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Abstract: The problem of compensating a given plant by means of a static compensator in
such a way that, for any input, the output of the compensated system matches that of a given
positive model, when both are initialized at 0, and its state evolves in the positive cone for
positive initial conditions and inputs is considered. Under a mild structural assumption for
the output-difference system between the plant and the model, a complete characterization of
solvability of the problem in terms of necessary and sufficient conditions is obtained by means
of structural geometric methods. Solvability conditions are practically checkable by algorithmic
procedures and by solving a set of linear inequalities. The problem of asymptotic matching
for any initial condition is then considered and solvability is characterized by necessary and
sufficient conditions. A necessary condition that is practically checkable is given. Solvability by
a dynamic compensator is also studied and a sufficient condition to characterize it is given.
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1. INTRODUCTION

Positive systems are dynamical systems whose state and
output variables are non negative at all times if the initial
conditions and the inputs are non negative. Phenomena
that can be naturally described by means of a positive sys-
tem appear in various fields, since many physical quantities
such as population levels, buffer sizes, charge levels, light
intensity levels, prices, etc. are naturally non negative. A
mathematical model that correctly describes their time
evolution needs to satisfy the positivity constraint. In
view of these applications, control and design problems
for positive systems have attracted the interest of many
researchers.

In the 1980s, Luenberger presented in Luenberger (1979)
the first systematic treatment of positive systems. Then,
many theoretical results were obtained, making use of
classical mathematical results on positive matrices (see, for
instance, Berman and Plemmons (1979), Seneta (1981))
and, in particular, Perron (1907), Frobenius (1912), Ito
(1997), and Karpelevich (1988) on eigenvalue localiza-
tion. Stability issues, asymptotic behavior and equilibrium
points where investigated (see, for instance, De Leenheer
and Aeyels (2001) and De Leenheer and Aeyels (2002)).
The problem concerning the existence and the design of
controllers that make the closed-loop system asymptoti-
cally stable and positive where considered in Heemels et al.
(1998), Kaczorek (2002), van den Hof (1998) and several
sufficient conditions, based on Gershgorin’s theorem, were
proposed. In Gao et al. (2005), sufficient constructive
conditions for the existence of a stabilizing compensator

ensuring the positivity of the compensated system were
given in terms of LMI’s.

However, several classical results, for instance, on reacha-
bility, observability and realization that hold for general
linear systems cannot be directly extended to positive
systems due to the fact that such systems evolve on cones,
rather than on linear spaces. Instead, new mathematical
tools, based on graph theory and cone theory, need to be
developed and employed. For more details and a complete
list of references, see the fundamental books Farina and
Rinaldi (2000), Kaczorek (2002) and the survey paper
Benvenuti and Farina (2004).

Since compensating a given plant in such a way to match
a given model is a powerful control strategy that may help
to solve complex problems (Wolovich (1972), Moore and
Silverman (1972), Morse (1973), Bao et al. (2012), Seyboth
and Allgöwer (2014)), the model matching problem is,
among classical control problems, one that deserves to be
studied in the framework of positive systems. The problem
has been investigated by a number of authors for several
classes of dynamical systems (e.g. linear systems Malabre
(1982), systems over rings and time-delay systems Conte
and Perdon (1995), nonlinear systems Moog et al. (1991),
descriptor systems Kučera (1992), 2D systems Picard et al.
(1998), switching systems Conte et al. (2014), periodic
systems Colaneri and Kucera (1997), hybrid systems Conte
et al. (2018a), LPV systems Conte et al. (2018b)) using
various methods. In particular, the structural geometric
approach has been shown to be capable of providing solv-
ability conditions and viable procedure for constructing
solutions.
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With the above motivation, in this paper we investigate
the problem of compensating a linear plant so that the
state of the compensated system evolves in the positive
cone for all positive initial conditions and inputs (posi-
tivity condition) and its output matches that of a given
positive model (matching condition). More precisely, this
means that, for all inputs, the output of the compensated
plant equals that of the model if both are initialized at
0 (exact model matching). In a more demanding formu-
lation of the problem, in addition to this condition, the
output of the compensated plant is required to converge
asymptotically to that of the model for any initialization
of both (asymptotic model matching). This objective is
achieved if the compensator also stabilizes the output-
difference system between the plant and the model.

