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Abstract: Within the realm of Discrete Event Systems (DES) theory, the problem of
performance optimization for many applications can be modeled as an infinite-horizon, average-
reward Markov Decision Process (MDP) with a finite state space. In principle, these MDPs
can be solved by various well-developed methods like value iteration, policy iteration and
linear programming. But in reality, the tractability of these methods in the context of the
aforementioned applications is compromised by the explosive size of the underlying state spaces,
a problem that is known as “the curse of dimensionality”. Hence, the corresponding performance
optimization problems are frequently addressed by heuristic control policies. The considered
work uses results from (i) the sensitivity analysis of Markov reward processes and (ii) the
ranking & selection theory in statistics in order to develop a methodology for assessing the
optimality of isolated decisions in the context of any well-defined heuristic control policy for the
aforementioned MDPs. It also determines an improved decision when the current one is found
to be suboptimal. Hence, when embedded in an iterative scheme, this methodology can support
the incremental enhancement of the original heuristic policy in a way that controls, both, the
computational and also the representational complexity of the new policy. Finally, an additional
important feature of the presented methodology is that it can be executed either in an “off-line”
mode, using a simulation of the dynamics of the underlying DES, or in an “on-line” mode, based
on the sample path that is defined by the real-time dynamics of the controlled system.

Keywords: Markov Decision Processes, Performance Optimization, Sensitivity Analysis of
Markov reward processes, Ranking & Selection, Discrete Event Systems

1. INTRODUCTION

Finite state-space, infinite-horizon, average-reward Markov
decision processes (AR-MDPs) (Puterman (1994)) is a
natural formal framework for modeling many performance
control and optimization problems that are formulated in
the operational context of many contemporary applica-
tions. Under certain structural conditions that must be
met by their underlying state space, these MDPs can be
solved, at least in principle, for an optimal control policy
by a host of well-developed methods, like value itera-
tion, policy iteration and linear programming (Puterman
(1994)). However, the computational tractability of all
these methods is severely limited by the facts that (a) they
employ a complete enumeration of the underlying state
space, and (b) the cardinality of these state spaces usually
increases very fast to some very large values. A natural
explanation for this state-space explosion can be based
on the fact that the state space of the considered MDPs
is typically obtained as the product of the state spaces
that correspond to the various components of the under-
lying plant system (Cassandras and Lafortune (2008));

therefore, this explosion has been characterized as the
“curse of dimensionality” in the corresponding literature
(Bellman (1957)). Furthermore, an additional remark that
is important for the developments that are presented in
this work, is that this “curse of dimensionality” effect does
not imply only a prohibitive cost for computing an optimal
policy for the considered MDPs, but also a very high
representational cost for these policies, since, according
to their basic definition, they need to specify an optimized
decision rule for each state.

In view of the representational and computational compli-
cations that are indicated in the previous paragraph, many
of the corresponding performance control and optimiza-
tion problems are eventually addressed through an ap-
proximating or heuristic solution method that provides a
suboptimal but more tractable policy. Hence, for instance,
a popular methodology in the emerged field of approx-
imate dynamic programming (ADP – Bertsekas (2012);
Powell (2007)) has tried to address the aforementioned
complications by employing a continuous approximation of
the relative value function that defines the sought policy;
this approximation is defined by means of a set of “basis
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functions” that try to capture important operational char-
acteristics and nonlinearities of the underlying system.

Some other methods that have also been considered by the
current ADP theory are those known as “approximation in
the policy space” and “state-space aggregation”. The first
of these methods essentially predefines a parameterized
policy space, and tries to compute an optimized policy in
this restricted policy space by carefully selecting the cor-
responding set of parameters; this parameter selection can
be formulated as an optimization problem that usually is
solved through techniques borrowed from simulation-based
optimization and stochastic approximation (Asmussen and
Glynn (2007)). On the other hand, methods based on
state-space aggregation essentially try to control the repre-
sentational complexity of the target policies by identifying
clusters of states that are expected to have a common (or
“similar”) optimal decision, and explicitly enforcing this
decision commonality upon these clusters; an optimized set
of such common decisions is eventually computed through
techniques similar to those used by the “approximation in
the policy space” methods. 1

An additional popular, but also powerful, approach for
generating efficient suboptimal policies for the considered
MDPs is that based on the notion of “fluid relaxation”
(FR – Weiss (2000); Meyn (2008); Bertsimas et al. (2015);
Ibrahim and Reveliotis (2019a)). FR-based methods con-
sider a “fluidized” version of the dynamics of the un-
derlying plant system, and at each decision point of the
original system, they select an optimized decision for this
point by (i) solving an optimal control problem that is
formulated in the “fluidized” dynamics, and (ii) using the
information that is contained in the optimal solution of
this new problem as “guidance”.

