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Abstract: In this paper, an effective mixed driven framework is constructed involving both
data and event considerations. The primary purpose lies in that the mixed driven iterative
adaptive critic method is established to address approximate optimal control towards discrete-
time nonlinear dynamics. The neural dynamic programming technique is inventively integrated
with the mixed driven architecture, such that the knowledge of the controlled plant is needless
and the number for updating control inputs is prominently reduced. A triggering threshold is
also designed with theoretical guarantee, which renders that the control signals can be updated
conditionally. Through carrying out simulation studies with comparisons, the superiority of the
present near-optimal regulation approach is confirmed at last.
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1. INTRODUCTION

Optimal feedback design is always an important portion of
the modern control community. However, unlike the com-
mon linear case, the main difficulty in nonlinear optimal
control design is addressing the complex Hamilton-Jacobi-
Bellman (HJB) equations. Considering the rarity of ana-
lytical methods, adaptive critic algorithms combining with
neural networks were developed to obtain approximate
solutions (Werbos, 1992). Heuristic dynamic programming
(HDP), dual HDP (DHP), and globalized DHP (GDHP)
were basic implementation tools of the adaptive critic field
as described in Werbos (1992). After this pioneering work,
the online learning optimal control design was paid great
attention particularly in Si and Wang (2001). It is worth
noting that the iterative adaptive critic algorithms in
discrete-time domain were developed to solve approximate
optimal control problems, by adopting HDP (Al-Tamimi,
Lewis, & Abu-Khalaf, 2008; Zhang, Liu, Xiao, & Jiang,
2020), DHP (Zhang, Luo, & Liu, 2009) and GDHP (Wang,
Liu, Wei, Zhao, & Jin, 2012) techniques, respectively. Note
that the idea of data-driven is frequently emphasized in
many existing results of the approximate optimal control
synthesis. Effective learning from the big data information
is an important property of data-driven adaptive critic
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algorithms. Though possessing excellent self-leaning and
adaptivity performances, the resource utilization rate is
rarely considered in these traditional time-based adaptive
critic algorithms.
Within the event-based control framework, the point of
view on how information could be sampled is offered for
minimal triggering and actuation. The event-based design
is also a hot topic under the network environment. In the
last decade, a series of event-driven approaches have been
acquired considerable attention within advanced control
communities, including robust optimal regulation (Wang
& Liu, 2018) and adaptive fault-tolerant control (Fan &
Yang, 2018). Unlike the continuous-time case (Wang &
Liu, 2018; Fan & Yang, 2018), the event-driven approaches
in discrete-time domain were motivated a lot by the work
of Eqtami, Dimarogonas, and Kyriakopoulos (2010) and
were closely related to control of networked systems (Gar-
cia & Antsaklis, 2014). Recently, event-triggered commu-
nication and control of networked systems for multi-agent
consensus was surveyed by Nowzari, Garcia, and Cortes
(2019). In addition, the event-based algorithms for normal
discrete-time systems (Dong, Zhong, Sun, & He, 2017) and
input-constrained plants (Ha, Wang, & Liu, 2020) were
respectively constructed. However, there are currently no
results on data and event driven iterative adaptive critic
control design for discrete-time nonaffine systems, which
is a difficult problem shown in literatures (Bian, Jiang,
& Jiang, 2014; Kiumarsi, Kang, & Lewis, 2016; Wang &
Zhong, 2019).
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Under these backgrounds, in this paper, a mixed data and
event driven iterative adaptive critic strategy is developed
for near-optimal control of discrete-time nonlinear dynam-
ics, where data-driven learning for the complex dynamics
and event-based triggering under the network environment
are naturally included. This is a novel mixed framework
in discrete-time domain along with the idea of iterative
adaptive critic algorithms. Combining the neural dynamic
programming technique with the mixed driven framework,
the knowledge of the controlled plant is needless and the
number for updating control inputs is signally reduced
when dealing with the near-optimal regulation. In sum-
mary, the data and communication resources are both
optimized during the control design process.
The notations used in the paper are described as follows. R
is the set of all real numbers. Rn is the Euclidean space of
all n-dimensional real vectors. Let Ω be a compact subset
of Rn and Ψ(Ω) be the set of admissible control laws (Al-
Tamimi, Lewis, & Abu-Khalaf, 2008) on Ω. Rn×m is the
space of all n × m real matrices. ∥ · ∥ derives the vector
or matrix norms. N denotes the set {0, 1, 2, . . . }. In is the
n× n identity matrix and “T” is the transpose operation.
Note the symbols k, i, and j are used to represent the
time step, the iteration index, and the sampling instant,
respectively.

