
The J-Orthogonal Square-Root
Fifth-Degree Cubature Kalman Filtering

Method for Nonlinear Stochastic Systems ⋆

Gennady Yu. Kulikov ∗ Maria V. Kulikova ∗
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Abstract: This paper addresses the issue of square-rooting in the Fifth-Degree Cubature Kalman
Filtering (5D-CKF) method grounded in the Itô-Taylor approximation of order 1.5 and designed
by Santos-Diaz, Haykin and Hurd in 2018. That filter is rather accurate and efficient in treating
nonlinear continuous-discrete stochastic systems of practical value and shown to outperform
many other algorithms in a radar tacking scenario. However, the cited authors mention “the
lack of a square-root implementation” of the filter under consideration as a principle shortcoming
reducing its applied potential. Here, we address the reported lack and resolve it with a hyperbolic
QR factorization used for devising the filter’s J-orthogonal square-root version, which possesses
an exceptional robustness to round-off and other disturbances. Our square-root implementation
of the 5D-CKF technique is justified theoretically and examined and compared numerically to
its non-square-root predecessor in a flight control scenario with ill-conditioned measurements.

Keywords: Continuous-discrete nonlinear stochastic model, fifth-degree cubature Kalman filter,
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1. INTRODUCTION

Many modern control tasks in nonlinear stochastic systems
arisen in applied science and engineering demand accurate
and efficient state estimation tools for continuous process
models with discrete measurements, which are of the form

dX(t) = F
(
X(t)

)
dt+GdW (t), t > 0, (1)

Zk = h(Xk) + Vk, k ≥ 1. (2)

The process model (1) is supposed to be an Itô-type
Stochastic Differential Equation (SDE), in which the un-
known stochastic process X(t) represents the state of the
plant of size n at time t, the known nonlinear vector-
function F : Rn → Rn describes its dynamic behavior,
the diffusion matrix G is assumed to be time-invariant
and of size n×n in the driving noise used, and the random
disturbance {W (t), t > 0} is a multivariate Wiener process
with independent zero-mean Gaussian increments dW (t)
having a covariance of the form Qdt of size n×n where the
matrix Q is positive definite and fixed in time. The initial
state can also be a Gaussian variable X(0) ∼ N (X̄0,Π0)
with mean X̄0 and covariance Π0 > 0 in SDE (1). Next,
the discrete-time measurement model (2) with k being a
discrete time index (i.e. Xk means X(tk)) establishes a
nonlinear in general link h : Rn → Rm between the distri-
bution of the state Xk in the dynamic process at hand and
its measurement Zk of size m corrupted by a zero-mean
⋆ The authors acknowledge the financial support of the Portuguese
FCT — Fundação para a Ciência e a Tecnologia, through the
projects UIDB/04621/2020 and UIDP/04621/2020 of CEMAT/IST-
ID, Center for Computational and Stochastic Mathematics, Instituto
Superior Técnico, University of Lisbon.

Gaussian variable {Vk, k ≥ 1} with its covariance Rk > 0
at every sampling instant tk. The measurements Zk arrive
uniformly and with the sampling rate δ = tk − tk−1 in our
setting. This time interval δ is also known as the sampling
period in filtering theory. Furthermore, all realizations of
the noises dW (t), Vk and the initial state X(0) are taken
from mutually independent Gaussian distributions. The
continuous-discrete state estimation scenarios are often en-
countered in practical modeling and motivated in Santos-
Diaz et al. (2018); Jazwinski (1970); Särkkä (2007), etc.

