nx under the uncertain dynamics ek+1 = Φ(i)ek, i ∈
N[1,nP] . The tube cross-section at each prediction step can
be then parametrized as Tk = {ek|V ek ≤ αk} with αk ≤ 1
as a parameter to be determined online. The matrix V
determines the general structure of the cross-section while
αk scales each half-space.
Let the cross-section at time k + 1 be defined as Tk+1 =
{ek+1|V ek+1 ≤ αk+1}. Using the error model (8), one can
express Tk+1 in terms of ek as

Tk+1 = {ek|V (Φ
(j)
k ek + ∆

(j)
k zk) ≤ αk+1,∀j ∈ N[1,nP]}

= {ek|V Φ
(j)
k ek ≤ αk+1 − V∆

(j)
k zk,∀j ∈ N[1,nP]}.

(9)
Hence, the error state in Tk will lie in Tk+1 if Tk ⊆ Tk+1(ek)
holds. Proposition 1 can be used now to establish this
relationship between two consecutive cross-sections by
requiring

H
(j)
k V = V Φ

(j)
k , (10a)

H
(j)
k αk ≤ αk+1 − V∆

(j)
k zk , (10b)

where H
(j)
k is a non-negative matrix. The last inequality

is non-linear in H
(j)
k and αk if they are concurrently

optimized. In (Fleming et al., 2015), matrix H
(j)
k is time-

invariant and can be designed offline which makes the in-
equality linear but may add conservatism. As the schedul-
ing set may change from prediction step to prediction step,

online computations of H
(j)
k may require too much com-

putation time. Therefore, it is proposed here to compute
H(i) offline using the extreme plant realizations Φ(i) and
requiring

H(i)V = V Φ(i) . (11)

Multiplying equation (11) with the scalar scheduling vari-

able (θ
(j)
k )i for i = 1, . . . , nP and summing up yields

nP∑
i=1

(θ
(j)
k )

i
H(i)V = H

(j)
k V = V Φ

(j)
k . (12)

When H(i) is designed offline, inequality (10) is not nec-
essary any more but becomes only sufficient (Kouvaritakis
and Cannon, 2015, Ch. 5.5). The introduced conservatism
can be reduced by minimizing the sum of each row in H(i)

with the linear program

((H(i))n)′ = arg min
h∈RnV

h s.t. h′V = (V )nΦ(i), h ≥ 0 , (13)

where (·)n denotes the nth matrix row.
The system constraints (3) can be also separated into a
nominal part and an error part

(F +GK)zk + (F +GK)ek +Gck ≤ 1 , (14)

where control law (4) has been used. As ek always lies in
Tk, one can apply Proposition 1 to the constraint (14)

HcV = F +GK , (15a)

Hcαk ≤ 1− (F +GK)zk −Gck (15b)

with ck = 0 for k ≥ N . The non-negative matrix Hc ∈
RnC×nV can be then derived with

(Hc)′n = arg min
h∈RnV

h s.t. h′V = (F +GK)n, h ≥ 0 (16)

which reduces the conservatism by making the rows in Hc

small.

5. COMPUTATION OF THE TERMINAL SET

As the MPC problem considers the state evolution only
over a finite amount of time, it is important to ensure
feasibility and stability beyond the prediction horizon.
This can be achieved by requiring that the last state of the
prediction horizon has to lie in a terminal set. The terminal
set has to be invariant for the system state while never
violating state and input constraints. Here, the system is
already pre-stabilized by a linar control law which is also
used inside the terminal set. As the nominal system model
can be arbitrarily chosen, the uncertain dynamics of the
terminal set must contain all possible nominal models.
When the system has entered the terminal set Xf, the
constraint

Hcαk + (F +GK)zk = Fc

[
αk

zk

]
≤ 1 (17)

must hold for all times. In addition, inequality (10b) is
fulfilled inside the terminal set for every pair of nominal
plant and plant uncertainty when the dynamics

A
(n,m)
f =

[
H(m) V (Φ(m) − Φ(n))

0 Φ(n)

]
(18)

are used for the computation of the terminal set with
n,m ∈ N[1,nP]. This can be seen by multiplying matrix (18)

with the scalar scheduling variables (θ(i))m and (θ(j))n
and summing up. Every combination of nominal plant
Φ(0) =

∑nP

n=1 (θ(0))n Φ(n) and uncertainty realizations

Φ(j) =
∑nP

m=1 (θ(j))m Φ(m), H(j) =
∑nP

m=1 (θ(j))mH
(m) are

covered by the terminal set.

Lemma 3. The uncertain dynamics [αk+1, zk+1]′ =

Af [αk, zk]′, Af ∈ Co{A(n,m)
f } are asymptotically stable.