2. PROBLEM FORMULATION

In this paper, we consider nonlinear dynamics with the
discrete-time formulation

x(k + 1) = F (x(k), u(k)), k ∈ N, (1)
where F (·, ·) is a continuous system function, x(k) ∈ Rn

is the state variable, and u(k) ∈ Rm is the control
input. We let x(0) be the initial state and assume it is
a unique equilibrium point of system (1) under u = 0, i.e.,
F (0, 0) = 0. Generally, we also assume that system (1)
can be stabilized on the set Ω ⊂ Rn by a state feedback
controller u(x(k)).
We consider the optimal control problem and want to find
a feedback control law u ∈ Ψ(Ω) to minimize

J(x(k)) =

∞∑
h=k

U(x(h), u(x(h))), (2)

where U(x, u) ≥ 0,∀x, u is the utility function ensuring
U(0, 0) = 0. Normally, the utility function is selected as
U(x, u) = xTQx+uTRu, where Q and R are both positive
definite. Here, the term xTQx is called the state utility
while uTRu is the control utility.
According to the optimality principle, the optimal cost
function defined as

J∗(x(k)) = min
{u(·)}

∞∑
h=k

U(x(h), u(x(h))) (3)

satisfies the discrete-time HJB equation
J∗(x(k)) = min

u(x(k))

{
U(x(k), u(x(k)))+J∗(x(k + 1))

}
. (4)

It is hard to solve the above HJB equation with the
traditional manners, because the value of J∗(x(k + 1)) is
unknown in advance and the controlled plant is nonaffine.
This difficulty also exists when deriving the exact optimal
control by using

u∗(x(k)) = arg min
u(x(k))

{
U(x(k), u(x(k))) + J∗(x(k + 1))

}
.

(5)
Therefore, it is necessary to pursue the near-optimal
control design in nonlinear discrete-time domain.
For solving the discrete-time HJB equation approximately,
the effective iterative form of data-driven adaptive critic
design can be employed. Moreover, an event-driven con-
dition should be designed with a positive threshold, so
as to reduce the updating times of the control input. In
this paper, the mixed driven structure is constituted by
the data and event considerations during these two steps.
The mixed data and event driven iterative adaptive critic
control design will be presented detailedly in the next
section.

3. MIXED DRIVEN ITERATIVE ADAPTIVE CRITIC
CONTROL DESIGN WITHIN A GENERAL
NONAFFINE DISCRETE-TIME DOMAIN

The data-driven iterative adaptive critic method with
neural dynamic programming implementation and the
event-driven control system design are included in this
section.

3.1 Data-Driven Iterative Algorithm With Neural Dynamic
Programming Implementation

Here, we describe the iterative learning algorithm step by
step. Before carrying out the main iteration process, we
should set a small positive number ε and construct two
sequences {J (i)(x(k))} and {u(i)(x(k))}, where i denotes
the iteration index and i ∈ N. The iteration process starts
with i = 0 and the initial cost function is chosen as
J (0)(·) = 0.
According to the current value of the cost function, the
iterative control function is solved by
u(i)(x(k)) = arg min

u(x(k))

{
U(x(k), u(x(k))) + J (i)(x(k + 1))

}
,

(6)
where the involved state vector x(k+1) = F (x(k), u(x(k)))
can be approximated by using a neural-network-based
learning module. Incidentally, note that since J (0)(·) = 0,
we can easily compute that u(0)(·) = 0.
Based on the new control law, the iterative cost function
is updated according to
J (i+1)(x(k)) = min

u(x(k))

{
U(x(k), u(x(k))) + J (i)(x(k + 1))

}
.

