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Abstract: A dual-rate sampled-data control system is designed in which the sampling interval
of measured signals is twice as long as the holding interval of a control input. In the proposed
method, a control law is extended based on the null space and intersample ripples are eliminated
without changing the sampled output trajectory in the steady state. Polynomial and state-
space approaches are conventional open-loop design methods based on the null space. However,
conventional methods are ineffective for unstable systems and are unavailable when the null
space of the plant model is only the zero vector because the controlled plant is not arbitrarily
selectable. On the other hand, the proposed method is effective for unstable systems, as well as
stable systems, even when the null space of the plant model is only the zero vector, because the
proposed controller is designed based on a closed-loop system.
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1. INTRODUCTION

In the sampled-data control system (Araki and Yamamoto,
1986; Araki and Hagiwara, 1986; Albertos, 1990; Apos-
tolakis, 1992; Chen and Francis, 1995), the continuous-
time system is controlled using the discrete-time controller,
and hence the continuous-time signal and the discrete-time
signal are sampled and held, respectively. Therefore, there
are two intervals, which are the sampling and holding in-
tervals, and these intervals are influenced by the hardware
and/or the environment of the control system. When these
two intervals are equivalent, the system is referred to as a
single-rate system. On the other hand, when the intervals
are different, the system is referred to as a multi-rate or
dual-rate system. The present study proposes a new design
method for controlling a dual-rate system, in which the
sampling interval of the measured signals is restricted to
twice as long as the holding interval of a control input, as
illustrated in Fig. 1.

A dual-rate system can be converted to a single-rate
system by setting the holding interval to be the same
as the restricted sampling interval. Generally, the control
performance of a dual-rate system is superior to that of a
converted single-rate system. However, a dual-rate system
may have ripples between the sampling instants, even if
the discrete-time output at the sampling instant converges
to the reference input without steady-state error. This is
because the control input can be changed between the
sampling instants (Tangirala et al., 1999). The condition

for eliminating such intersample ripples is that the steady-
state gains from the reference input to the control inputs
be equivalent (Tangirala et al., 2001; Jia et al., 2002; Jia,
2005).

When the control system is re-designed such that the
ripple-free condition is satisfied, the steady-state inter-
sample ripples are eliminated, but the sampled output
trajectory is simultaneously changed and might be deteri-
orated. Therefore, the intersample ripple problem should
be resolved independent of the sampled response. For the
achievement of such an independent design, an extension
for a dual-rate system has been proposed by Sato (2008).
In this design method, a control law is re-designed using
the controlled plant dynamics, and the intersample rip-
ples are eliminated independent of both the transient and
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Fig. 1. Dual-rate sampled-data control system
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Fig. 2. Improvement in the steady-state response

steady-state responses in discrete time. On the other hand,
since the design purpose is improved steady-state perfor-
mance, the important discrete-time property is not the
transient response, but rather the steady-state response
(Fig. 2). Therefore, design methods are based on the null
space of an over-actuated system (Galeani et al., 2011;
Cocetti et al., 2018) in order to eliminate the steady-
state intersample ripples without changing the sampled
response (Sato et al., 2017; Yasui et al., 2019a,b). However,
conventional methods are useful only when the controlled
plant is stable because the design methods are based on
an open-loop system. On the other hand, in the proposed
method, a control law is extended using the null space of
the closed-loop system. Since a closed-loop system can be
stabilized even when a controlled plant is unstable, the
proposed method is effective for unstable plants.

In the present paper, R denotes the set of real numbers,
and I is an identify matrix.

2. PROBLEM STATEMENT

As a controlled plant, consider the following single-
input/single-output time-invariant linear continuous-time
system:

ẋ(t) = Acx(t) + bcu(t) (1)

y(t) = c
T

c x(t) (2)

where x(t) ∈ R
n, u(t) ∈ R, and y(t) ∈ R are the state

vector, the control input, and the plant output, respec-
tively, in continuous time, and Ac ∈ R

n×n, bc ∈ R
n, and

cc ∈ R
n. Since the continuous-time system is controlled

using a discrete-time digital computer, the continuous-
time measured signals are sampled and the discrete-time
control input calculated in the digital computer is held to
be converted to the continuous-time signal.