The paper is organized as follows. In order to tackle the
problems, we formulate it in Section 2 as a disturbance
decoupling problem with the additional constraint of pos-
itivity, as explained above, and we consider solvability
both by a static state feedback and by a dynamic com-
pensator. The constraint of positivity makes the problem
more difficult than the classical disturbance decoupling
problem for linear systems and its solution requires the
introduction of specific tools and concepts. Therefore, in
Section 3, we define a geometric notion of positive and
strongly positive controlled invariance and we use it for
stating necessary and suffcicient solvability conditions for
the exact matching problem in the framework of posi-
tive systems with static state feedback in Theorem 12.
This result is obtained under a structural hypothesis that
corresponds to left invertibility of the output-difference
system between the plant and the model. An algorithmic
procedure that makes it possible to check practically the
solvability conditions and to construct solutions, if any
exists, is given. Solvability of the asymptotic matching
problem with static state feedback is characterized in a
similar way in Theorem 14 and a necessary condition that
can be practically checked by an algorithmic procedure
is given in Theorem 15. Finally, a sufficient condition
for solvability of the matching problem in the framework
of positive systems by means of a dynamic compensator
is given in Theorem 16. An illustrative example is then
provided. Section 4 contains conclusions and indications
of future work.

2. PRELIMINARIES AND PROBLEM STATEMENT

A linear system Σ defined by equations of the form

Σ ≡
{
ẋ(t) = Ax(t) + B u(t)
y(t) = C x(t)

(1)

where x ∈ Rn is the state, u(t) ∈ RM is the input and
y ∈ Rp is the input, A, B and C are real matrices of
suitable dimensions, is called positive if x(t) and y(t) are
non negative for t ≥ 0 for non negative initial conditions
and inputs. It is well known that this is equivalent to the
fact that the dynamic matrix A is a Metzler matrix, i.e. all
its off-diagonal elements are non negative (see Berman and
Plemmons (1979)), and B, C are non negative matrices,
i.e. all their entries are non negative. In the rest of the
paper, we will assume that B and C are, respectively, full
column rank and full row rank matrices.

Given a linear system ΣP and a positive linear system ΣM ,
called respectively the plant and the model and described
by the equations

ΣP ≡
{
ẋP (t) = AP xP (t) + BP uP (t)
yP (t) = CP xP (t)

(2)

ΣM ≡
{
ẋM (t) = AM xM (t) + BM uM (t)
yM (t) = CM , xM (t)

(3)

with dim(yP ) = dim(yM ) = p, the basic problem we
consider consists in compensating the plant in such a way
to achieve positivity and to match the model. This second
requirement means that, starting with initial conditions
xP (0) = 0 and xM (0) = 0 for the plant and for the
model, the difference between the output of the compen-
sated plant and that of the model is identically null. A
more demanding problem is that of asymptotic matching,
in which, in addition to the previous requirement, the
difference between the output of the plant and that of
the model is required to go asymptotically to 0 for any
initial condition xP (0) and xM (0) of the plant and of the
model. What makes the problems more difficult than the
standard model matching problem for linear systems is, of
course, the requirement of positivity. The compensator can
be assumed to be static or dynamic, giving rise to different
formulations of the problem, as stated below.