(7)
Once the newest cost function is updated, we should check
the stopping criterion related to ε and decide whether the
next iteration is necessary.
In case that |J (i+1)(x(k)) − J (i)(x(k))| ≤ ε, we stop the
iteration process and derive the near-optimal control law.
Otherwise, we increase the iteration index as i = i + 1
and continue to implement the above steps as (6) and
(7). In a word, the whole iterative process is carried
out according to the sequence J (0) → u(0) → J (1) →
u(1) → · · · . The convergence of this iterative algorithm is
reflected by considering two aspects, namely boundedness
and monotonicity.
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In the sequel, the detailed learning procedure of the above
iterative algorithm is presented via the neural dynamic
programming technique. This is a data-driven learning
control process containing the approximate state x̂(k +

1), the approximate cost Ĵ (i)(x(k)), and the approximate
control û(i)(x(k)), which are just the outputs of three
neural networks.
With a neural identifier, a critic network, and an action
network, the implementation diagram of the data-driven
iterative algorithm in discrete-time domain is displayed
in Fig. 1. Note that the blue dashed line represents the
backpropagating path of the involved neural networks.

Fig. 1. Implementation diagram of the data-driven itera-
tive algorithm.

For learning the nonlinear system dynamics, a neural net-
work identifier is first constructed via data-driven pro-
cessing. By inputting the state x(k) and the control
û(i−1)(x(k)), we can express the output of the neural
identifier as

x̂(k + 1) = ωT
1 σ

(
νT1

[
xT(k), û(i−1)T(x(k))

]T)
, (8)

where ω1 and ν1 are the involved weight variables and σ(·)
is the activation function. Combining with the updated
state x(k + 1), the training performance measure of the
neural identifier is defined as
E1(k) =

1

2

[
x̂(k+1)−x(k+1)

]T[
x̂(k+1)−x(k+1)

]
. (9)

Establishing the neural identifier is a pre-training proce-
dure that should be conducted before the main iteration
of critic and action networks.
The critic network approximates the iterative cost function
with weight matrices ω2 and ν2 and the formulation

Ĵ (i)(x(k)) = ω
(i)T
2 σ

(
ν
(i)T
2 x(k)

)
. (10)

Combining with (7) of the i-th iteration, the training
performance measure is

E2(k) =
1

2

[
Ĵ (i)(x(k))− J (i)(x(k))

]2
. (11)

Note that the iteration index i is omitted in E2(k) for
simplicity. Actually, this performance measure is varied
along with different iteration numbers.
Using the state variable x(k) and the weight variables
ω3 and ν3, the action neural network approximates the
iterative control law as follows:

û(i−1)(x(k)) = ω
(i−1)T
3 σ

(
ν
(i−1)T
3 x(k)

)
. (12)

The performance measure for tuning action parameters is

E3(k) =
1

2
[Ĵ (i−1)(x̂(k + 1))− V0]

2, (13)

where V0 is always set as zero in light of Si and Wang
(2001) and the iteration index i is also omitted in E3(k).
It is important to note that the action training error is
defined as Ĵ (i−1)(x̂(k+1))−V0 within the neural dynamic
programming formulation. This is quite different from
the training strategy given in (Zhang, Luo, & Liu, 2009;
Wang, Liu, Wei, Zhao, & Jin, 2012), where the vector
error between the iterative controller and the optimal
controller is considered. By virtue of this manner, the
direct dependence on the control matrix is removed, which
is very significant to address the optimal feedback control
design of nonaffine dynamics.
By adopting the gradient-based adaptation rule, the
weight matrices of the neural identifier, the critic network,
and the action network can be updated with a unified
criterion

∆ωl = −αl

(
∂El(k)
∂ωl

)
, (14a)

∆νl = −αl

(
∂El(k)
∂νl

)
, l = 1, 2, 3, (14b)

where αl > 0, l = 1, 2, 3 are the learning rates of the
three networks and ∆ωl and ∆νl with l = 1, 2, 3 are the
difference values of two orderly updating steps.
After carrying out the data-driven algorithm with suffi-
cient iteration steps, the practical near-optimal control law
written as û∗(x(k)) is derived. If we directly apply the
near-optimal control law to the original plant, the control
input may update frequently. In other words, relying on
the time-based manner always brings in an obvious waste
of the communication resource. In the sequel, we focus
on designing an effective triggering condition and study
how the feedback control system becomes under the event-
driven manner.