Proof. See proof for Lemma 2 in (Peschke and Görges,
2019).
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Fig. 1. Examplary Nominal Model Trajectories and
Boundaries

An invariant set can be computed within a finite number of
steps, e.g. with the algorithm from (Miani and Savorgnan,
2005), when the system defined by (18) is robust asymptot-
ically stable, (Blanchini and Miani, 2015, Ch. 5.4), which
is the case for (18) according to Lemma 3.

6. MPC ALGORITHM

In order to ensure stability and recursive feasibility, the

nominal plant A
(0)
k and the scheduling set Θk may not be

chosen arbitrarily at each sampling step.

Assumption 4. At each sample time k, let a sequence of

nominal plants A
(0)
i|k , i ∈ N[0,N−1] be given. At the next

time instant k + 1, it holds that A
(0)
i|k+1 = A

(0)
i+1|k ∀ i ∈

N[0,N−2] and A
(0)
N−1|k+1 ∈ Co{A(j)|j ∈ N[1,nP]}.

Assumption 4 requires that the nominal plant is constant
in terms of absolute times over the prediction horizon. At
the end of the prediction horizon, a new nominal plant is
added which can be chosen arbitrarily from the convex set
of all allowed plant realizations.
A similar assumption also holds for the scheduling set Θk:

Assumption 5. At each sample step k, let a sequence of
scheduling sets Θi|k , i ∈ N[0,N−1] be given. At the next
time instant k + 1, it holds that Θi|k+1 ⊆ Θi+1|k ∀ i ∈
N[0,N−2] and ΘN−1|k+1 ∈ Co{θ(i)| i ∈ N[1,nP]}.

Assumption 5 requires that the uncertainty at a predicted
time does not increase at the next sampling step. At the
end of the prediction horizon, an arbitrary scheduling set
can be chosen as long as it does not exceed the predefined
bounds.
Both assumptions together enable a flexible parametriza-
tion of future nominal plants and error bounds, for ex-
ample bounded growth of uncertainty over the prediction
horizon, a varying nominal model with fixed error bounds
or perfect knowledge over future plant variations.
In (Hanema et al., 2016), an interesting classification for
different types of scheduling sets is described which shall
be modified and extended here:

(1) LTV-R (robust): Θ = {Θ,Θ, . . . ,Θ},
(2) LTV-A (anticipative): Θ = {Θ0|k,Θ1|k, . . . ,ΘN−1|k},
(3) LTV-O (oracle): Θ = {θ0|k, θ1|k, , . . . , θN−1|k, }.

The class ’LTV-R’ describes the classical robust MPC
setup, which has no knowledge about future plant re-
alizations. In Figure 1, the class ’LTV-R’ is indicated
by constant matrices A(i) for extreme plant realizations

and a constant nominal model A
(0)
LTV-R. Future knowledge

about the nominal plant is incorporated in class ’LTV-

R-A’ where the nominal model A
(0)
LTV-R-A is time-varying.

This paper addresses the case of ’LTV-A’ in particular,
where the uncertainty may be anticipated and possibly
tightened over the prediction horizon when additional
knowledge exists. As an extreme setup, ’LTV-O’ requires
perfect knowledge of the plant over the prediction horizon.
With the algorithm presented in this paper, all setups
described above can be handled as long as Assumptions
4 and 5 are valid.
In order to improve the system performance by using a
nominal model, the infinite-time cost function

J =

∞∑
k=0

‖zk‖Q + ‖uk‖R (19)

can be used. Inserting control law (4) yields

J ≤ Ĵ =

N−1∑
k=0

‖zk‖Q+K′RK + 2zkK
′Rck+

‖ck‖R + ‖zN‖P ,
(20)

where P solves the Lyapunov equation

Φ(i)′PΦ(i) − P � −(Q+K ′RK) ∀ i ∈ N[1,nP] (21)

with positive definite matrices Q and R.
The MPC algorithm can be now stated as:
Offline:

(1) Choose K and P so that system (1) is robustly
stabilized for all A(i) and equation (21) is fulfilled.

(2) Compute the λ-contractive set S, matrices H(i) and
Hc, and terminal set Xf.