Finally, it is also true that, in certain cases, a pertinent
policy for the considered MDP formulations can be de-
termined in a quite ad hoc manner, on the basis of the
existing analytical understandings and insights for the un-
derlying performance optimization problem and its driving
dynamics, and/or past empirical evidence.

Recognizing all the aforementioned realities regarding the
solution of the performance control and optimization prob-
lems that are the focus of this work, and of the corre-
sponding AR-MDP formulations, in this work we seek the
development of a theoretical framework and effective com-
putational tools that can assess the quality of the decisions
that are effected by any given heuristic policy for some
considered AR-MDP formulation, and also recommend
potential improvements to these decisions if they are found
to be suboptimal. Furthermore, taking into consideration
(i) the representational and computational complications
that result from the “curse of dimensionality” that haunts
the targeted applications, and also (ii) the overall efficiency
of the policies that are returned by the currently employed
approaches, with respect to these complications, we want
to take advantage of the efficiencies that are established by
these initial policies, modifying them only in an incremen-

1 Actually, it should be obvious to the reader that the methods based
on state-space aggregation essentially constitute a particular class of
“approximation in the policy space” methods, where the considered
policy space and its parameterization are defined by the employed
state aggregation scheme.

tal and localized manner. Finally, since the original heuris-
tic policies usually will define a pretty good “baseline”
for an effective and efficient operation of the underlying
plant system, we also want our policy improving scheme
to be implementable in real-time; in this way, the method
to be presented in this work can also be perceived as a
“learning mechanism” that can augment the performance
of the underlying plant system by taking advantage of its
own experiences.

From a methodological standpoint, the presented develop-
ments are enabled by results coming from (i) the area of
the sensitivity analysis of Markov reward processes (Cao
(2007)), and (ii) an area of statistical inference that is
known as “Ranking & Selection” (R&S – Kim and Nel-
son (2006)). We shall introduce more systematically and
review the corresponding results in the subsequent parts
of the paper. Furthermore, the subsequent developments
will also reveal that, at a higher level, this work shares
a common methodological base with the policy iteration
method for AR-MDPs; in fact, it can be perceived as a
(very) “asynchronous” implementation of this method, in
the corresponding terminology of Bertsekas (2012). When
viewed from this viewpoint, another particular work that
has a considerable methodological affinity with our devel-
opments, is that of Cooper et al. (2003). But instead of
placing the focus on the convergence to an optimal policy,
which is the main objective of any policy-iteration type of
analysis, the considered work seeks to define the computa-
tional tools and methods that will attain the aforestated
objective of the performance enhancement of some good
heuristic policy that might be already available in the
considered application context, while retaining represen-
tational and computational tractability.

From an application standpoint, the presented develop-
ments have been further motivated by – and tested in
the context of – a particular application problem that
has come to be known as the throughput maximization
of capacitated re-entrant lines (CRLs). A first introduc-
tion of this problem can be found in (Reveliotis (2000);
Choi and Reveliotis (2003)), while an FR-based solution
approach to it is provided in the more recent publications
of Ibrahim and Reveliotis (2019a,b); Ibrahim (2019). The
work of Ibrahim (2019) also provides a series of experimen-
tal results regarding the testing of the methodology that
is presented in this paper in that particular application
context.

In view of the above positioning of the paper content
and its intended contribution, the rest of it is organized
as follows: The next section defines formally the class of
the MDP formulations that are considered in this work,
and introduces all the corresponding terminology and a
set of additional assumptions that will facilitate the pre-
sented developments. These developments themselves are
presented in Section 3, which states formally the particular
problem that is addressed in this work, and details a
solution approach for this problem. Section 4 provides
some discussion that elaborates further on the presented
developments in Section 3 and their applicability. Finally,
Section 5 concludes the paper and suggests some directions
for future work.
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2. THE CONSIDERED MDP FORMULATIONS

The MDP formulations that are considered in this work
can be represented by a tuple 〈X,A, S,P, R〉 where the
various components of this tuple are defined as follows:

(1) X is the set of “decision states” of the defined MDP.
In this work, X is assumed to be finite.

(2) A is a finite set of “decisions” – or “actions” – that
can be effected at the various decision points of the
considered MPD. In particular, for each decision state
x, there is a set Ax ⊆ A that defines the set of possible
actions that are available at x.

(3) S is the set of the “post-decision states” of the
considered MDP. More specifically, the execution of a
decision a ∈ Ax at some state x ∈ X, results in a post-
decision state s(x, a) ∈ S. State s(x, a) is uniquely
defined for every pair (x, a) ∈ X ×Ax. 2

(4) P is a set of discrete distributions with common
support set X. Each post-decision state s ∈ S is
associated with an element of the set P that will
be denoted by Ps. The distribution Ps regulates
the transition from the considered state s to the
next decision state x ∈ X; hence, it will referred
to as the “distribution of the (one-step) transition
probabilities” from state s.

