
Data-driven Key Performance Indicator
Fault Detection Approach Based on Sparse

Direct Orthogonalization

Hao Zhou ∗,∗∗ Hao Ye ∗,∗∗ Shen Yin ∗∗∗

∗Department of Automation, Tsinghua University , Beijing 100084,
China(e-mail: zhouh17@mails.tsinghua.edu.cn,

haoye@tsinghua.edu.cn).
∗∗ Beijing National Research Center for Information Science and

Technology (BNRist), Beijing 100084, China.
∗∗∗ School of Astronautics, Harbin Institute of Technology, Harbin

150001, China (e-mail: shen.yin@hit.edu.cn)

Abstract: In recent years, key performance indicator (KPI) detection has attracted much
attention in large-scale process plants. Several methods have been developed to solve this issue.
However, further studies find that post-processing methods have relatively high false alarm rates
(FARs) for quality-unrelated faults. Also, methods combined with preprocessing, like orthogonal
signal correction-modified partial least squares (OSC-MPLS), sometimes lack robustness. To
deal with this problem, this paper proposes an enhanced pretreatment method, namely sparse
direct orthogonalization (SDO), and a novel KPI-related fault detection approach called SDO-
MPLS is developed. Compared with OSC-MPLS, the proposed approach has more robust
performance and better interpretability, while a numerical case and the Tennessee Eastman
process (TEP) are used to demonstrate the effectiveness of the proposed approach.

Keywords: Key performance indicators, Process monitoring, Sparse direct orthogonalization,
Modified partial least squares, Fault detection.

1. INTRODUCTION

With the growing scale and complexity of automation ap-
plied in chemical plants, the demands for high production
quality and safe production environment are increasing
rapidly. Data-driven process monitoring and fault diagno-
sis methods, with less requirements for a priori knowledge,
were proposed and developed rapidly based on the great
amount of available process history data (Qin, 2012).

Multivariate statistical process monitoring (MSPM) method,
one kind of data-driven methods, receives considerably
increasing attention in research and application domains
currently (Ding, 2013). Principal component analysis
(PCA) (Jolliffe, 1986) and partial least squares (PLS)

(H’́oskuldsson, 1988) are two commonly used MSPM tech-
niques and many methods are derived from them. Key
performance indicator (KPI) represents key technical fac-
tor which is closely relevant to the quality of product
(Zhang et al., 2015; Peng et al., 2013). For KPI-related
fault detection, the difficulty lies in the fact that it is hard
to measure KPIs online.

Therefore, in order to guarantee the safety of production
process and stability of product quality, process control
approaches usually focus on process variables that can
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be measured easily. Process monitoring methods based on
PCA can effectively detect and diagnose abnormal data in
the process. Nevertheless, Zhou et al. (2010) shows that
PCA cannot estimate whether these abnormalities will
lead to fluctuations of product quality or other KPIs. Since
PCA cannot detect KPI-related faults, PLS algorithm
gets more attention in KPI domains. However, when it
comes to KPI related detection problems, there are few
deficiencies for standard PLS algorithm for the following
reasons, as pointed out by Zhou et al. (2010). First,
PLS component subspace may contain some elements
orthogonal to the KPI space, which have no contribution
for prediction. Second, residual subspace may include some
components related to the KPI space. Third, the variance
of residual subspace may be larger than PLS scores, which
makes it inappropriate to use Q statistic. So based on
standard PLS, many promising improved methods were
proposed for KPI related problems. For example, total
projection to latent structures (T-PLS) was proposed by
Zhou et al. (2010) to realize a more accurate and detailed
decomposition. T-PLS not only contains the redundance in
the scores to explain the predicted quality-related outputs,
namely KPIs, but also pays attention to residual part
for detecting KPI related faults. A modified partial least
squares (M-PLS) was proposed to decrease computation
complexity by Yin (2012) .