Problem 1. Given a linear system ΣP and a positive sys-
tem ΣM , called respectively the plant and the model and
described by the equations (2) and (3), assume that the
state of the plant and the state of the model are mea-
surable and consider the output-difference system Σdiff

described by the equations

Σdiff ≡

{
ẋP (t) = AP xP (t) + BP uP (t)
ẋM (t) = AM xM (t) + BM uM (t)
yE(t) = CPxP (t)− CM xM (t)

(4)

The Exact Model Matching Problem in the framework
of positive systems (EMMP+) consists in finding a state
feedback law

uP (t) = FP xP (t) + FMxM (t) + DuM (t), (5)

with Fp, FM and D matrices of suitable dimension, such
that, denoting by ΣF

diff the compensated output-difference
system given by

ΣF
diff ≡


ẋP (t) = (AP + BPFP )xP (t)+

BPFM xM (t) + BPDuM (t)
ẋM (t) = AM xM (t) + BM uM (t)
yE(t) = CPxP (t)− CMxM (t)

, (6)

we have

- Positivity condition: the dynamic matrix of ΣF
diff ,

namely

(
AP + BPFP BPFM

0 AM

)
is a Metzler matrix

and its input matrix, namely

(
BPD
BM

)
is nonnega-

tive;
- Matching condition: the output yE(t) of ΣF

diff ,

with initial conditions (xP (0)> xM (0)>)> = 0, is
null for t ∈ R+ for all input signals uM (t).

Problem 2. In the same hypotheses as in Problem 1, the
Asymptotic Model Matching Problem in the framework
of positive systems (AMMP+) consists in finding a state
feedback law of the form (5), with Fp, FM and D matri-
ces of suitable dimension, that solves the EMMM+ and,
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in addition, stabilizes the compensated output-difference
system ΣF

diff .

Remark 3. The Positivity condition assures that, for
nonegative initial conditions and inputs, the state of the
compensated plant evolves in the positive cone of Rn,
as that of the model. The above problems make sense,
in particular, if the plant is itself positive. The above
formulation encompasses the more general situation in
which positivity has to be achieved, not only preserved,
by the feedback, as e.g. in the problem of stabilizing and
making positive a given linear system that is considered in
Gao et al. (2005).

Remark 4. Viewing uP as the control input and uM as
a measurable disturbance for Σdiff , the above formula-
tions of the matching problems makes it clear that they
are equivalent, respectively, to a disturbance decoupling
problem with measurable disturbance and to the same
problem with stability by means of a static state feedback
which achieves positivity of the plant. The equivalence
between the model matching problem and a suitable dis-
turbance decoupling one was exploited in most of the
paper dealing with model matching that have been quoted
in the introduction. As already remarked, the positivity
requirement complicates the problems with respect to the
classical disturbance decoupling ones dealt with in Basile
and Marro (1992) and Wonham (1985).

In the framework of linear systems, measurability of the
state of the plant and of the model is not a restrictive
assumption if dynamic compensators are allowed. The
situation is more complicated to handle in the framework
of positive systems. In case states are not measurable, but
there exists a static state feedback law of the form (5)
that satisfies the Positivity condition and the Matching
condition, one could consider the dynamic compensator
ΣC given by the equation

ΣC ≡


ż1(t) = (AP + BPFP ) z1(t)+

BPFM z2(t) + BPDuM (t)
ż2(t) = AM z2(t) + BM uM (t)
uP (t) = FP z1(t) + FMz2(t) + DuM (t)

(7)

whose dynamic matrix is a Metzler matrix and whose
input matrix is non negative. Applying ΣC to Σdiff , the
resulting system takes the form

ΣC
diff ≡



ẋP (t) = AP xP (t) + BPFP z1(t)
BPFM z2(t) + BPDuM (t)

ẋM (t) = AM xM (t) + BM uM (t)
ż1(t) = (AP + BPFP ) z1(t)+

BPFM z2(t) + BPDuM (t)
ż2(t) = AM z2(t) + BM uM (t)
yE(t) = CPxP (t)− CMxM (t)

(8)

and it is possible to show that, initializing the system at
(xP (0)> xM (0)> z1(0)> z2(0)>)> = 0, for any input uM (t)
one has yE(t) = 0 for t ≥ 0. In other words, ΣC forces the
output of the plant to equal that of the model, so achieving
an exact matching. However, the Positivity condition for
the compensated system ΣC

diff does not necessarily hold,
even if the plant is positive, since BPFP is not necessarily
nonnegative. This means that a static feedback solution
may loose the property of guaranteeing positivity for the
dynamics of the compensated system if it is implemented
by means of a dynamical compensator. In view of this
remark, we can state the following problem.