(5) R is the “immediate reward function” that associates
with each post-decision state s ∈ S an immediate
reward value that will be denoted by R(s).

It is clear from the above description that the considered
MDP definition encompasses all of the typical instantia-
tions of the finite-state-space MDPs that are considered by
the classical MDP theory. The differentiation between the
“decision state” x and the “post-decision state” s that is
adopted for the representation of the underlying dynamics,
is a frequently used convention (c.f. Bertsekas (2012)) and
it will be useful in the presentation of the main results of
Section 3.

In the subsequent developments, we shall also assume that
the considered MDPs are “communicating”, i.e., there
is a sequence of decisions that can lead from any state
q ∈ X∪S to any other state q′ ∈ X∪S with positive prob-
ability. In many practical applications, including the CRL
throughput maximization problem that was discussed in
the introductory section, this last assumption implies the
possibility of averting problematic behavior like the sys-
tem entrapment in deadlocks and livelocks, through the
specification of a pertinent control policy. This possibility
subsequently enables the specification of the performance
objective to be attained by the sought control policies as
the maximization of the average reward rate to be attained
by the controlled MDP when operated over an infinite time
horizon.

In more technical terms, let Π denote the set of the sta-
tionary control policies for the considered MDPs. Each
element π ∈ Π can be represented by a set of discrete
probability distributions Px(π), x ∈ X, with correspond-
ing support sets Ax. The specification of the policy π
induces a discrete-time Markov chain (DTMC) on the
corresponding space S, that will be denoted by MC(π).

2 Hence, the presumed finiteness of the sets X and A implies the
finiteness of set S.

The communicating structure that is presumed for the
considered MDPs implies that there exist policies π ∈ Π
for which the corresponding DTMC MC(π) is ergodic
(Puterman (1994); Bertsekas (2012)). In the following, we
shall further restrict Π to denote the class of stationary
policies π that result in an ergodic DTMC MC(π), and
we shall formally define the performance objective of the
considered MDP formulations as

max
π∈Π

η(π) ≡ lim
T→∞

1

T

T∑
t=0

R
(
s(xt, at;π)

)
(1)

The notation s(xt, at;π) in the above equation implies
that the selection of the action at at each decision state
xt, t = 0, 1, 2, . . ., is driven by the applied policy π. It can
also be shown that, under the aforestated assumptions,
there is an optimal policy π∗ ∈ Π for the objective
of Eq. 1 that is deterministic; i.e., every distribution
Px(π∗), x ∈ X, is selecting deterministically a single
action of Ax, to be denoted by a(x;π∗). In the following,
we shall use the notation Πd to denote the subset of Π that
consists of deterministic policies, and we shall essentially
focus on this particular class of stationary policies. But
in order to guarantee that all the policies π that will be
generated by the presented methodology will result in an
ergodic DTMC MC(π), we shall eventually consider a
more randomized implementation of each policy π ∈ Πd

according to the following scheme: At each decision state
x ∈ X, this modified version of policy π will select action
a(x;π) with a high probability ζ; with the remaining
probability 1− ζ, the modified policy will select randomly
an action a ∈ Ax according to the uniform distribution.

We shall denote by Π
(ζ)
d the set of policies that is induced

from the policy set Πd through this modification, and the
policies to be considered in the following will be elements

of the set Π
(ζ)
d for some large value ζ. Also, in order to

avoid an overloading of the employed notation, in the
following, we shall make the additional convention that
any reference to a deterministic policy π will essentially
imply its randomized counterpart in the considered set

Π
(ζ)
d .

Finally, for any policy π ∈ Π
(ζ)
d , P̂ (π) will denote the one-

step transition probability matrix for the corresponding

DTMC MC(π), ψ̂(π) will denote the unique stationary
distribution of MC(π), and ĝ(π) will denote the relative
value function – also, known as the “potentials” vector
– for the Markov reward process that is induced by
the DTMC MC(π) and the immediate-reward function
R. Then, letting (i) r denote a representation of the
immediate-reward function R as a column vector with its
components corresponding to the elements of the post-
decision-state set S, (ii) I denote the identity matrix, and
(iii) 1 denote the column vector with all of its components
equal to 1.0, we also have (Puterman (1994)):

η(π) = ψ̂(π)T · r (2)(
I − P̂ (π)

)
· ĝ(π) = r− η(π)1 (3)

3. MAIN RESULTS

The main problem considered in this work: In view of the
definitions and the assumptions that were provided in the
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Fig. 1. A schematic representation of the main problem
that is considered in this work.

previous section, the main problem to be considered in this
work can be stated as follows:

Main problem Given a policy π ∈ Π
(ζ)
d and a decision

state xl ∈ X from the underlying MDP, we want to
develop a methodology that will assess the existence
of an action a 6= a(xl;π) in Ax such that the local
replacement of the action a(xl;π) by action a at state

xl will lead to a policy π′ ∈ Π
(ζ)
d with η(π′) > η(π). In

addition, we want the developed methodology to be able
to address this issue under a single-sample-path-based
analysis where the employed sample path is generated
from the operation of the “plant” system under the
original policy π.