3.2 Event-Driven Control System Design With A Proper
Triggering Condition

The background of the event-driven design is provided here
by defining a monotonically increasing sequence {sj}∞j=0,
where j ∈ N. The event-driven control signal is only
updated at the sampling instants s0, s1, s2, . . . . Then, the
general feedback control law u(x(k)) can be denoted as
u(x(sj)) in this part, where x(sj) is the sampled state
at the time instant k = sj , k ∈ [sj , sj+1), j ∈ N. In this
paper, after the data-driven learning stage, the practical
control law, i.e., û∗(x(k)), with event-driven consideration
can be written as û∗(x(sj)). A zero-order-hold is always
introduced to keep the event-driven control input at the
instant k = sj , until the next event occurs. The event-
driven error is defined as

e(k) = x(sj)− x(k), k ∈ [sj , sj+1), j ∈ N, (15)
which means x(sj) = x(k) + e(k), so that the feedback
control is rewritten as û∗(x(sj)) = û∗(x(k) + e(k)). Via
the function of this control law, we have

x(k + 1) = F (x(k), û∗(x(k) + e(k))), k ∈ N, (16)
which is the closed-loop form of system (1) with event-
based consideration.
The following statements proposed in Eqtami, Dimarogo-
nas, and Kyriakopoulos (2010) are basic conditions used
for coping with the discrete-time event-driven design. The
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formulas ∥e(k)∥ ≤ ∥x(k)∥ and ∥x(k + 1)∥ ≤ π∥x(k)∥ +
π∥e(k)∥ are assumed to be true, where x(k + 1) is given
by (16) and the positive constant π ∈ (0, 0.5).
We now analyze how to derive an applicable triggering
threshold. Note the triggering error formula implies that

∥x(k − 1)∥ = ∥x(sj)− e(k − 1)∥
≤ ∥x(sj)∥+ ∥e(k − 1)∥. (17)

Observing the proposed assumption and the inequality
(17), we consider ∥e(k)∥ ≤ ∥x(k)∥ and further find that

∥e(k)∥ ≤ π∥x(k − 1)∥+ π∥e(k − 1)∥
≤ π(∥x(sj)∥+ ∥e(k − 1)∥) + π∥e(k − 1)∥
= 2π∥e(k − 1)∥+ π∥x(sj)∥. (18)

Combining (18) with the fact that e(sj) = 0, we derive
that

∥e(k)∥ ≤ 2π(2π∥e(k − 2)∥+ π∥x(sj)∥) + π∥x(sj)∥
≤ · · ·
≤ π∥x(sj)∥

[
1 + 2π + · · ·+ (2π)k−sj−1

]
. (19)

Hence, we can develop a triggering condition formed as
∥e(k)∥ ≤ ē(π), where the threshold is

ē(π) =
1− (2π)k−sj

1− 2π
π∥x(sj)∥, π ∈ (0, 0.5). (20)

The above inequality is a practical triggering condition of
the event-driven design. Note that here, the threshold ē is
a function of the constant π. How the triggering control
performance is affected by the choice of the constant is a
key issue that should be verified, where a special attention
should be paid in terms of reducing control updating times.
The design diagram of the above event-driven control
system is given in Fig. 2, where the blue dashed line
denotes the implementation path in the next time step.
The triggering condition therein is actually worked as a
switch and the case of control updating is depicted. When
the threshold is not violated, the control signal is kept
unchanged until the violation occurs. Hence, there always
exists a stair-stepping control curve during the event-
driven design.

Fig. 2. Design diagram of the event-driven control system.

It is worth mentioning that in Fig. 2, the weight vari-
ables of the action network and the neural identifier are
determined after the previous iterative learning activity.
Therefore, the data and event driven processes are closely
related to each other in the whole mixed driven framework.

4. SIMULATION STUDIES

In this section, we apply the mixed driven iterative adap-
tive critic approach to a specified nonaffine system, in

order to verify the near-optimal control performance. We
consider a discrete-time nonlinear plant formulated as

x(k + 1) =

[
0.3x2(k)− 0.5 cos(x2(k)) sin(0.6x1(k))

−0.1x1(k) + x2(k) + 0.1x2
2(k)

]
+

[
x1(k) tanh(u(k))

0.8u3(k)