Online

(1) Compute tube matrices H
(j)
i|k using (12) and schedul-

ing sets Θi|k.
(2) Solve

min
z,c

Ĵ(x0|k, z1|k−1) (22a)

s.t. zi+1|k = Φ
(0)
i|kzi|k +Bci|k , (22b)

V (x0|k − z0|k) ≤ α0|k , (22c)

− V (x0|k − z1|k−1) ≤ −α0|k , (22d)

H
(j)
i|kαi|k + V∆

(j)
i|kzi|k ≤ αi+1|k , (22e)

Hcαi|k + (F +GK)zi|k +Gci|k ≤ 1 , (22f)

(αN |k, zN |k) ∈ Xf , (22g)

i ∈ N[0,N−1] , j ∈ N[1,nP] .

with initial condition z1|−1 = x0|0. The underlined vari-
ables zk and ck denote sequences of the respective variable
over the prediction horizon.
Inequality (22d) is important to ensure stability and to
exploit the nominal prediction model. If inequality (22d)
did not exist, the optimal solution would set z0|k close
to the origin, where the system is controlled by the pre-
designed robust control gain K to the origin. Moreover, the
input vector ck would be merely used to fulfill the input
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constraints and not for anticipative behavior. Therefore,
the nominal state z0|k must lie close to the current true
system state xk so that the MPC algorithm uses ck actively
for optimizing the nominal cost. Setting α0|k = 0 may lead
to the most anticipative behavior but stability cannot be
ensured as the cost may increase at consecutive time steps.
Hence, inequality (22d) requires α0|k ≤ V (x0|k − z1|k−1)
which ensures that the cost can decrease as predicted in
the previous step. In addition, the constraint imposes tight
limits between measured and nominal state as needed
for good anticipative behavior. For example, in case of
a perfect match between nominal model and true plant,
α0|k = 0 can be chosen by the algorithm.

Theorem 6. System (1) is recursively feasible and the
nominal state is asymptotically stable under algorithm
(22) for all x0 inside the N-step reachable set FN for Xf. In
addition, the true system state x converges to the origin.

Proof. The optimal solution is marked by * in the follow-
ing.
Nominal stability : Following standard proofs in MPC, e.g.
in (Rawlings and Mayne, 2015), one can express the dif-
ference in cost between two consecutive time steps

∆J = Ĵ(z∗k+1, c
∗
k+1)− Ĵ(z∗k, c

∗
k)

≤ Ĵ([z∗1:N |k, zN |k+1], [c∗1:N−1|k, 0])− Ĵ(z∗k, c
∗
k)

≤ ‖zN |k‖Φ′
N|k+1

PΦN|k+1
+ ‖zN |k‖Q+K′RK − ‖zN |k‖P

≤ 0 ,
(23)

where P is designed as in equation (21), Q and R are
positive definite, z∗1:N |k denotes the N − 1 last elements

from the solution at time k and Φ
(0)
i|k+1 = Φ

(0)
i+1|k due to

Assumption 4. Asymptotic stability of the nominal state
follows from the negative definiteness of the change in cost.
Feasiblity : For all xk in FN there exist feasible sequences
zk, ck and αk. The input sequence ck+1 can be constructed
from the last N − 1 elements of ck and appending 0 as de-
fined in (4). Due to Assumption 4, the nominal plant stays
constant at absolute times and hence, the nominal state
sequence zk+1 can be formed of the last N − 1 elements of

zk and the last element is zN |k+1 = Φ
(0)
N−1|k+1zN |k which

is feasible by definition of the terminal set.
Due to Assumption 4 and 5, a feasible solution for the
first N − 1 element of αk+1 can be constructed from the
N − 1 last elements of αk as inequality (22e) holds for all
realizations of H and ∆ inside the time-varying scheduling
sets. The last element of αk+1 is feasible due to the defi-
nition of the terminal set as every combination of nominal

plant Φ
(0)
k , uncertainty V∆

(j)
k and tube matrices H

(j)
k can

be formed by a convex combination of A
(i,j)
f . Inequalities

(22c) and (22d) are also feasible for the shifted sequence
due to the design of α1|k in (22e) with α0|k+1 = α1|k and
z0|k+1 = z1|k.
Convergence of system state: Due to the asymptotic sta-
bility of the nominal state zk, it follows that zk → 0. This
implies ek → 0 because of the dynamics (8) and hence,
xk → 0.

The quadratic program (22) has Nnx equality constraints,
N(nVnp + nC) + 2nV + nF inequality constraints and
N(nx +nu +nV) +nx +nV decision variables. In addition,

the number of inequalities nV depends on the desired con-
traction factor λ and nF denotes the number of constraints
of the terminal set. For contraction factors close to the
spectral radius of the set of all Φ(j), the number of inequal-
ity constraints increases rapidly. On the other hand, the
tube cross-section grows slower over the prediction horizon
which leads to a increased region of attraction.