In the rest of this section we show how to resolve the
above problem using results from the sensitivity analysis
of Markov reward processes and R&S type of algorithms.
Also, the subsequent discussion will be facilitated by the
schematic representation of the considered problem that is
provided in Figure 1.

Sensitvity analysis of the considered MDPs: Consider two

policies π and π′ from the policy space Π
(ζ)
d . Then, from

Eq. 3 and the additional facts that

ψ̂(π′)T · P̂ (π′) = ψ̂(π′)T (4)

and
ψ̂(π′)T · 1 = 1.0 (5)

we get:

ψ̂(π′)T ·
(

(I − P̂ (π)
)
· ĝ(π) = ψ̂(π′)T ·

(
r− η(π)1

)
=⇒

ψ̂(π′)T ·
(
P̂ (π′)−P̂ (π)

)
·ĝ(π) = ψ̂(π′)T ·r−η(π)

(
ψ̂(π′)T ·1

)
=⇒ ψ̂(π′)T ·

(
P̂ (π′)− P̂ (π)

)
· ĝ(π) = η(π′)− η(π) (6)

Equation 6 is a “performance difference” formula, charac-
terizing the difference in the performance of the underlying
MDP as we switch from policy π to policy π′. We can see
that this difference is determined by (i) the elementwise
difference of the one-step transition probability matrices
P̂ (π) and P̂ (π′) for the DTMCs MC(π) and MC(π′)
that are induced by these two policies, (ii) the relative
value function ĝ(π) of policy π, and (iii) the stationary

distribution ψ̂(π′) of MC(π′).

When specialized to the policy pairs (π, π′) ∈ Π
(ζ)
d × Π

(ζ)
d

where policy π′ is obtained from policy π through the

single-decision modification that is depicted in Figure 1,
the result of Eq. 6 takes the following form:

η(π′)−η(π) = ζ
(∑
s∈S

ψ̂(s;π′) ·Ps(xl)
)[

ĝ(sq;π)− ĝ(sp;π)
]

(7)

Equation 7 implies that a policy modification of the type
that is described in Figure 1 can result in an improvement
of the performance of the underlying MDP if and only if

ĝ(sq;π) > ĝ(sp;π) (8)

Hence, in order to effect a performance improvement for a
currently running policy π through a policy modification
of the type that is suggested in Figure 1, we need to
identify a decision state xl such that the decision under the
current policy π corresponds to a post-decision state sp ≡
s(xl, a(xl;π)) with ĝ(sp;π) < maxa∈Axl

ĝ(s(xl, a);π).
Eq. 7 further implies that the magnitude of the improve-
ment that will result from the corresponding modification
of the policy π, is determined by the difference ĝ(sq;π)−
ĝ(sp;π), and it is further modulated by the other two
factors that multiply this difference in Equation 7, i.e., the
parameter ζ that defines the employed randomization for
the considered policies, and the “steady-state” probability
of visiting the considered decision state xl under policy
π′. 3

Next we address the issue of developing pertinent estima-
tors for the performance index η(π) and the potentials
ĝ(s;π), s ∈ S, for the Markov reward process that is
induced by policy π, while the last part of this section
presents a systematic methodology that will help us iden-
tify reliably improving modifications of the current policy
π, based on these potential estimates.

Estimation of the performance index η(π) and the state

potentials ĝ(s;π), s ∈ S, for any given policy π ∈ Π
(ζ)
d :

Consider some arbitrarily chosen (post-decision) state s∗ ∈
S. Then, it should be clear from the definition of the

policies π ∈ Π
(ζ)
d that state s∗ is a recurrent state

for the DTMC MC(π), and furthermore, every visit to
the considered state s∗ has a regenerative effect for the
dynamics ofMC(π). But then, the performance index η(π)
can be computed by the formula

η(π) =
E
[∑τ−1

t=0 r
(
s(t)

)]
E[τ ]

(9)

where the random variable τ denotes the recurrence time
for state s∗ (Ross (1983)).