]
, (21)

where the involved state vector is x(k) = [x1(k), x2(k)]
T

and the control variable is u(k). In order to handle the
approximate optimal regulation, the utility term of the
cost function is selected with Q = 0.2I2, R = I and then
three neural networks are constructed within the proposed
mixed driven framework.
We first train the neural identifier with an architecture of
3–8–2 (number of the input, hidden, and output layers)
by choosing the learning rate as α1 = 0.2 and employing
the rule (14). After a data-driven learning stage with a
randomly initial choice in [−0.1, 0.1], the weight variables
finally converge to two constant matrices, which can be
employed to update the system states of subsequent time
steps. Hence, this replaces the usage of the controlled plant
during the following main training process.
Then, we determine the structures of the critic and action
networks as 2–8–1 and 2–8–1, respectively and train them
according to (14). During the learning process, we choose
the initial state as x(0) = [1,−1]T and set the learning
rates as α2 = α3 = 0.2. Similar as the neural identifier,
the initial weights of critic and action networks are both
chosen randomly in [−0.1, 0.1]. In this situation, we employ
the iterative HDP algorithm for 28 iterations and then
the prespecified accuracy ε = 10−6 is reached, where
2000 training times are involved for each iteration. Here,
the convergence curve of the iterative cost function with
the specified initial state is shown in Fig. 3. Besides, the
convergence trends of the 2-norm calculation of critic and
action weights are presented in Fig. 4, where subgraphs (a)
and (b) are for the critic network while (c) and (d) are for
the action network. Since the given norms of these weight
matrices are convergent, we know that all the weight
elements are convergent during the iteration process.
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Fig. 3. Convergence curve of the iterative cost function.

Next, for turning to the event-driven design, we severally
let π = 0.2, π = 0.1, and π = 0.3, so that specify the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3872



0 10 20 30
Iteration index

0.6

0.65

0.7

0.75

0.8

‖ν
2
‖

(a)

0 10 20 30
Iteration index

0.8

0.9

1

1.1

1.2

‖ω
2
‖

(b)

0 10 20 30

Iteration index

0.49

0.5

0.51

0.52

0.53

‖ν
3
‖

(c)

0 10 20 30

Iteration index

0.34

0.36

0.38

0.4

0.42

‖ω
3
‖

(d)

Fig. 4. Convergence trends of the 2-norm calculation of
weight matrices. (a) Input-hidden weight of the critic
network. (b) Hidden-output weight of the critic net-
work. (c) Input-hidden weight of the action network.
(d) Hidden-output weight of the action network.

triggering threshold (20) as the following cases:

ē(0.2) =
1− 0.4k−sj

3
∥x(sj)∥, (22a)

ē(0.1) =
1− 0.2k−sj

8
∥x(sj)∥, (22b)

ē(0.3) =
3(1− 0.6k−sj )

4
∥x(sj)∥. (22c)

In the sequel, several case studies are implemented based
on the learnt weights of the iterative HDP algorithm for
300 time steps. In Case 1A, we apply the adaptive critic
controller û∗(x(k)) with π = 0.2 and the event-driven
threshold being selected as (22a). In Case 2, we revisit
the traditional time-based controller design method like
in Zhang, Luo, and Liu (2009). Using the corresponding
controllers, the state trajectories of two case studies are
given in Fig. 5. Note the state responses therein are
almost the same. Besides, the triggering threshold related
to Case 1A is depicted in Fig. 6. Remarkably, the control
trajectories of the two cases are illustrated in Fig. 7, where
a stair-stepping curve is clearly observed, just affected by
the event-based mechanism.
At last, for checking the event-driven control performance
and updating times along with the variation of the thresh-
old, we severally set π = 0.1 (Case 1B) and π = 0.3 (Case
1C) and conduct other two case studies. To this end, we
change the corresponding thresholds to (22b) and (22c)
and compare the obtained control curves with the time-
based case of Case 2 via Figs. 8 and 9, respectively. It is
observed from Figs. 7, 8, and 9 that the stair-stepping
phenomenon of the event-driven control curves become
more and more obvious as the enlargement of the constant
π. Additionally, we let the control updating times of event-
based and time-based formulations be denoted as T1 and
T2, respectively. In this example, we apply the traditional
algorithm for 300 time steps, so that T2 = 300. However,
with the involvement of the event-based mechanism, the
related updating times of control signals are overtly re-
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Fig. 5. State trajectories of Case 1A (π = 0.2) and Case 2.
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Fig. 6. Triggering threshold of Case 1A (π = 0.2).
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Fig. 7. Control inputs of Case 1A (π = 0.2) and Case 2.
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duced. For Cases 1A, 1B, and 1C, the updating times
are T1 = 25, T1 = 80, and T1 = 8, respectively. Such
simulation results verify that the event-driven scheme can
greatly lessen control updating times while still guarantee
a satisfying control performance.
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Fig. 8. Control inputs of Case 1B (π = 0.1) and Case 2.
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Fig. 9. Control inputs of Case 1C (π = 0.3) and Case 2.