As pointed out by Wang et al. (2015), although coping
with KPI-related faults effectively, these approaches fail
to reduce the false alarm rates (FARs) for KPI-unrelated
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faults due to the variations in input data which are unre-
lated to KPIs. Therefore, removing undesired systematic
variations from input data in the pretreatment process
could be a favorable way to handle this problem. In chemo-
metrics, there are many pretreatment methods aiming at
removing the components in input data which are orthog-
onal to the output, e.g. orthogonal signal correction (OSC)
proposed by Wold et al. (1998). Based on these, method
combining OSC pretreatment method with M-PLS to im-
prove detection performance was proposed by Wang et al.
(2015). In spite of its effectiveness for KPI-unrelated faults,
its fault detection rate (FDR) for some certain KPI-related
faults is relatively low. Unlike OSC pretreatment, a simpler
approach proposed by Andersson which used output signal
itself to realize orthogonalization directly, termed as direct
orthogonalization (DO) (Andersson, 1999). DO algorithm
is built on the basis of PCA. Although DO algorithm
has a simple form, it shares drawbacks with PCA, i.e.
each principal component is a linear combination of all
variables and therefore is difficult to interpret. However,
in most cases, data can be accurately described by a few
principal components. Thus sparse principal component
analysis (SPCA) was proposed by Zou et al. (2006) to
achieve variables reduction. SPCA shrinks the loadings to
zero to ensure that each component is a combination of
only a few of variables.

For these reasons, in this paper, employing SPCA into
DO algorithm will improve decomposition performance,
Sparse DO (SDO) algorithm will be proposed, and then a
corresponding novel fault detection approach called SDO-
MPLS will be developed. Compared with PLS and T-PLS,
the proposed approach has lower FARs for KPI-unrelated
faults. Moreover, SDO-MPLS keeps low FARs for KPI-
unrelated faults and gives better detection rate than OSC-
MPLS proposed by Wang et al. (2015). Besides, the SDO
preprocessing can reduce the number of latent variables
for PLS model to decrease computation load.

2. PRELIMINARIES

In this section, a brief introduction to MPLS, DO and
SPCA will be given.

2.1 A Modified Partial Least Square

For a normalized input data matrix X ∈ Rn×l and its
corresponding output data matrix Y ∈ Rn×m, a PLS

decomposiotion (H’́oskuldsson, 1988) can be written as{
X = X̂ + X̃ = TPT + X̃

Y = Ŷ + Ỹ = TQT + Ỹ
(1)

where T denotes the score matrix, P and Q are the loading
matrices to X and Y respectively.

As mentioned before, the standard PLS cannot remove
some variations unrelated to Y from X̂ (Zhou et al., 2010;

Yin, 2012). Meanwhile, X̃ also contains some variations
unrelated to Y after decomposition. To remove these
variations, a simpler approach, M-PLS, is proposed for
KPI-related problems by Yin (2012), where Ŷ is given by

Ŷ = TQT = XRQT = XΨ (2)

with R representing the weight matrix calculated in PLS.
The matrix Ψ = RQT , representing the correlation be-
tween X and Y , is called regression coefficient matrix,
which can also be used to make a prediction on the online
measured sample xnew.

yTpre = yT = xTnewΨ (3)

Perform singular value decomposition (SVD) on ΨΨT ,

construct projection matrices and then X̂ and X̃ can be
obtained by projecting X on Γ̂ΨΓ̂TΨ and Γ̃ΨΓ̃TΨ,

ΨΨT = [Γ̂Ψ Γ̃Ψ]

[
ΛΨ 0
0 0

] [
Γ̂TΨ
Γ̃TΨ

]
(4)

X̂ = XΓ̂ΨΓ̂TΨ ∈ SX̂ ≡ span{Ψ}
X̃ = XΓ̃ΨΓ̃TΨ ∈ SX̃ ≡ span{Ψ}

⊥ (5)

where X̂ is the subspace that is fully related with the
prediction of KPI, and X̃ is orthogonal to X̂ which makes
no contribution to KPI prediction (Yin, 2012). So we have

Ŷ = XΨ = (X̂ + X̃)Ψ = X̂Ψ (6)

According to Yin et al. (2015), the prediction of KPI is

unrelated with X̃ and the KPI prediction on the online
sample xnew has the following form:

yTnew,pre = x̂TnewΨ = xTnewΓ̂ΨΓ̂TΨΨ (7)

Based on the properties of SVD decomposition, the moni-
toring on x̂new can be achieved by taking advantage of T 2

statistics on Γ̂TΨxnew. Similarly, the monitoring on x̃new
can be realized by applying T 2 statistic on Γ̃TΨxnew.