Equation 9 subsequently suggests the following estimator,

η̂(π), for the performance index η(π): Simulate the DTMC
MC(π) initializing it to the selected state s∗, and let τN
denote the time of the N -th recurrence of the process to
state s∗. Then, set

3 We also notice, for completeness, that while the state potentials
ĝ(s;π), s ∈ S, provide good guidance for identifying improving
policy modifications of the type described in Figure 1, when we try
to assess the pertinence and the significance of such policy changes
in an “off-line” mode, it is also possible to work more directly with
estimates of the corresponding throughputs η(π) and η(π′), obtained
through simulation of the corresponding Markov reward processes.
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η̂(π) ≡
∑τN−1
t=0 r

(
s(t)

)
τN

(10)

The estimator η̂(π) essentially employs the empirical

means of the expectations E[τ ] and E
[∑τ−1

t=0 r
(
s(t)

)]
ap-

pearing in Equation 9, that are based on the N simulated

recurrent cycles. Therefore, η̂(π) is strongly consistent

(i.e., η̂(π) → η(π) as N → ∞ w.p. 1), but it is also
biased for any finite N . In Asmussen and Glynn (2007) it

is shown that the bias of η̂(π) is O(1/N), and if necessary,
it can be further reduced to O(1/N2) by applying certain
techniques like “jack-knifing”. Furthermore, the O(1/N)

dependence of the bias of η̂(π) on N implies that, when
N takes fairly large values, this bias will be an order of
magnitude smaller than the st. deviation of this estimator,
which behaves as O(1/

√
N); therefore, the existing bias

in the above estimator η̂(π) is not expected to have a
significant impact in the context of the developments that
are presented in this work.

Next we shift our attention to the estimation of the state
potentials ĝ(s;π), s ∈ S. The presented method is based
on the corresponding developments that appear in Cao
(2007); Cooper et al. (2003). One way to motivate these
developments is as follows: It is well known that a solution
ĝ(π) for Equation 3 can be obtained by setting

∀ s ∈ S, ĝ(s;π) = lim
L→∞

E
[ L−1∑
t=0

(
r
(
s(t)

)
−η(π)

) ∣∣∣ s(0) = s
]

(11)

Furthermore, from Equation 11 it follows that for any state
pair (si, sj) ∈ S × S with sj 6= si,

γ(si, sj ;π) ≡ ĝ(sj ;π)− ĝ(si;π) =

E
[ τ(i|j)−1∑

t=0

(
r
(
s(t)

)
− η(π)

) ∣∣∣ s(0) = sj

]
(12)

where

τ(i|j) = inf{t > 0 : s(t) = si | s(0) = sj} (13)

Finally, setting
ĝ(s∗;π) = 0 (14)

for some arbitrary state s∗, Equation 12 implies that the
vector g̃(π) with

g̃(si;π) =

{
0, if si = s∗

γ(s∗, si;π), o.w.
(15)

is another valid solution for Equation 3.

Moreover, Equations 12 and 13 further imply that an

estimator, ˜̂g(si;π), of g̃(si;π), for any state si 6= s∗, can
be obtained as follows: Consider a recurrent cycle of the
DTMC MC(π) with respect to the state s∗, of length τ . If
this recurrent cycle does not visit state si, then it cannot
provide an estimate of g̃(si;π). If, on the other hand, state
si is visited during this recurrent cycle, then let τi denote
the first period that state si is visited during this cycle.
According to Equations 12 and 13, an estimate of g̃(si;π)
is provided by

˜̂g(si;π) =

τ−1∑
t=τi

(
r
(
s(t)

)
− η̂(π)

)
(16)

In Equation 16, η̂(π) is a previously obtained estimate of
the throughput η(π), for instance, through Eq. 10. Then,

the estimator ˜̂g(si;π) will be unbiased if the employed

throughput estimate η̂(π) is unbiased; otherwise, it will be
biased. Finally, a more robust estimate of g̃(si;π) can be
obtained by averaging the estimator of Equation 16 over
N recurrent cycles with respect to state s∗ that involve a
visitation to the considered state si, for some appropriately
selected value of N .

Detecting a performance-improving action at the consid-
ered decision state xl through R&S theory: Next we discuss
how to employ the derived estimators for the performance
index η(π) and the state potentials ĝ(s;π), s ∈ S, in the
context of some algorithmic procedures that will enable a
robust comparison of the performance-improving potential
of the various decisions a ∈ Axl

, that are available at the
considered decision state xl, in spite of the noise that is
present in these estimators. As already mentioned, these
algorithmic procedures are provided by an area of statisti-
cal inference that is known as “ranking & selection” (Kim
and Nelson (2006)); in the following, we provide a system-
atic description of the basic problem that is studied by the
R&S theory, and we overview some further developments
of this theory that are most relevant to this work.

The basic problem addressed by the R&S theory is the
development of sampling processes that will enable the
identification among a given set of “options”, represented
by the random variables Y1, . . . , Yk, of an option Yi that
possesses the largest expected value. The satisfaction of
this objective should be attained in a probabilistic and
near-optimal sense. More specifically, the decision prob-
lems addressed by the R&S theory are further structured
by the following assumptions:

Assumption 1 The performance measure of interest for
each entertained option i = 1, . . . , k, is the unknown
mean µi of a normal random variable (r.v.) Yi.