A conventional state estimation setting in stochastic sys-
tems of the above form (1) and (2) is to obtain an optimal
estimate of the dynamic model obeying SDE (1) grounded
in measurements {Z1, . . . , Zk} realized up to each sam-
pling instant tk. Here, we stick to the Kalman formulation
and look for the optimal estimation of the random process
X(t) in the mean least square sense, which is presented

by the conditional mean X̂k|k. Based on the Gaussianity
assumption of the a priori and a posteriori random distri-
butions, the solution to this state estimation task demands
multidimensional Gaussian-weighted integrals of the form∫
Rn

g(X)N (X; X̂, PX)dX=

∫
Rn

g(X̂+SXX)N (X;0n, In)dX

(3)
to be accurately computed. In integral (3), the functions

g(X) ≡ X and g(X) ≡ (X− X̂)(X− X̂)⊤ are employed in
calculations of the predicted and filtering mean vectors and

covariance matrices, respectively, 0n := [0, . . . , 0]
⊤ ∈ Rn,

In stands for the identity matrix of size n, N (X; X̂, PX)
denotes the Gaussian probability density function with its
expectation X̂ and covariance matrix PX and the matrix

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5035



SX of size n × n refers to the Square Root (SR) of the
covariance, which is determined by the following property:

PX = SXS⊤
X . (4)

This SR SX is often accepted to be the lower triangular
Cholesky factor of covariance in practical estimation tasks.

Arasaratnam and Haykin (2009) gave rise to a novel and
effective state estimation technology rooted in cubature
rules applied for numerical approximations of integrals (3)
and termed it the Cubature Kalman Filter (CKF). Later
on, Arasaratnam et al. (2010) explained that the first CKF
based on the third-degree spherical-radial cubature rule is
equivalent to a particular version of the Unscented Kalman
Filter (UKF) presented by Julier et al. (1995, 2000); Julier
and Uhlmann (2004); Wan and Van der Merwe (2000);
Van der Merwe and Wan (2001); Wan and Van der Merwe
(2001). This justifies its sound state estimation potential
exposed for target tracking in Gaussian and non-Gaussian
scenarios by Kulikov and Kulikova (2016, 2017b,a, 2018a,
2020). Next, Jia et al. (2013); Santos-Diaz et al. (2018);
Zhang and Teng (2014) designed and analyzed the fifth-
degree variants of that earlier-published CKF technique,
which outperform it and many other filtering methods
in nonlinear stochastic radar tracking scenarios. However,
these can suffer severely from “the lack of a square-root
implementation” reported by Santos-Diaz et al. (2018).

In what follows, we address the mentioned lack and devise
one SR implementation of the fifth-degree CKF presented
in the latter cited paper. Our solution is rooted in the Itô-
Taylor SDE approximation of order 1.5 (IT-1.5), which
is employed by Santos-Diaz et al. (2018) as well. Fur-
thermore, this SR implementation uses the concept of a
J-orthogonal transformation implemented by means of a
hyperbolic QR factorization because of potential nega-
tivity of some weights in the fifth-degree cubature rule
applied. We remark that J-orthogonal QR decompositions
are commonly utilized in the realm of H∞ filtering and
other tasks with indefinite inner products. Here, we stick
to the J-orthogonal QR factorization of Bojanczyk et al.
(2003), which combines the Householder reflections and
hyperbolic rotations and considered to be numerically
robust and efficient. The factorization implemented gives
rise to our novel J-orthogonal Square-Root Fifth-Degree
Cubature Kalman Filtering (JSR-5D-CKF) technique. Its
exceptional robustness to round-off and other disturbances
resulting in the superiority of the JSR-5D-CKF method
towards its predecessor presented by Santos-Diaz et al.
(2018) is exposed within the target tracking scenario of
Arasaratnam et al. (2010), in which an aircraft executes
a coordinated turn. That numerical examination setup is
employed with ill-conditioned measurements in this paper.

2. J-ORTHOGONAL SQUARE-ROOT 5D-CKF

For yielding our new filter, we have to square-root the
time and measurement update steps in the IT-1.5-based
5D-CKF method presented by Santos-Diaz et al. (2018).
We start off at the modification of its time update, below.

2.1 The Time Update Step in the JSR-5D-CKF

Following Santos-Diaz et al. (2018), our state estimator en-
joys the IT-1.5-based discretization of the strong order 1.5.