Nevertheless, matrices T , P and Q are calculated based
on PLS in these approaches. Accordingly, undesired infor-
mation in X will affect the succedent calculation more or
less. And the increase of fault amplitude will exacerbate
the influence from undesired variations, which may lead to
unsatisfactory fault diagnosis results (Zhou et al., 2010).

2.2 Direct Orthogonalization

DO algorithm is a simple pretreatment method to remove
irrelevant variations from X (Andersson, 1999). Instead of
using constrained bi-linear model, DO algorithm takes ad-
vantage of Y itself to realize the orthogonalization directly.
Compared with OSC, DO algorithm replaces constrained
resolution algorithm with eigenproblem-based technique,
which owns lower computation load and more stable con-
vergence (Andersson, 1999).

Algorithm 1: DO Algorithm(Andersson, 1999)

S1: Orthogonalize X w.r.t. Y , where X̂ = X − Y wT ,
w = XTY (Y TY )−1.

S2: Perform PCA on X̂, T̂ P̂T = X̂.
S3: Extract independent variations from X: T̃ = XP̂ ,
XDO = X − T̃ P̂T .
S4: tnew = xTnewP̂ .

S5: xDOnew = xnew − tnewP̂T .

It can be seen that DO algorithm is built on the basis
of PCA. Its basic idea is to find a direction vector w,
satisfying the projection of input matrix X on this vector
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is orthogonal to Y , while ensuring that w can extract the
maximum variation information of X (Andersson, 1999).

2.3 Sparse Principal Component Analysis

The linear combinations of all variables serve as principal
components in PCA, which makes it difficult to interpret.
Nevertheless, only a few of principal components are able
to describe data precisely in many cases. Thus SPCA is
proposed by Zou et al. (2006), which shrinks some loadings
to guarantee that each component only consists of a small
amount of variables. SPCA method reconstructs PCA into
regression problem with a quadratic penalty and attach
sparsity by adding lasso penalty.

Algorithm 2: SPCA Algorithm (Zou et al., 2006)
S1: Let A equals to V [, 1 : k], which represents the loadings
matrix of the first k principal components.
S2: When A = [α1 α2 · · · αk] is fixed, solve the
following regression problem for j = 1, 2, ..., k βj =
argminβ(αj − β)TXTX(αj − β) + λ‖β‖22 + λ1,j‖β‖1
where λ is non-negative.
S3: When B = [β1 β2 · · · βk] is given, compute the
SVD decomposition of XTXB = UΣV T .
S4: Update A = UV T .
S5: Repeat Steps 2-4 until convergence.
S6: V̂j = βj/‖βj‖, j = 1, ..., k

3. A SPARSE DO-MODIFIED PLS BASED FAULT
DETECTION METHOD

Considering the limited interpretability of PCA, SDO
algorithm is proposed in this section first to improve the
performance in the pretreatment process in the sense of
removing irrelevant variations. Then we combine SDO
as the pretreatment process with M-PLS to propose a
novel KPI-related fault detection method called SDO-
MPLS. For SDO, we first write DO into a ridge regression
optimization problem and then define a SDO optimization
problem by adding l1 penalty in DO.

3.1 Sparse Direct Orthogonalization

Inspired by SPCA (Zou et al., 2006), DO introduced in last
section can be written as a ridge regression optimization
problem equivalently, i.e.

Z = X − Y wT = (1− Y (Y TY )−1Y T )X

= (1− Y Y †)X
(8)

argmin
A,B
‖Z − ZABT ‖2F + λ‖B‖2F

s.t. ATA = I
(9)

where B is p × K and ‖B‖2F =
∑K
k=1 ‖B‖22. Due to

the fact that loading vectors in B are orthogonal, let
Ak = [α1 α2 · · · αk] and Bk = [β1 β2 · · · βk],
the criterion can be written as following:

arg min
αk,βk

‖Z − ZβkαTk ‖2F + λ‖βk‖22

s.t. ATkAk = I
(10)

So the ridge regression problem of DO has been defined.
For αTk αk = 1, there is

‖Z − ZβkαTk ‖2F
= tr(ZTZ) + tr(Zβkβ

T
k Z

T )− 2αTk Z
TZβk

= tr(ZTZ) + βTk Z
TZβk − 2αTk Z

TZβk

(11)