7. NUMERICAL EXAMPLE

In this section, a numerical example is given to demon-
strate the advantages of the algorithm presented in Section
6. An uncertain, unstable, discrete-time system is given by
the vertices

A(1) =

[
1 1.5
−0.4 1

]
, A(2) =

[
1.5 1
0 0.85

]
,

A(3) =

[
1 1
0 1

]
, B =

[
0
1

]
,

(24)

and is pre-stabilized by K = [−0.6237 −1.8654]. The
states are constrained by |x|∞ ≤ 7 and for the input
|u| ≤ 1 holds. The tube matrices H(j) are chosen so that
the corresponding set is 0.9-contractive and the terminal
set Xf is invariant for zk and αk. Weights Q = 10I and
R = 1 are used with I as the identity matrix.
The algorithm is evaluated in four different scenarios with
a prediction horizon of five. In each scenario, the plant
switches from one vertex realization to the next one at
each time instant. Scenario one has no specific knowledge
about plant variations and uses the average of all three
A(i) as a nominal model. This corresponds to the ’LTV-
R’-type described in Section 6. In scenario two, perfect
knowledge about the nominal plant is assumed but the
uncertainty stays the same as in scenario one. Hence, it is
a ’LTV-R’ system with anticipative knowledge about the
nominal plant (’LTV-R-A’). The uncertainty is tightened
in scenario three: Each uncertainty description contains
the nominal plant as a vertex and the systems which are
given by averaging the nominal plant with its adjacent A(i)

(’LTV-A’). Scenario four has perfect knowledge about the
plant and no uncertainty is present (’LTV-O’).
Moreover, a robust version of the algorithm presented
in (Hanema et al., 2016) is used for comparison. As
described in the paper, the constraints are changed so
that the solution does not depend on the current or future
plant realizations. In addition, the terminal set is robustly
invariant instead of control invariant and hence, the LPV
assumption can be dropped. A min-max cost function is
used in (Hanema et al., 2016) in contrast to a quadratic
cost in this paper. The performance of both algorithms is
evaluated by the total quadratic cost

JQP =

∞∑
k=0

‖xk‖Q + ‖uk‖R (25)

and the total achieved maximum cost

Jmax =

∞∑
k=0

‖Qxk‖∞ + ‖Ruk‖∞ . (26)

For each scenario and control algorithm, the total costs
(25) and (26) are averaged over a dense grid of initial
conditions. Only initial conditions which are feasible for
both algorithms and all scenarios are considered in order
to account for different sizes of domains of attractions
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Table 1. Results from Algorithm in Section 6.

Scenario Avg. JQP Avg. JMM Area of DOA

LTV-R 22.96 29.79 3.63
LTV-R-A 19.27 21.56 3.63
LTV-A 18.61 20.48 8.11
LTV-O 18.61 20.48 47.97

Table 2. Results from adapted algorithm in
(Hanema et al., 2016).

Scenario Avg. JQP Avg. JMM Area of DOA

LTV-R 23.48 30.76 3.60
LTV-R-A 23.48 30.76 3.60
LTV-A 20.23 21.95 9.25
LTV-O 19.85 17.57 47.98

LTV-R
LTV-R-A

Fig. 2. Examplary State Trajectories

(DOA). In additions, the area of the DOA is also given
for each configuration.

Using anticipative knowledge (’LTV-R-A’) reduces the
quadratic cost by 16% compared to ’LTV-R’ as noted in
Table 1. The advantage of anticipative knowledge can be
seen in Fig. 2 where a faster and smoother converge to
the origin is achieved. When the uncertainty is tightened
(’LTV-A’), the cost can be further reduced and the domain
of attraction increases. The smaller uncertainty enables
the control to reduce the cost as the constraints can be
fulfilled more easily. Having perfect knowledge (’LTV-O’)
does not decrease the cost further in this example but
heavily increases the domain of attraction. The costs for
the ’LTV-R’ and ’LTV-R-A’ scenarios stay the same for
the adapted algorithm from Hanema et al. (2016) as listed
in Table 7. No nominal model can be used with this algo-
rithm and the costs can be only decreased by reducing the
uncertainty as in the ’LTV-A’ scenario. Compared to the
algorithm in this paper, the achieved costs are in general
higher as no use of a good nominal model is made. The
domain of attraction is greater in the ’LTV-A’ scenario
and is roughly the same otherwise.
The complexity for algorithm Hanema et al. (2016) de-
pends linearly on the prediction horizon N but also on the
number of vertices qF of the terminal set and nP. For the
above example, the algorithm uses 49 decision variables,
three equality constraints and 656 inequality constraints.
The algorithm presented in this paper needs 41 decision
variables, 10 equality constraints and 134 inequality con-
straints. Hence, a comparable or better performance in
case of a good nominal model can be achieved by using
significantly less inequality constraints.
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