With use of an equidistant mesh consisting of L−1 equally
spaced subdivision nodes (with a user-supplied prefixed
quantity L) introduced in each sampling interval [tk−1, tk]
of size δ, this IT-1.5 approximation casts SDE (1) into the
corresponding discrete-time stochastic system of the form

X l+1
k−1 = Fd

(
X l

k−1

)
+GQ1/2W1 + LF

(
X l

k−1

)
W2 (5)

where Q1/2 stands for the lower triangular factor (SR) in
the Cholesky decomposition of the process noise covariance
Q and the discretized drift coefficient obeys the formula

Fd

(
X l

k−1

)
:= X l

k−1 + τF
(
X l

k−1

)
+ τ2L0F

(
X l

k−1

)
/2. (6)

Here and below, the random variable X l
k−1 denotes the

IT-1.5-based approximation to the solution X(tlk−1) of

SDE (1) at a particular time instant tlk−1 := tk−1 +
lτ , l = 0, 1, . . . , L, and F (·) is the drift function of the
process model. The scalar τ := δ/L denotes the step
size in the equidistant subdivision (mesh) introduced in
each sampling interval [tk−1, tk] underlying the L-step
discretization of the form (5) and (6). Also, the differential
operators L0 and Lj utilized in formulas (5) and (6) are
defined as follows:

L0 :=

n∑
i=1

Fi
∂

∂Xi
+

1

2

n∑
j,p,r=1

G̃pjG̃rj
∂2

∂Xp∂Xr
,

Lj :=
n∑

i=1

G̃ij
∂

∂Xi
, j = 1, 2, . . . , n,

where each scalar G̃ij refers to the (i, j)-entry in G̃ :=

GQ1/2. The notation LF
(
X l

k−1

)
in the discretized stochas-

tic system (5) means the square matrix whose (i, j)-entry
is a value of the above operator LjFi

(
X l

k−1

)
and the

last summand is computed by means of the operator
L0F

(
X l

k−1

)
in the discrete-time drift coefficient (6). Fur-

thermore, the pair of correlated n-dimensional Gaussian
variables W1 and W2 is generated from the pair of uncor-
related n-dimensional standard Gaussian variables U1 and
U2 by the rule: W1 :=

√
τU1, W2 := τ3/2(U1 + U2/

√
3)/2.

Our further intention is to establish mean and covariance
time-propagation schemes for the discrete-time stochas-
tic process (5) and (6). In other words, given the mean

X̂ l
k−1|k−1 and covariance matrix SR Sl

k−1|k−1 of the ran-

dom variableX l
k−1 (i.e. P

l
k−1|k−1 = [Sl

k−1|k−1][S
l
k−1|k−1]

⊤),

we have to advance a step in the discretized process model
and compute the mean X̂ l+1

k−1|k−1 and covariance matrix

SR Sl+1
k−1|k−1 of the random variableX l+1

k−1 derived by equa-

tions (5) and (6) whose time-updated covariance satisfies

condition (4), i.e. P l+1
k−1|k−1 = [Sl+1

k−1|k−1][S
l+1
k−1|k−1]

⊤.

The non-SR state mean and covariance time-propagation
schemes have been already developed in the form of the
rather complicated formulas (46) and (47) presented in
Santos-Diaz et al. (2018). Then, for facilitating our square-
rooting technique and making the calculations effective in
MATLAB, we amend first the cited mean and covariance
evolutions to a more compact matrix-vector multiplication
fashion. With this goal in mind, we set the fifth-degree
spherical-radial cubature rule’s coefficients in the form of
the following vector and square matrix of size 2n2 + 1:
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w :=
1

n+ 2

[
2

1

n+ 2
1⊤
2n(n−1)

4− n

2(n+ 2)
1⊤
2n

]⊤
, (7)

W :=
(
I2n2+1 − 1⊤

2n2+1 ⊗ w
)
diag

{
w⊤}

×
(
I2n2+1 − 1⊤

2n2+1 ⊗ w
)⊤

, (8)

where the notation 12n, 12n(n−1) and 12n2+1 stands for the

unitary column-vectors of sizes 2n, 2n(n− 1) and 2n2 +1,
respectively, I2n2+1 refers to the identity matrix of size
2n2 + 1, diag

{
w⊤} denotes the diagonal matrix whose

diagonal entries are given by the entries of the vector
defined in formula (7) and ⊗ is the conventional Kronecker
tensor product fulfilled by the MATLAB’s command kron.
In addition, we assemble the matrix of cubature nodes

X l
k−1|k−1 :=

[
X l

1,k−1|k−1 X l
2,k−1|k−1 . . . X l

2n2+1,k−1|k−1

]
(9)

whose columns are determined in line with the formula

X l
i,k−1|k−1 := X̂ l

k−1|k−1+Sl
k−1|k−1Γi, i = 1, 2, . . . , 2n2+1.