And the corresponding optimal solution of βk is

β̂k = (ZTZ + λI)−1ZTZαk (12)

when αk is fixed. Meanwhile, when βk is fixed,

argmin
αk

‖Z − ZβkαTk ‖2F

=argmin
αk

tr(ZTZ + Zβkα
T
k αkβ

T
k Z

T−

2αTk Z
TZβk) + αTkAk−1γ + δ(αTk αk − 1)

(13)

where γ is a vector with a length of k−1 and δ is a scalar.
Due to the fact that αTkAk−1 = 0 and αTk αk = 1, the opti-
mal problem can be changed into argmaxαk

(αTk U
TUβk).

Based on Procrustes Rotation proposed by Mardia et al.
(1979), then we can compute the SVD of ZTZB and get
the corresponding optimal solution of A, i.e.

(ZTZ)B = UΣV T (14)

and Â = UV T . Now similar to SPCA (Zou et al., 2006),
we define the sparse decomposition problem of SDO with
l1 penalty as following:

{α̂k, β̂k} = arg min
αk,βk

‖(1− Y Y †)X − (1− Y Y †)XβkαTk ‖2F

+ λ‖βk‖22 + ζ‖βk‖1
(15)

Then we can use the coordinate descent method (Bezdek,
1987) to solve the subproblem αk and βk alternately until
convergence. Therefore, the irrelevant variations in X can
be removed by SDO algorithm, i.e.

XSDO = X −XBBT (16)

3.2 SDO-MPLS

Similar to OSC (Wold et al., 1998), SDO divides X into
two parts, namely Xsdo and Xsdores. Then M-PLS is
applied to the processed data under SDO filter to realize
fault detections. Compared with OSC-MPLS, SDO-MPLS
has a more clear interpretation without loss of significant
information, which helps to understand the loadings. To
realize M-PLS, we need to change input data X in (2) into
a matrix after SDO pretreatment Xsdo, i.e.

Ŷ = XsdoΨ (17)

As MPLS introduced in Sec. II, we perform SVD on
ΨsdoΨ

T
sdo and we have

ΨsdoΨ
T
sdo = [Γ̂sdo Γ̃sdo]

[
Λsdo 0
0 0

] [
Γ̂Tsdo
Γ̃Tsdo

]
(18)

On the basis of projection matrices Γ̂sdo and Γ̃sdo, Xsdo

can be decomposed into X̂sdo and X̃sdo.

X̂sdo = XsdoΓ̂sdoΓ̂
T
sdo

X̃sdo = XsdoΓ̃sdoΓ̃
T
sdo

(19)

Similar to Zou et al. (2006), the corresponding statistics
and thresholds in our case can be determined by
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T̂ 2
sdompls = xTsdoΓ̂sdo(

Γ̂TsdoX
T
sdoXsdoΓ̂sdo
N − 1

)−1Γ̂Tsdoxsdo

JT̂ 2
sdompls

,th =
l(N2 − 1)

N(N − l)
Fα(l, N − l)

(20)

T̃ 2
sdompls = xTsdoΓ̃sdo(

Γ̃TsdoX
T
sdoXsdoΓ̃sdo
N − 1

)−1Γ̃Tsdoxsdo

JT̃ 2
sdompls

,th =
(m− l)(N2 − 1)

N(N −m+ l)
Fα(m− l, N −m+ l)

(21)

T 2
sdores = xTsdores(

XT
sdoresXsdores

N − 1
)−1xsdores

JT 2
sdores

,th =
m(N2 − 1)

N(N −m)
Fα(m,N −m)

(22)

Algorithm 3 gives the complete KPI-based SDO-MPLS
algorithm. The merits of SDO-MPLS algorithm is that it
can remove unexpected irrelevant variations. Furthermore,
compared with OSC-MPLS, SDO-MPLS filter data by a
few principal components in preprocessing, which helps to
enhance the interpretability.

Algorithm 3: KPI-based SDO-MPLS Algorithm
Off-line training
1. Apply SDO to original data to obtain Xsdo and
Xsdores.
2. Implement PLS on Xsdo and Y , then calculate
the coefficient matrix Ψsdo = RQT .