Assumption 2 Besides the means µi, the variances, σi,
for the r.v.’s Yi, are also unknown and possibly unequal.

Assumption 3 It is possible to generate a sequence
〈Ŷij , j = 1, 2, . . .〉 of independent samples for each r.v.
Yi.

Assumption 4 The set of samples {Ŷij , i = 1, . . . , k} –
i.e., the samples obtained for the r.v.’s Yi, i = 1, . . . , k,
during the j-th round of sampling – can be independent
or (positively) correlated.

Assumption 5 There is also a pre-specified parameter δ
such that any pair of options {i, j} with |µi−µj | ≤ δ are
treated as equivalent during the attempted comparison
– in the corresponding terminology, the parameter δ de-
fines an “indifference zone” for the pursued comparison.

Assumption 6 Finally, all the existing approaches also
allow for an erring probability a with a < 1/k. 4

The considered R&S problem itself can be stated as
follows:

4 The reader should notice that 1/k is the probability of selecting the
correct option when this selection is performed completely randomly
among the k available options; hence, Assumption 6 stipulates that
any R&S method must perform better than the random selection.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1751



R&S problem statement Under Assumptions 1-6, de-
sign a sampling process and the accompanying inference
logic that will select an option i in the indifference zone
of arg maxj∈{1...,k}{µj} with probability 1− a.

Of particular interest to this work are solutions to the
aforestated version of the R&S problem that are “fully se-
quential”. Generally speaking, these solutions go through
a first sampling round that enable them to collect some
information about the inherent variability in each r.v. Yi,
and subsequently they perform an additional number of
sampling rounds where the information that is obtained
from the additional samples that are collected at each
round is used to further assess the competitiveness of the
options that are still entertained in that round, and poten-
tially eliminate some of these options that are deemed to
not be competitive anymore. The entire process terminates
when the set of (remaining) competitive options becomes a
singleton. These sequential procedures are especially useful
to this work due to (i) their ability to make more expedient
and efficient use of the information that is contained in the
collected samples, eliminating early options that are not
deemed competitive by this sampling process, and (ii) their
implementability in a “real-time” operational setting.

Also, an additional potential feature of the R&S problem
that was described in the previous paragraphs, is the
presence of an option – to be denoted as the 0-th option –
that is to be treated as the “preferred choice” as long as it
belongs in the indifference zone of arg maxj∈{0,1...,k}{µj}.
The corresponding version of the R&S problem is known
as “comparison with a standard” in the relevant literature
(Nelson and Goldsman (2001); Kim (2005)). This version
is particularly relevant to this work, since we want to
alter the current policy only if the expected gain from the
contemplated modification(s) is significant.

Finally, a last remark concerns the extension of the R&S
problem and the corresponding methodology to cases
where the compared r.v.’s Yi, i = 1, . . . , k, do not satisfy
the normality requirement posed in Assumption 1. This
extension can be attained by re-defining the j-th sample
Ŷij of the i-th random variable Yi as the average of
N independent samples drawn from the corresponding
distribution. Then, as long as the employed sample size
N is adequately large, the central limit theorem (Ross
(2014)) ensures that this modified sample concept follows
approximately a normal distribution with mean E[Yi].
Clearly, this sampling modification is very important for
the application of the existing R&S algorithms to various
practical settings, including those settings that constitute
the focus of this work.

Indeed, for any given policy π ∈ Π
(ζ)
d and decision state

x ∈ X, the problem that is addressed in this work can be
framed as a R&S problem where the set of the available
options is defined by the action set Ax, and corresponding

r.v.’s Ya, for a ∈ Ax, are the estimators ̂g̃(s(x, a);π) that
are defined through the selection of some state s∗ for the
specification of the regenerative cycles of the underlying
process MC(π). This last selection can be quite arbitrary,
but from a computational standpoint, it is advantageous
to select state s∗ among the most visited states under
policy π. Each regenerative cycle of the process MC(π)
with respect to state s∗ defines a “sampling round”,

providing a new sample for each of those states s(x, a), a ∈
Ax, that are visited during this cycle. Since they are
generated by the same sample path, samples obtained
during the same regenerative cycle will be correlated. On
the other hand, the regenerative nature of the considered
cycles implies that samples obtained during different cycles
will be independent. The distribution corresponding to

each estimator ̂g̃(s(x, a);π) will not be normal, but the
eventually utilized samples can be “normalized” through
the averaging method that was discussed in the previous
paragraph. Finally, as already noticed, in the operational
context of the considered MDPs, the action a(x;π) defines
a natural “standard” that should be overruled only if the
resulting gains in the performance of the underlying MDP
are expected to be substantial. 5

A fully sequential procedure that addresses the “compari-
son with a standard” version of the considered R&S prob-
lem under the aforestated Assumptions 1-6, is provided in
Kim (2005). Furthermore, from all the previous discussion,
it is clear that this procedure also defines a very effective
tool for resolving the R&S problems that we need to
address in this work. Therefore, we replicate this procedure
in Figure 2, focusing on its particular configurations that
are of interest to this work.