(10)
The vector Γi in rule (10) is the ith column in the matrix

Γ :=
√
n+ 2

[
0n E+ −E+ E− −E− In −In

]
(11)

whose submatrices E+ and E− (both of size n×n(n−1)/2)
consist of the column-vectors yielded as follows:

E+ :=
{
(ei + ej)/

√
2 : i < j, i, j = 1, 2, . . . , n

}
, (12)

E− :=
{
(ei − ej)/

√
2 : i < j, i, j = 1, 2, . . . , n

}
(13)

where ei and ej stand for the ith and jth columns in the
identity matrix In, respectively, and 0n is the zero column-
vector of size n. We recall that the state mean X̂ l

k−1|k−1

and covariance SR Sl
k−1|k−1 in formula (10) are assumed

to be known at time tlk−1 := tk−1 + lτ , l = 0, 1, . . . , L− 1.

Next, with use of the discretized drift coefficient (6), we
modify matrix (9) of the cubature nodes to the form

Y l+1
k−1|k−1 :=

[
Y l+1
1,k−1|k−1 Y l+1

2,k−1|k−1 . . . Y l+1
2n2+1,k−1|k−1

]
(14)

whose ith column is found in line with the following rule:

Y l+1
i,k−1|k−1 := Fd

(
X l

i,k−1|k−1

)
, i = 1, 2, . . . , 2n2+1. (15)

Eventually, the theory of Särkkä (2007) allows the mean
and covariance time evolutions in Santos-Diaz et al. (2018)
to be casted into the simple and convenient form as follows:

X̂ l+1
k−1|k−1=Y l+1

k−1|k−1w, (16)

P l+1
k−1|k−1=

[
Y l+1
k−1|k−1

]
W

[
Y l+1
k−1|k−1

]⊤
+τ

[
Gl

k−1|k−1

]
×
[
Gl

k−1|k−1

]⊤
+
τ

3

[
Fl
k−1|k−1

][
Fl
k−1|k−1

]⊤
. (17)

In formula (17), we have utilized the notation Gl
k−1|k−1 :=

G̃ + Fl
k−1|k−1 and Fl

k−1|k−1 := τLF
(
X̂ l

k−1|k−1

)
/2 where

the square matrix LF
(
X̂ l

k−1|k−1

)
of size n is explained

after formula (6). The mean evolution (16) takes its final
fashion, but the covariance one (17) is to be square-rooted.

First of all we need an SR of the coefficient matrix (8).
Taking into account the negativity of the last 2n entries

in the coefficient vector (7) when n > 4, we replace these
with their magnitude and arrive at the modified coefficient
matrix SR defined by the following two formulas:

|w|1/2 :=

[ √
2√

n+ 2

1

n+ 2
1⊤
2n(n−1)

√
|4− n|√
2(n+ 2)

1⊤
2n

]
,(18)

|W|1/2 :=
(
I2n2+1 − 1⊤

2n2+1 ⊗ w
)
diag

{
|w|1/2

}
. (19)

We stress that the entries of row-vector (18) influence only
the second factor on the right-hand side of the coefficient
matrix SR definition (19), whereas the first one is found
by means of column-vector (7). In addition, we set the
signature matrix for this second diagonal factor as follows:

J := diag
{
1,1⊤

2n(n−1), sgn{4− n}1⊤
2n

}
(20)

where the function sgn{4 − n} determines the sign of its
last 2n diagonal entries by the rule: sgn{4−n} = 1 if n ≤ 4
and sgn{4− n} = −1 if n > 4. It is worthwhile to remark
that formulas (8) and (18)–(20) entail the obvious equality

W = |W|1/2J |W|⊤/2 (21)

where |W|⊤/2 stands for the transpose of the SR |W|1/2.
Next, we assemble the predicted covariance pre-array

SX :=

[√
τ Gl

k−1|k−1

√
τ√
3
Fl
k−1|k−1 Y l+1

k−1|k−1|W|1/2
]
.