In the present study, the discrete-time control input is
converged to a continuous-time signal using the zero-order
holder, and the discrete-time model is described as follows:

x(k + 1) = Adx(k) + bdu(k) (3)

y(k) = c
T

d x(k) (4)

Ad = eAcTs

bd =

∫ Ts

0

eAcσdσbc

cd = cc

where x(k) ∈ R
n, u(k) ∈ R, and y(k) ∈ R are the state

vector, the input vector, and the plant output, respectively,

in discrete time, and Ts denotes the holding interval. This
discrete-time model is referred to as a single-rate system
because the sampling interval is equivalent to the holding
interval. Generally, the sampling interval is not always
equivalent to the holding interval, because of hardware
specifications, for example. The present study discusses
the design method based on the following assumption.

Assumption 1.

• The sampling interval is twice as long as the holding
interval

In this case, the controlled plant model is expressed as
follows:

x(k + 2) = Ax(k) +Bu(k) (5)

y(k) = c
T
x(k) (6)

where

A = A2

d

B = [Adbd bd]

c = cd

u(k) =

[

u1(k)
u2(k)

]

ui(k) = u(k + i− 1)

Assumption 2.

• Continuous-time model Eq. (1), Eq. (2) is unknown
• Single-rate model Eq. (3), Eq. (4) is unknown
• Dual-rate model Eq. (5), Eq. (6) is unknown
• State vector x(k) is measured.

Based on the above assumption, the proposed control
system is designed using the following state feedback
control law:

u(k) = Kr(k)− Fx(k) (7)

where r(k) ∈ R is the step-type reference input to be
followed by the plant output. Here, K ∈ R

2 and F ∈
R

2×n are the feed-forward gain and the feedback gain,
respectively. The block diagram of the designed control
system is illustrated in Fig. 3. The closed-loop system
using the control law is written as follows:

x(k + 2) = (A−BF )x(k) +BKr(k) (8)

where F and K are designed so as to satisfy the following
assumption.

Assumption 3.

• The closed-loop system is stable.
• The sampled plant output follows the reference input
without steady-state error.

Furthermore, the closed-loop system in the steady state is
decided as follows:

x(∞) = G(1)Kr(∞) (9)

G(1) = (I −A+BF )−1B (10)

Therefore, the plant output in the steady state is given as
follows:

y(∞) = Gc(1)Kr(∞) (11)

Gc(1) = c
T
G(1) (12)

However, the intersample output may oscillate because
the control input can be updated between the sampling
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instants. Here, the steady-state control input is calculated
as follows:

u(∞) = (I − FG(1))Kr(∞) (13)

The steady-state input deviation can be suppressed when
K and F are appropriately re-designed. However, in this
case, the designed closed-loop system is also changed.
Hence, the deviation of the control input must be resolved
without changing the design parameters.

3. MAIN RESULT

For the steady-state gain matrix of the closed-loop system
from the control input to the state vector, G(1) and the
steady-state gain vector of the closed-loop system from
the control input to the plant output, Gc(1), the following
assumption is satisfied.

Assumption 4.

• G(1) is known
• c or Gc(1) is known
• rank(Gc(1)) = 1

Definition 1. Gc⊥ satisfies the following conditions:

• Im(Gc⊥) = Ker(Gc)
• Ker(Gc(1)) := {Gc⊥ ∈ R

2 | Gc(1)Gc⊥ = 0 }

Using the defined Gc⊥, the control law is extended as
follows:

u(k) = Kr(k)− Fx(k) +Gc⊥w(k) (14)

where w(k) ∈ R is a newly introduced signal. A block
diagram of the extended control system is illustrated in
Fig. 4.

The steady-state closed-loop plant output using the ex-
tended control law is given as follows:

y(∞) = Gc(1)Kr(∞) +Gc(1)Gc⊥w(∞) (15)

The closed-loop systems using the original and extended
control laws are different. However, in the steady state, the
sampled output is not affected by the second term on the
right-hand side of Eq. (15), because of Definition 1. There-
fore, the additional signal w(k) is designed independent of
the steady-state sampled output obtained using Eq. (7).

The steady-state control input using the extended control
law is calculated as follows:

u(∞) =(I − F (I −A+BF )−1B)Kr(∞)

− F (I −A+BF )−1BGc⊥w(∞)

=(I − FG(1))Kr(∞)− FG(1)Gc⊥w(∞) (16)

Since F is designed so that the closed-loop system is
stabilized in designing the original control law, Eq. (16)
is calculated. In the proposed method, w(k) is designed
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G
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Fig. 3. Block diagram of the original control system

so that the control input between the sampling instants is
constant in the steady state. Here, Eq. (16) is rewritten as
follows:

u(∞) = Gr(1)r(∞) +Gw(1)w(∞) (17)