3. Construct Γ̂sdo and Γ̃sdo according to ΨsdoΨ
T
sdo.

4. Calculate the thresholds JT̂ 2
sdompls

,th, JT̃ 2
sdompls

,th

and JT 2
sdores

,th.

On-line detection
1. Collect and correct online samples.

2. Calculate T 2 statistics, namely T̂ 2
sdompls, T̃

2
sdompls

and T 2
sdores.

3. Make the decision based on the diagnostic logic.

(a) T̂ 2
sdompls ≤ JT̂ 2

sdompls
,th and T̃ 2

sdompls ≤ JT̃ 2
sdopls

,th.

and T 2
sdores ≤ JT 2

sdores
,th → fault-free

(b) T̂ 2
sdompls ≥ JT̂ 2

sdompls
,th → KPI-related fault occurs

(c) T̃ 2
sdompls ≥ JT̃ 2

sdompls
,th or T 2

sdores ≥ JT 2
sdores

,th →
KPI-unrelated fault occurs

4. SIMULATION

In this section, the effectiveness of the approach proposed
in this paper is evaluated by comparing it with standard
PLS, T-PLS (Zhou et al., 2010) and OSC-MPLS (Wang
et al., 2015) based on numerical example and TEP bench-
mark. Two commonly used indices, namely FDR and FAR,
are considered in the performance evaluation. We mainly
focus on the KPI-related subspace because we want to
show that the method has both high FDR in KPI-related
subspace when KPI-related faults occur and low FAR in
KPI-related subspace when KPI-unrelated faults occur
(Wang et al., 15).

4.1 Numerical example

The synthetic numerical example in (Zhou et al., 2010;
Wang et al., 2015), widely used in the performance test of
KPI-based MSPM methods, is adopted in this paper, i.e.{

xk = Auk + ek
yk = cxk + vk

(23)

where A is a 3× 5 matrix, uk ∈ R3, ek, xk ∈ R5 and

ck = [2 2 1 1 0] (24)

In case that there are faults, suppose that the faults are
added in process variable space as following:

xk = x∗k + Ξf (25)

where x∗k represents the normal sample value, Ξ and f are
the fault direction and magnitude respectively.

KPI-related faults: From the expression of the numerical
case (Wang et al., 2015), it is obvious that those faults will
influence KPIs a lot when their directions are chosen as
Ξ = [2 2 1 1 0]. In other words,

yk = cxk + vk = c(x∗k + Ξf) + vk 6= cx∗k + vk (26)

Fig. 1. SDO-MPLS for KPI-
related faults in numeri-
cal example

Fig. 2. SDO-MPLS for KPI-
unrelated faults in nu-
merical example

Table 1. FDR for KPI-related faults under
different magnitudes

f PLS TPLS(T 2) TPLS(Q) OSC-MPLS SDO-MPLS
(%) (%) (%) (%) (%)

2.0 79 4.5 100 4.5 13.5
4.0 100 16.5 100 17.5 46.5
6.0 100 34.5 100 36 85.5
8.0 100 67.5 100 69 100
10.0 100 85 100 86 100

For the comparison of FDRs among PLS, T-PLS, OSC-
MPLS and SDO-MPLS methods, fault magnitudes have
been set to 2.0, 4.0, 6.0, 8.0, 10.0 respectively. Considering
KPI-related faults, the performance of these methods is
shown in Table 1. It can be seen that FDR of each
method increases with growing fault magnitude and FDR
of SDO-MPLS reaches 100% when fault magnitude ≥ 8.0.
However, T-PLS(T 2) and OSC-MPLS own FDRs which
are less than 100% even if magnitude reaches 10.0. On
the other hand, PLS and T-PLS(Q) keep outstanding
performance no matter how large fault magnitude is.
Although the FDR of SDO-MPLS is lower than those of
PLS and T-PLS(Q) when fault magnitude is less than 8.0,
it is valid for KPI-related fault detections and is superior
to T-PLS(T 2) and OSC-MPLS. The detection result of
SDO-MPLS approach with f = 8.0 is shown in Fig.1.
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KPI-unrelated faults: As for KPI-unrelated cases (Wang
et al., 2015), faults with direction Ξ = [0 0 0 0 1] can be
chosen, which leads to

yk = cxk + vk = c(x∗k + Ξf) + vk = cxkk + vk (27)

It is observed that such faults have no contribution to KPI,
which shows the KPI irrelevance. Similiarly, PLS, T-PLS,
OSC-MPLS and SDO-MPLS approaches are applied to
detect KPI-unrelated faults under same magnitudes. The
detection results of SDO-MPLS method is plotted in Fig. 2
and FARs for KPI-unrelated faults by different approaches
are given in Table 2.