(22)
Formulas (21) and (22) cast equation (17) into the form

P l+1
k−1|k−1 = SXJ S⊤

X with J := diag{I2n,J }. (23)

Further, the notion of J-orthogonality is a background in
our approach to square-rooting the covariance time evo-
lution scheme (17). Higham (2003) defines a J-orthogonal
matrix as follows: A square matrix Θ of size n×n is said to
be J-orthogonal with a signature matrix J := diag{±1⊤

n }
of size n, i.e whose diagonal entries equal 1 or −1, when

Θ⊤JΘ = ΘJΘ⊤ = J. (24)

The J-orthogonality plays a crucial role in the hyperbolic
QR factorization employed in our square-rooting method.
We apply the above-mentioned algorithm of Bojanczyk
et al. (2003), which fulfils a J-orthogonal QR decompo-
sition with a signature of the form J = diag{Ip,−Is}, i.e.
where all positive entries are placed in the beginning of its
main diagonal and the remaining negative ones complete
it. That is why we have changed the order of the summands
on the right hand-side of formula (17) and, hence, the order
of the blocks in pre-array (22) and the signature J in (23).

This hyperbolic QR decomposition method applied to the
transposed matrix of pre-array (22) with the signature J
from equation (23) returns the lower triangular post-array

R⊤ =
[
Sl+1
k−1|k−1 0n×(2n2+n+1)

]
, (25)

which is of size n × (2n2 + 2n + 1), with the notation
0n×(2n2+n+1) standing for the zero-block of size n×(2n2+

n + 1). Eventually, we read-off the square block Sl+1
k−1|k−1

of size n, which constitutes the requested time-updated
covariance matrix SR because equations (22)–(25) prove
its SR condition (4) by the following formula chain:

P l+1
k−1|k−1 = SXJS⊤

X = R⊤Q⊤JQR = R⊤JR

= [Sl+1
k−1|k−1][S

l+1
k−1|k−1]

⊤. (26)
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The signature matrix J becomes the identity one after
multiplication of its negative part with 0n×(2n2+n+1) in
post-array (25) and, hence, vanishes in proof (26). This
completes the time update in our JSR-5D-CKF. For con-
venience of practical use, we summarize the time update
of this filter in the following condensed algorithmic form:

Given X̂k−1|k−1 and Sk−1|k−1 at time tk−1, compute the

predicted state mean X̂k|k−1 and covariance SR Sk|k−1 at

time tk. Set the local initial values X̂0
k−1|k−1 := X̂k−1|k−1

and S0
k−1|k−1 := Sk−1|k−1 and fulfil the L-step time-

update procedure with τ := (tk − tk−1)/L as follows:
For l = 0, 1, . . . , L− 1 do;
1) Assemble matrix (9) by means of formulas (10)–(13);
2) Set the time-updated matrix (14) with columns (15);

3) Compute the time-updated mean X̂ l+1
k−1|k−1 by rule (16);

4) Set the time-updated predicted covariance array (22);
5) Fulfil the J-orthogonal QR factorization of the trans-
posed array (22) with the signature J from formula (23);

6) Read-off the covariance SR Sl+1
k−1|k−1 in post-array (25).

We remark that vector (7), its absolute value SR (18),
matrix (8), its absolute value SR (19) with signature (20)
and matrix (11) as well as the process noise covariance
Cholesky factorization Q = Q1/2Q⊤/2 are time-invariant
and computed only once before the state estimation run
starts off. The predicted state mean X̂k|k−1 := X̂L

k−1|k−1

and its covariance SR Sk|k−1 := SL
k−1|k−1 are further

utilized in the measurement update step of our novel JSR-
5D-CKF technique, as explained in the next section.