Gr(1) = (I − FG(1))K

Gw(1) = (I − FG(1))Gc⊥

Therefore, w(k) is designed so that the following condition
is satisfied:

w(∞) = −
Gr1(1)−Gr2(1)

Gw1(1)−Gw2(1)
r(∞) (18)

where

Gr(1) =

[

Gr1(1)
Gr2(1)

]

Gw(1) =

[

Gw1(1)
Gw2(1)

]

Even if the plant model is unknown, the additional input
is decided so that the intersample ripples are eliminated
in the steady state because G(1) is known and F and
K are design parameters. As a result, the steady-state
intersample ripples caused by the control input deviation
are eliminated without changing the existing steady-state
sampled output trajectory.

4. SIMULATION

Consider the following continuous-time system:

ẋ(t) =

[

−2 1
0 1

]

x(t) +

[

1
0

]

u(t) (19)

y(t) = [ 1 1 ]x(t) (20)

The sampling interval and the holding interval are set to 2
s and 1 s, respectively. Therefore, the corresponding dual-
rate system is derived as follows:

ẋ(t) =

[

0.34 0.81
0.81 2.0

]

x(t) +

[

0.30 0.50
0.65 0.30

]

u(t) (21)

y(t) = [ 1 1 ]x(t) (22)

where, in the present study, Eq. (19)–Eq. (22) are un-
known.

The stability of a closed-loop system and the convergence
of the plant output to the reference input are achieved
using the following controller parameters:
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Fig. 4. Block diagram of the extended control system
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Fig. 5. Output response using the original control law
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Fig. 6. Input response using the original control law

K =

[

0.33
0.33

]

F =

[

1.7 2.1
−0.92 0.36

]

Using the design parameters, the closed-loop poles are 0.3
and 0.5, and the steady-state closed-loop gain from the
reference input to the plant output is 1.0.

The output and input results using Eq. (7) with the de-
signed controller parameters are shown in Fig. 5 and Fig. 6,
respectively. In the figures, the output and input trajecto-
ries are plotted as blue solid lines, and the sampled output
trajectory is plotted as blue circles. Although the sampled
output converges to the reference input without steady-
state error, the intersample output oscillates between the
sampling instants in the steady state. This is because the
steady-state gain vector from the reference input to the
control input is [−1.6 0.45]T , and therefore the control
input oscillates.

Among conventional methods for resolving the intersample
ripples (Sato et al., 2017; Yasui et al., 2019a), the polyno-
mial approach (Sato et al., 2017) is not used, because the
controlled plant is unstable, and the state-space approach
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Fig. 7. Output response using the proposed control law

(Yasui et al., 2019a) is also not available, because rank(B
= 2) and there is no non-zero null-space element.

On the other hand, the proposed method is available
because the rank of Gc(1) is 1. The steady-state gain
vector Gc(1) is given as follows:

Gc(1) = [ 1.7 1.3 ]

Therefore, Gc⊥ is designed as follows:

Gc⊥ =

[

1.3
−1.7

]

Furthermore, based on Assumption 4, G(1) is also given
as follows:

G(1) =

[

0.43 0.72
1.3 0.61

]

Using Eq. (18), the steady-state value of the additional
input is decided as follows:

w(∞) = 0.56

The simulated output and input results using the proposed
method are plotted as red dashed lines in Fig. 7 and
Fig. 8, and the sampled output trajectory is plotted as
red squares. For enhanced visibility, the output and input
results using the conventional and proposed control laws
are plotted in Fig. 9 and Fig. 10, respectively. Fig. 9 shows
that the steady-state sampled output trajectories using the
original and proposed control laws are the same even when
the additional input is introduced in the proposed method.
Furthermore, the intersample ripples are eliminated in the
steady state using the proposed method.

5. CONCLUSION

The present study has proposed a new design method for
controlling the dual-rate sampled-data system, where the
sampling interval of measured signals is twice as long as
the holding interval of a control input. Conventional null-
space-based methods are unavailable when a controlled
plant is unstable or the null space of the controlled plant
has only the zero vector. On the other hand, the proposed
method is available because of the closed-loop system-
based design. Using the proposed method, the intersample
ripples are eliminated such that the sampled output tra-
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Fig. 8. Input response using the proposed control law
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Fig. 9. Output responses using the original control law and
the proposed control law
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Fig. 10. Input responses using the original control law and
the proposed control law

jectory is maintained in the steady state. Finally, the effec-
tiveness of the proposed method is demonstrated through
numerical examples.
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