Problem 5. Given a positive plant ΣP and a positive
model ΣM , the Exact Model Matching Problem by Dy-
namical Conpensator in the framework of positive systems
(DEMMP+) consists in finding a linear system ΣC of the
form

ΣC ≡
{

ż(t) = AC z(t) + BCuM (t)
uP (t) = FCz(t) + DuM (t)

(9)

where AC is a Metzler matrix and BC is a non negative
matrix such that, denoting by ΣC

diff the compensated
output-difference system given by

ΣC
diff ≡


ẋP (t) = AP xP (t) + BPFC z(t) + BPDuM (t)
ẋM (t) = AM xM (t) + BM uM (t)
ż(t) = AC z(t) + BCuM (t)

yE(t) = CPxP (t) + CMxM (t)

,

(10)
we have

- Positivity condition: the dynamic matrix of ΣC
diff ,

namely

(
AP + BPFP 0 BPFM

0 AM 0
0 0 AC

)
is a Metzler

matrix and its input matrix, namely

(
BPD
BM

BC

)
is non

negative;
- Matching condition: for all input signals uM (t),

the output yE(t) of ΣC
diff , with initial conditions

(xP (0)> xM (0)> xC(0)>)> = 0, is null for t ∈ R+

.

3. STRUCTURAL ANALYSIS AND PROBLEM
SOLUTION

Let us write the equations of the ouput-difference system
Σdiff in the more compact form

Σdiff ≡

{
ẋE(t) = AE xE(t) + B1 uP (t)+

B2uM (t)
yE(t) = CE xE(t)

(11)

with xE = (x>P , x
>
M )>, AE =

(
AP 0
0 AM

)
, B1 =

(
BP

0

)
,

B2 =

(
0

BM

)
, CE = (CP − CM ). We recall that a

subspace V ⊆ XE = XP ⊕ XM is an (AE , B1)- invariant
subspace if the relation

AEV ⊆ V + ImB1 (12)

holds. It is well known that (12) is equivalent to the
existence of a feedback matrix F : XE → U such that
the relation

(AE + B1F )V ⊆ V (13)

holds and that there exists a maximal (AE , B1)-invariant
subspace, denoted by V∗ contained in Ker CE (see Basile
and Marro (1992)). Any feedback matrix for which (13)
holds is called a friend of V.

Note that if V =

(
VP

VM

)
is a matrix whose columns are a

basis of the (AE , B1)-invariant subspace V, then span (VP )
is an (AP , BP )-invariant subspace of XP and span (VM ) is
an AM -invariant subspace of XM .

In dealing with positive systems, we are interested in the
following notion.
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Defition 6. Given a linear system Σ defined by equation of
the form (1), an (A,B)-invariant subspace V of X is said
to be positive if it has a friend F such that (A + BF ) is a
Metzler matrix.

Defition 7. Given a linear system Σ defined by equation of
the form (1), an (A,B)-invariant subspace V of X is said
to be strongly positive if it has a positive friend F such
that (A + BF ) is a Metzler matrix.

Given a linear system Σ defined by equations of the form
(1), in order to study the positivity of an (A,B)-invariant
subspace V, let us assume that the condition

V ∩ ImB = {0} (14)

holds. In that case, if V is a matrix whose columns are a
basis of V, there exists a unique pair of matrices (L, M)
of suitable dimensions such that

AV = V L + BM (15)

and, letting P be a permutation matrix such that PV =(
V1

V2

)
with V1 square of dimensions dim(V)×dim(V) and

non singular, any friend F of V has the two-block form

F = (−MV −11 −KV2V
−1
1 K)P

where K is an arbitrary matrix of suitable dimensions. We
can therefore state the following proposition.