2.2 The Measurement Update Step in the JSR-5D-CKF

First, we set the matrix of the predicted cubature nodes

Xk|k−1 :=
[
X1,k|k−1 X2,k|k−1 . . . X2n2+1,k|k−1

]
(27)

whose columns are determined in line with the formula

Xi,k|k−1 := X̂k|k−1 + Sk|k−1Γi, i = 1, 2, . . . , 2n2 + 1. (28)

In (28), the mean X̂k|k−1 and covariance SR Sk|k−1 come
from the time update of our JSR-5D-CKF and the vectors
Γi have been already derived by (11)–(13) in Sec. 2.1.

Second, matrix (27) is then transformed to the form

Zk|k−1 :=
[
Z1,k|k−1 Z2,k|k−1 . . . Z2n2+1,k|k−1

]
(29)

with columns Zi,k|k−1 := h(Xi,k|k−1), i = 1, 2, . . . , 2n2 +
1, i.e. these are yielded by the measurement function
h(·) from equation (2). The coefficient matrix (8) and
matrices (27) and (29) contribute to computation of the
innovations, cross- and filtering covariances as follows:

Pzz,k|k−1 :=Zk|k−1WZ⊤
k|k−1 +Rk, (30)

Pxz,k|k−1 :=Xk|k−1WZ⊤
k|k−1, (31)

Pk|k = Pk|k−1 −WkPzz,k|k−1W⊤
k (32)

where Rk stands for the covariance of the measurement
noise in model (2) and the Kalman gain obeys the formula

Wk := Pxz,k|k−1P
−1
zz,k|k−1. (33)

It is commonly accepted to square-root all the covariance
matrices calculated by formulas (30)–(32) in the form of a
unified coupled pre-array. Here, it is set up by the formula

B :=

[
R

1/2
k Zk|k−1|W|1/2

0n×m Xk|k−1|W|1/2

]
(34)

where R
1/2
k refers to the lower triangular Cholesky factor

(SR) of the measurement noise covariance, i.e. Rk =

R
1/2
k R

⊤/2
k . Similar to the time update presented in Sec. 2.1,

the above-mentioned hyperbolic QR decomposition code
is applied to the transposed matrix of pre-array (34) with
the signature matrix J := diag{Im,J }, in which Im is the
identity matrix of size m and J obeys formula (20). The
latter factorization returns the lower triangular post-array

R⊤ =

[
P

1/2
zz,k|k−1 0m×n 0m×(2n2−n+1)

P̄xz,k|k−1 Sk|k 0n×(2n2−n+1)

]
, (35)

which is of size (m+ n)× (2n2 +m+ 1), with the matrix
P̄xz,k|k−1 denoting the modified cross-covariance. This
matrix amends the Kalman gain computation formula (33)
to the more convenient and robust form

Wk = P̄xz,k|k−1P
−1/2
zz,k|k−1 (36)

where the factor P
−1/2
zz,k|k−1 stands for the inverse of the

SR P
1/2
zz,k|k−1. Note that the Kalman gain calculations (33)

and (36) are mathematically equivalent, but possess the
different numerical robustness to round-off. Formula (33)
demands the full innovations covariance matrix Pzz,k|k−1

to be inverted, that is rather time-consuming and sensi-
tive to round-off error accumulations. Whereas, formula
(36) benefits from using the innovations covariance SR

P
1/2
zz,k|k−1, which is a lower triangular matrix and, hence,

entails the much cheaper and more stable inversion.

We further read-off the lower triangular (m+n)×(m+n)-
block S in the resulting post-array (35), which has the form

S :=

[
P

1/2
zz,k|k−1 0m×n

P̄xz,k|k−1 Sk|k

]
. (37)

It contains the innovations covariance SR P
1/2
zz,k|k−1, the

modified cross-covariance P̄xz,k|k−1 and the filtering co-
variance SR Sk|k. These are read-off from matrix (37).