5. CONCLUSION

In this paper, a mixed driven framework including data
and event manners is developed for addressing discrete-
time nonlinear optimal regulation. The mixed driven it-
erative adaptive critic algorithm is presented with neural
dynamic programming implementation and proper trig-
gering threshold design. For clarifying the effectiveness,
simulation studies are illustrated to display the neural
near-optimal control performance with an emphasis on
nonaffine dynamics. Practical applications based on the
proposed formulation, such as for complex wastewater
treatment processes, will be paid attention to in the future.

REFERENCES
Al-Tamimi, A., Lewis, F. L., & Abu-Khalaf, M. (2008).
Discrete-time nonlinear HJB solution using approximate

dynamic programming: Convergence proof. IEEE Trans-
actions on Systems, Man, and Cybernetics–Part B: Cy-
bernetics, 38(4), 943–949.
Bian, T., Jiang, Y., & Jiang, Z. P. (2014). Adaptive
dynamic programming and optimal control of nonlinear
nonaffine systems. Automatica, 50(10), 2624–2632.
Dong, L., Zhong, X., Sun, C., & He, H. (2017). Adap-
tive event-triggered control based on heuristic dynamic
programming for nonlinear discrete-time systems. IEEE
Transactions on Neural Networks and Learning Systems,
28(7), 1594–1605.
Eqtami, A., Dimarogonas, D. V., & Kyriakopoulos, K.
J. (2010). Event-triggered control for discrete-time sys-
tems. In Proceedings of American Control Conference,
Baltimore, MD, USA, June 2010, pp. 4719–4724.
Fan, Q. Y., & Yang, G. H. (2018). Event-based fuzzy
adaptive fault-tolerant control for a class of nonlinear
systems. IEEE Transactions on Fuzzy Systems, 26(5),
2686–2698.
Garcia, E., & Antsaklis, P. J. (2014). Optimal model-
based control with limited communication. In Proceedings
of 19th IFAC World Congress, Cape Town, South Africa,
August 2014, pp. 10908–10913.
Ha, M., Wang, D., & Liu, D. (2020). Event-triggered
adaptive critic control design for discrete-time con-
strained nonlinear systems. IEEE Transactions on Sys-
tems, Man and Cybernetics: Systems, in press.
Kiumarsi, B., Kang, W., & Lewis, F. L. (2016). H∞
control of nonaffine aerial systems using off-policy rein-
forcement learning. Unmanned Systems, 4(1), 51–60.
Nowzari, C., Garcia, E., Cortes, J. (2019). Event-
triggered communication and control of networked sys-
tems for multi-agent consensus. Automatica, 105, 1–27.
Si, J., & Wang, Y. T. (2001). On-line learning control
by association and reinforcement. IEEE Transactions on
Neural Networks, 12(2), 264–276.
Wang, D., & Liu, D. (2018). Learning and guaranteed
cost control with event-based adaptive critic implementa-
tion. IEEE Transactions on Neural Networks and Learn-
ing Systems, 29(12), 6004–6014.
Wang, D., Liu, D., Wei, Q., Zhao, D., & Jin, N. (2012).
Optimal control of unknown nonaffine nonlinear discrete-
time systems based on adaptive dynamic programming.
Automatica, 48(8), 1825–1832.
Wang, D., & Zhong, X. (2019). Advanced policy learning
near-optimal regulation. IEEE/CAA Journal of Auto-
matica Sinica, 6(3), 743–749.
Werbos, P. J. (1992). Approximate dynamic program-
ming for real-time control and neural modeling. In White,
D. A., & Sofge, D. A. (Eds.), Handbook of Intelligent
Control: Neural, Fuzzy, and Adaptive Approaches. New
York, NY: Van Nostrand Reinhold, ch. 13.
Zhang, H., Luo, Y., & Liu, D. (2009). Neural-network-
based near-optimal control for a class of discrete-time
affine nonlinear systems with control constraints. IEEE
Transactions on Neural Networks, 20(9), 1490–1503.
Zhang, H., Liu, Y., Xiao, G., & Jiang, H. (2020). Data-
based adaptive dynamic programming for a class of
discrete-time systems with multiple delays. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems,
50(2), 432–441.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3874