4. DISCUSSION

In this section first we report briefly on the findings
from a set of experiments that tested the methodology
of Section 3 on some MDPs corresponding to the CRL
throughput maximization problem that was mentioned
in the introductory section, and subsequently we discuss
the potential embedding of this methodology in a search
process that can enable an incremental improvement of
any starting deterministic policy π while controlling the
computational and the representational complexity of the
derived policies π′.

The considered experiment and its major findings: In or-
der to test the efficacy of the methodology of Section 3,
and the intensity of the involved computations, we ap-
plied this methodology to a number of MDPs that cor-
respond to the CRL throughput maximization problem
of Ibrahim and Reveliotis (2019a). The particular CRL
configurations that were used for the generation of these
MDPs were the 20 configurations that were employed
in some experiments reported in that work; for each of
these configurations we generated 30 specific CRL in-
stantiations by further selecting, randomly, the timing
parameters for the involved processing stages, and we
subsequently discretized the resulting dynamics through
uniformization. Hence, in total, we considered 600 MDPs.
The original policy π for each of these MDPs was the
policy defined by the FR-based scheduling approach for
the considered CRLs that is presented in Ibrahim and
Reveliotis (2019a,b). And the particular decision state
xl that was assessed by our methodology, was the most

5 Along these lines, it is also interesting to notice that since the two
factors that multiply the difference [ĝ(sq ;π)− ĝ(sp;π)] in the right-
hand-side of Eq. 7 can be interpreted as probabilities, this potential
difference also defines an upper bound for the expected gain with
respect to the performance index η(π).
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Setup: Select confidence level 1 − a, indifference-zone pa-
rameter δ, and the first-stage sample size n0. Also, set

β =



1− (1− a)1/k if the obtained samples for the
various options at each sampling
iteration are independent

a/k if the obtained samples for the
various options at each sampling
iteration are correlated

and determine ρ by solving the equation(
1 + 2ρ

)−(n0−1)/2
= 2β

Initialization: Let O = {0, 1, 2, . . . , k} be the set of options

in contention. Obtain n0 observations Ŷij , j = 1, 2, . . . , n0,
from each option i = 0, 1, 2, . . . , k.
For all i 6= l, l = 0, 1, 2, . . . , k, compute S2

il, the sample
variance of the difference between option i and option l,
and let

ail =
ρ(n0 − 1)S2

il

δil
and λil =

δil
2

where

δil =

{
δ/2, if i = 0 ∨ l = 0
δ, o.w.

Set the observation counter r := n0 and go to Screening .

Screening: For each i < l, i ∈ O and l ∈ O, if
r∑
j=1

(
Yij − Ylj

)
≤ −max

{
0, ail − λilr

}
,

then eliminate i from O; else if
r∑
j=1

(
Yij − Ylj

)
≥ max

{
0, ail − λilr

}
,

then eliminate l from O.
In the above inequalities,

Yij =

{
Ŷij + δ/2, if i = 0

Ŷij , o.w.

Stopping Rule: If |O| = 1, then stop and select the option
whose index is in O. Otherwise, set r = r + 1, take one
additional observation, Ŷir, from each option i ∈ O, and
go to Screening .

Fig. 2. The fully sequential procedure of Kim (2005) for
resolving the “comparison with a standard” version
of the R&S problem under Assumptions 1–6. It is
assumed that the “standard” value µ0 is unknown,
and the parameter c that appears in the deliberations
of Kim (2005), has been set equal to 1, according to
the corresponding recommendations that are provided
in that work.

visited state under the control of policy π, according to
a generated sample path that consisted of 100,000 re-
generative cycles. The parameter δ specifying the size
of the indifference zone for the R&S algorithm was set

to 0.01 ̂g̃(s(xl, a(xl;π));π) and 0.001 ̂g̃(s(xl, a(xl;π));π),

where the value of ̂g̃(s(xl, a(xl;π));π) was that obtained
from the 100,000 regenerative cycles that were mentioned
above. Finally, the values for the erring probability a
employed by the R&S algorithm were 0.05 and 0.01.