Next, we find the measurement mean by the inner product

Ẑk|k−1 := Zk|k−1w (38)

and complete this measurement update with calculating

X̂k|k = X̂k|k−1 +Wk(Zk − Ẑk|k−1). (39)

We recall that the predicted state mean X̂k|k−1 comes from
the time update elaborated in Sec. 2.1. For convenience of
practical use, we present this measurement update of JSR-
5D-CKF in the following condensed algorithmic form:

Given the predicted state mean X̂k|k−1 := X̂L
k−1|k−1 and

covariance matrix SR Sk|k−1 := SL
k−1|k−1, compute the

filtering state mean X̂k|k and covariance matrix SR Sk|k
based on the measurement Zk fulfilled at time tk as follows:
1) Assemble matrix (27) by means of (11)–(13) and (28);
2) Set up the measurement-function-modified matrix (29);
3) Set up the unified coupled covariance pre-array (34);
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4) Fulfil the J-orthogonal QR factorization of the trans-
posed pre-array (34) with the signature J := diag{Im,J };
5) Compute the Kalman gain Wk by formula (36);

6) Compute the filtering mean X̂k|k by formulas (38), (39);
7) Read-off the filtering covariance SR Sk|k in array (37).

Further, we examine the novel JSR-5D-CKF method pre-
sented in Sec. 2.1 and 2.2 and compare it to its non-SR
predecessor 5D-CKF designed by Santos-Diaz et al. (2018)
in severe conditions of tackling a radar tracking problem
of Arasaratnam et al. (2010), where an aircraft executes
a coordinated turn. It is implemented with ill-conditioned
measurements in our nonlinear stochastic scenario, below.

3. AIR TRAFFIC CONTROL SCENARIO WITH
ILL-CONDITIONED MEASUREMENTS

The flight control scenario under consideration is a famous
one in nonlinear filtering theory, which has been published
with all particulars by Arasaratnam et al. (2010); Kulikov
and Kulikova (2016, 2017a), etc. So, the interested reader
is referred to the cited papers for more details. We simulate
the turning aircraft dynamics for 150 s and set its angular
velocity ω = 3◦/s. The performance of our novel algorithm
JSR-5D-CKF and its non-SR predecessor 5D-CKF devised
by Santos-Diaz et al. (2018) is assessed in the sense of
the Accumulated Root Mean Square Errors in position
(ARMSEp) and in velocity (ARMSEv) defined as follows:

ARMSEp :=
[ 1

100K

100∑
mc=1

K∑
k=1

(
xtrue
mc (tk)− x̂mc

k|k
)2

+
(
ytruemc (tk)− ŷmc

k|k
)2
+

(
ztruemc (tk)− ẑmc

k|k
)2]1/2

,

ARMSEv :=
[ 1

100K

100∑
mc=1

K∑
k=1

(
ẋtrue
mc (tk)− ˆ̇xmc

k|k
)2

+
(
ẏtruemc (tk)− ˆ̇ymc

k|k
)2
+

(
żtruemc (tk)− ˆ̇zmc

k|k
)2]1/2

where xtrue
mc (tk), y

true
mc (tk), z

true
mc (tk) and ẋtrue

mc (tk), ẏ
true
mc (tk),

żtruemc (tk) stand for the aircraft’s position and velocity
simulated by the the Euler-Maruyama method with the
small step size τ := 0.0005 at time tk in the mc-th Monte
Carlo run (out of 100 independent simulations), x̂mc

k|k, ŷ
mc
k|k,

ẑmc
k|k and ˆ̇xmc

k|k,
ˆ̇ymc
k|k,

ˆ̇zmc
k|k denote the aircraft’s position and

velocity estimated by each filtering algorithm, k means
the particular sampling time tk and K refers to the total
number of samples in the simulation interval [0, 150 s]. The
sampling rate is limited to δ = 1 s in this flight control task.