Table 2. FAR for KPI-unrelated faults under
different magnitudes

f PLS TPLS(T 2) TPLS(Q) OSC-MPLS SDO-MPLS
(%) (%) (%) (%) (%)

2 0 0 100 0 0
4 10.5 2 100 2 1.5
6 31 7.5 100 7 6.5
8 54 16.5 100 17 16.5
10 75.5 30 100 30 27.5

As seen from Table 2, PLS method fails to achieve low FAR
when the magnitude of KPI-unrelated faults is relatively
large. Although SDO-MPLS approach does not perform
the best for KPI-related faults as shown in Table 1, it
holds the lowest FAR among these approaches as fault
magnitude grows. Also, T-PLS(T 2) and OSC-MPLS share
relatively low FAR with the growing fault strength, but
their FDR are lower than that of SDO-MPLS as shown in
Table 1. Conversely, T-PLS(Q) falsely handles with many
KPI-unrelated faults as shown in Table 2.

4.2 TEP benchmark

In this section, TE benchmark process (Downs et al.,
1993) is utilized to illustrate KPI-based MSPM methods
and their corresponding performance. It has been widely
applied in the analysis of KPI-based MSPM methods (Yin
et al., 2012; Yin et al., 2015; Wang et al., 2015).

TEP consists of five major parts: reactor, condenser,
compressor, separator and stripper. Eight components, A,
B, C, D, E, F, G and H, are taken into account, including
four gaseous inputs, two products from four reactants in
the process, an inert and a by-product. Totally, there are
52 variables in TEP benchmark, namely 11 manipulated
variables and 41 process variables (Downs et al., 1993). In
order to build X, all of the manipulated variables and
22 process variables are chosen from 52 measurements.
According to these variables, E(XMEAS(35)) serves as
the KPI (Yin et al., 2015), which is the product analysis
of component E. As for classification of faults on KPI
relations, Q statistic of Y-residual has been widely applied
in (Yin et al., 2015), i.e.

Qy = ‖y − ŷ‖2 ∼ gχ2
h,α (28)

where gχ2
h,α is the control limit. Based on the fluc-

tuation of y and corresponding Qy between fault-free
and faulty samples, it can be observed that KPI-related
faults include IDV(1), IDV(2), IDV(5), IDV(6), IDV(7),
IDV(8), IDV(10), IDV(12), IDV(13), IDV(14), IDV(16),
IDV(17), IDV(18) and IDV(20). Meanwhile, IDV(3),

Fig. 3. KPI-related fault:
IDV 8

Fig. 4. KPI-unrelated fault:
IDV 11

Fig. 5. SDO-MPLS for KPI-related faults in TEP

Fig. 6. SDO-MPLS for KPI-unrelated faults in TEP

IDV(4), IDV(9), IDV(11), IDV(15) and IDV(19) belong
to KPI-unrelated faults (Wang et al., 2015). Consider-
ing KPI-related fault IDV(8) and KPI-unrelated fault
IDV(11), Fig. 3 and Fig. 4 reflect the change of y and Qy
between fault-free and faulty samples. From the figures,
it is shown that y in IDV(8) fluctuates sharply but the
expectation and variance of y in IDV(11) change slightly.
Fig. 5 and Fig. 6 reflect the fault detection results of SDO-
MPLS when applied in these two faults. FDRs for KPI-
related faults and FARs for KPI-unrelated faults in the
TEP benchmark are shown in Table 3 and 4 respectively.