Under the aforementioned parameterizations, the R&S
algorithm of Figure 2 was always able to select correctly
an action a ∈ Axl

with a potential g̃(s(xl, a(xl;π));π)
that belonged in the specified indifference zone. At the
same time, our experiments indicate that the size of the
indifference zone δ can impact drastically the amount of
sampling that is necessary for the algorithm of Figure 2 in
order to reach a decision; in particular, increasing the size

of the indifference zone δ from 0.001 ̂g̃(s(xl, a(xl;π));π)

to 0.01 ̂g̃(s(xl, a(xl;π));π) reduced this required amount
of sampling by some orders of magnitude. The space
limitations imposed on this work do not allow a more
detailed presentation of the considered experiment and
the obtained results; but a more complete account of this
experiment, together with an extensive tabulation of the
obtained results, can be found in Ibrahim (2019).

Extending the presented developments into a policy-impro-
ving mechanism: Next, we provide a few remarks on how to
extend the developments that were presented in Section 3
of this paper, into a complete mechanism able to support
the systematic improvement of the deterministic policies
π that have been considered in this work.

The proposed policy-improving mechanism is essentially
an iterative search process. Starting with the original
heuristic policy, at each iteration the proposed search
scheme will select one or more decision states and it will
assess the efficacy of the decisions that are effected at
those states by the current policy π. More specifically, the
selection of a set X̃ = {x1, x2, . . . , xn} of decision states to
be assessed at a given iteration, defines a set of potential
modifications to the current policy π which is succinctly
described by the set Ax1

×Ax2
× . . .×Axn

; each element of
this set is an n-tuple of decisions that defines a modified
policy π′ through the replacement of the decision of policy
π at each state xi ∈ X̃ with the corresponding decision
that is contained in this tuple. Collectively, all policies π′

that are defined in this way define a “local neighborhood”
of policy π that must be searched for the best policy.
The local search itself can be based on the simultaneous
application of the R&S algorithm of Figure 2 on all states
xi ∈ X̃.

The selection of the decision states to be included in the
aforementioned sets X̃ will affect the performance of this
search scheme. Eq. 7 in Section 3 seems to suggest that
the decision states most visited by the current policy π
constitute good candidates for the considered sets X̃. But
it is also true that if the starting heuristic policy is of
high quality, then, these most visited states might be less
likely to generate actual improvements for the current
policy, since the corresponding decisions might be already
optimized. On the other hand, improving the decision at
a decision state that is visited with a low frequency by
an optimized policy might not have a major impact on
the overall performance of the underlying system, to the
point that it might not be worth considering. In certain
cases, the definition of the policy π itself might also
suggest classes of decision states of the underlying MDP
where the policy decisions are expected to be suboptimal.
The bottom line is that we need some further analysis
and methodology that will rationalize and systematize
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the construction of the sets X̃ at each iteration of the
contemplated search process.

On the representational side, the considered mechanism
will need to explicitly store the identified decisions that
will differ from the decisions that are effected by the origi-
nal heuristic policy. If the original policy is of good quality,
then, the decision points where this policy will need to be
corrected might not be that many; this is especially true
when we also take into consideration the above discussion
about the potential insignificance of less visited states in
the overall performance of the derived policy. But, more
generally, the form and the amount of storage space that
should be provided for tracing the effected modifications
to the original policy π should be considered as an addi-
tional “parameter” of the presented scheme that should be
determined before its implementation.

A last theme that can be further considered in the context
of the proposed search mechanism, is the selection of the
parameters a and δ for the employed R&S algorithm,
and of the parameter ζ that determines the extent of
randomization in the implementation of the considered
policies. Clearly, the specification of some tight values for
the parameters a and δ will establish a high discerning
power for the resulting algorithm, and a high quality for
the corresponding decisions. But the reported experiments
in the previous part of this section indicate that a very
tight value for the parameter δ will result in a large amount
of sampling; hence, it might be pertinent to start the
proposed search by using some more relaxed values for the
parameter δ and tighten these values as the overall search
for improving policies becomes more difficult. As for the
pricing of the parameter ζ, this issue must be resolved
by considering the difficulty of reaching the various post-
decision states of interest during the MDP operation

under any fixed policy π ∈ Π
(ζ)
d . More specifically, if

some of these states are not easily accessible under a
particular realization of the policy π, then, it will take a
large number of regenerative cycles in order to collect the
necessary samples of the corresponding state potentials.
This problem can be mitigated by decreasing the employed
value of ζ; i.e., by increasing the randomization level
in the implementation of π. But it is also true that
smaller values for ζ will attenuate the original performance
difference between any pair of deterministic policies π and
π′, rendering harder the comparison of these two policies.

5. CONCLUSIONS

This work has developed a methodology for detecting sub-
optimal decisions in any heuristic policy π that might be
available for a well-defined AR-MDP formulation, and for
recommending potential modifications for these decisions
that can lead to an enhanced performance for the under-
lying MDP. Out future work will seek to extend these de-
velopments in a full-fledged policy improving mechanism,
along the lines that are discussed in the second part of
Section 4.
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