In contrast to Arasaratnam et al. (2010), for provoking
numerical instabilities in the filters under examination, we
utilize the artificial measurement equation of the form

Zk =

[
1 1 1 1 1 1 1
1 1 1 1 1 1 1 + σ

]
Xk + Vk (40)

where the aircraft’s state Xk := [ xk ẋk yk ẏk zk żk ωk ]
⊤

is estimated at time tk and σ denotes a small positive real
number determining ill-conditioning of model (40). Here,
we address the cases of σ = 1.0e-01, 1.0e-02, . . . , 1.0e-11.
Also, each measurement Zk is supposed to be corrupted
by a normally distributed noise Vk ∼ N (0, Rσ) with the
covariance Rσ = σ2I2 depending on the ill-conditioning
parameter σ. Measurements (40) with the measurement

1e−11 1e−10 1e−09 1e−08 1e−07 1e−06 1e−05 1e−04 1e−03 1e−02 1e−01
6

6.02

6.04

6.06

6.08

6.1

6.12

6.14
(a) Estimation Accuracy in Position (m)

σ

A
R

M
S

E
p

 

 
5D−CKF
JSR−5D−CKF

higher lower
problem ill−conditioning

1e−11 1e−10 1e−09 1e−08 1e−07 1e−06 1e−05 1e−04 1e−03 1e−02 1e−01
16.15

16.2

16.25

16.3

16.35

16.4

16.45

16.5

16.55

16.6

16.65
(b) Estimation Accuracy in Velocity (m/s)

σ

A
R

M
S

E
v

 

 
5D−CKF
JSR−5D−CKF

higher lower
problem ill−conditioning

Fig. 1. The ARMSEp and ARMSEv observed in the target
tracking scenario with the increasingly ill-conditioned
measurement model (40) for the ill-conditioning pa-
rameter values σ = 1.0e-01, 1.0e-02, . . . , 1.0e-11.

noise covariance matrix Rσ are typical means in numerical
stability studies of various KF including the continuous-
discrete and discrete-discrete methods presented by Dyer
and McReynolds (1969); Grewal and Andrews (2001); Ku-
likov and Kulikova (2017c, 2018b, 2019). These correspond
to the third reason of ill-conditioning elaborated by Grewal
and Andrews (2001) because the matrix inversions in the
Kalman gain computations (33) and (36) become increas-
ingly ill-conditioned in line with the vanishing scalar σ.

We abbreviate our novel SR filter to JSR-5D-CKF and its
non-SR predecessor published by Santos-Diaz et al. (2018)
to 5D-CKF, respectively. These methods are coded and run
in MATLAB. The state estimators under consideration
enjoy L = 64 subdivision steps in each sampling period.
The last 2n entries in the fifth-degree spherical-radial
cubature rule’s coefficient vector (7) are negative because
n > 4 in the target tracking scenario in use. This serves
for the effective examination of JSR-5D-CKF and its valued
comparison to 5D-CKF in the presence of the increasingly
ill-conditioned measurement model (40), i.e. when σ → 0.

Fig 1 exhibits that the SR filter and its non-SR predeces-
sor work identically and expose the same ARMSEp and
ARMSEv when the ill-conditioning parameter σ ≥ 1.0e-03,
i.e. when our air traffic control scenario is rather well-
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conditioned. Then, we see that the non-SR 5D-CKF fails
at σ = 1.0e-04 because its covariance matrix computed
loses the positivity and, hence, the Cholesky factorization
may not be fulfilled. In contrast, the JSR-5D-CKF succeeds
in producing the decent state estimates for all the values
of the ill-conditioning parameter σ accepted in our case
study. This confirms the sound numerical robustness of
the filtering algorithm presented in Sec. 2 and establishes a
solid background for its successful applications in practice.

4. CONCLUSION

This paper has addressed the issue of “the lack of a square-
root implementation” and devised a square-root version of
the Itô-Taylor-based Fifth-Degree Cubature Kalman Filter
presented by Santos-Diaz et al. (2018). Taking into account
the negativity of some weights in the fifth-degree spherical-
radial cubature rule, which are possible in continuous-
discrete stochastic scenarios of large size, we have applied
the hyperbolic QR decomposition for designing our novel
J-orthogonal square-root state estimator, which has been
examined in severe conditions of tackling a radar tracking
problem, where an aircraft executes a coordinated turn, in
the presence of ill-conditioned measurements. The sound
state estimation potential of this filter has been proven
theoretically and evidenced numerically within the men-
tioned challenging stochastic flight control scenario.
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