Concerning FDR for KPI-related faults, PLS method
works well except in IDV(5), as shown in TABLE 3.
At the same time, the Q statistic of T-PLS obtains
outstanding performance in many KPI-related faults but
IDV(7). However, the T 2 statistic of T-PLS cannot detect
IDV(14) whose FDR is only 6.7%. As for OSC-MPLS, it
does not perform well in some cases, e.g., IDV (16) and
IDV (20). Compared with T-PLS and OSC-MPLS, SDO-
MPLS guarantees that FDRs for KPI-related faults will
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Table 3. FDR for KPI-related faults in the
TEP benchmark.

Fault no PLS TPLS(T 2) TPLS(Q) OSC-MPLS SDO-MPLS
(%) (%) (%) (%) (%)

IDV(1) 100 36.9 99.1 37.5 59.7
IDV(2) 97.9 55.1 69.5 48.7 31.7
IDV(5) 30.5 25.8 60.2 71.4 23.7
IDV(6) 99.7 97.4 100 93.2 97.9
IDV(7) 74.8 44.1 31.5 30.9 40.4
IDV(8) 96.2 74.0 68.8 66.6 76.3
IDV(10) 85.2 58.5 74.5 25.2 51.9
IDV(12) 99.8 77.8 73.0 71.3 77.4
IDV(13) 95.0 86.1 93.4 81.7 85.8
IDV(14) 99.4 6.7 83.1 76.4 54.1
IDV(16) 67.9 40.8 71.0 17.7 33.9
IDV(17) 83.3 27.1 84.7 47.9 25.6
IDV(18) 90.5 88.7 89.9 82.2 89.0
IDV(20) 55.6 25.9 56.8 7.2 20.3

Table 4. FAR for KPI-unrelated faults in the
TEP benchmark

Fault no PLS TPLS(T 2) TPLS(Q) OSC-MPLS SDO-MPLS
(%) (%) (%) (%) (%)

IDV(3) 9.3 12.1 0.5 3.8 8.3
IDV(4) 51.4 10.7 45.4 3.9 6.4
IDV(9) 7.3 9.7 0.5 1.5 5.7
IDV(11) 55.9 13.1 28.9 23.5 16.0
IDV(15) 13.4 6.5 0.6 4.7 7.1
IDV(19) 11.9 7.4 58.3 3.6 5.7

exceed 20% though it does not have the highest FDRs
totally.

When it comes to faults unrelated to KPI, PLS, T-
PLS, OSC-MPLS and SDO-MPLS approaches are applied
to detect them similarly. As seen from TABLE 4, PLS
method obtains high FAR in many cases which proves once
again that PLS is not valid for KPI-related fault detection.
Although T 2 statistic of T-PLS performs well when dealing
with KPI-unrelated faults, it can be seen that Q statistic of
T-PLS cannot maintain its superiority for KPI-unrelated
faults. FAR of T-PLS(Q) for IDV (11) even exceeds 50%
in TABLE IV. Meanwhile, OSC-MPLS works well and its
performance outweighs those of PLS and T-PLS. SDO-
MPLS shares similar low FARs with OSC-MPLS in most
cases. Furthermore, it is noteworthy that SDO-MPLS has
remarkable lower FAR than OSC-MPLS under IDV (11)
circumstance.

From the table listed above, it is observed that PLS
and T-PLS do not work well for KPI-unrelated fault
detection. Although OSC-MPLS has low FARs in most
KPI-unrelated fault cases, its FAR exceeds 20% for IDV
(11) as shown in TABLE IV, which is relatively high
for others. According to above detailed analysis, it can
be concluded that SDO-MPLS shows better fault detec-
tion performances for KPI-related process monitoring and
fault detection, in the sense that reducing FAR for KPI-
unrelated faults without sacrificing FDR for KPI-related
faults.

5. CONCLUSION

In this paper, an improved KPI-related fault detection
method, namely SDO-MPLS, is proposed. We first propose
SDO to remove undesired variations from input space.

Further, M-PLS is implemented to decompose input space
into two orthogonal ones. Compared with PLS and T-PLS,
the proposed approach has lower FARs for KPI-unrelated
faults. When it comes to OSC-MPLS, SDO-MPLS is more
robust and reduces FAR for KPI-unrelated faults without
sacrificing FDR for KPI-related faults. The superiority of
the performances for SDO-MPLS is finally demonstrated
by a numerical case and TEP benchmark.
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