Proposition 8. Given a linear system Σ of the form (1) and
an (A,B)-invariant subspace V of X such that condition
(14) holds, then

- V is a positive (A,B)-invariant subspace if and only
if, with the above assumptions and notations, there
exists a matrix K of suitable dimensions such that
the matrix (A + B(−MV −11 −KV2V

−1
1 K)P ) is

a Metzler matrix.
- V is a strongly positive (A,B)-invariant subspace if

and only if the above conditions holds and the matrix
(−MV −11 −KV2V

−1
1 K) is positive.

Remark 9. A parametrization of the family of all friends of
V can be obtained also if condition (14) does not hold and
a characterization of positive controlled invariance, similar
to the above one, can be derived also in the general case.
We limited our analysis to the situation in which (14) holds
only for simplifying the formulation of the results about
the matching problem in the next section.

More generally, the following result is useful in the specific
situation we are interested in.

Proposition 10. Given the plant ΣP and the positive
model ΣM , consider the resulting output-difference system
Σdiff described by (11), let V∗ be the maximal (AE , B1)-
invariant subspace contained in Ker CE and assume that
the condition

V∗ ∩ ImB1 = {0} (16)
holds. Then for any subspace W ⊆ V∗ + ImB1, the set of
(AE , B1)-invariant subspaces V contained in Ker CE such
thatW ⊆ V+ImB1 ⊆ V∗+ImB1 is a lattice with respect
to intersection and sum of subspaces. As a consequence

a) there exists a minimal (AE , B1)-invariant subspace
contained in Ker CE , denoted by V∗(W) such that
W ⊆ V∗(W) + ImB1 ⊆ V∗ + ImB1;

b) if V1 and V2 are (AE , B1)-invariant subspaces such
that V1 ⊆ V2 ⊆ V∗, any friend of V2 is also a friend
of V1.

Proof. See Conte and Perdon (1991).

Remark 11. Condition (16) is equivalent to left invertibil-
ity of ΣE and, due to the structure of that system, it
implies that also the plant ΣP is a left invertible linear
system. In fact, the maximal controlled (AP , BP )-invariant
subspace V∗P of XP contained in Ker CP is such that
V∗P ⊕ {0} is an (AE , B1)-invariant subspace of XP ⊕ XM

contained in Ker CE = Ker(CP − CM ). It follows that
V∗P ⊕{0} is contained in V∗ and hence V∗P ∩ ImBP = {0}.

3.1 Solvability conditions for the EMMP+

We can now state the structural solvability conditions for
the EMMP+.

Theorem 12. Given a linear system ΣP and a positive
model ΣM , consider the output-difference system Σdiff

described by (11) and assume that condition (16) holds.
Letting V be a matrix whose columns form a basis of V∗,
the related EMMP+ is solvable if and only if

a) B2 = V H − B1D for a matrix H and a matrix D
of suitable dimensions such that B1D is non negative
and

b) V∗(ImB2) is a positive (AE , B1)-invariant subspace.

Proof. Sufficiency. Condition a) implies ImB2 ⊆ V∗ +
ImB1 and together with (16) this implies that V∗(ImB2)
exists. Without loss of generality, we can assume that V
has been chosen of the form V = (V1 V2), where the
columns of V1 form a basis of V∗(ImB2). Therefore, we
have B2 = V1H

′ − B1D and the static state feedback
uP (t) = FPxP (t)+FMxm(t)+Dum(t), where (FP FM ) :
XP ⊕ XM → U is a friend of V∗(ImB2), decouples the
output yE(t) of ΣE from the input uM (t) (see Basile and
Marro (1992)). By b), we can assume that the matrix(
AP + BPFP BPFM

0 AM

)
is a Metzler matrix and, since(

BPD
BM

)
is non negative by a), this shows that the the

mentioned static state feedback law solves the EMMP+.

Necessity. Assume that the static state feedback uP (t) =
FPxP (t) + FMxm(t) + Dum(t), solves the EMMM+. By
applying it to Σdiff , we get the compensated system ΣF

diff

described by the equations

ΣF
diff ≡


ẋP (t) = (AP + BPFP )xP (t) + BPFMxM (t)+

BPDuM (t)
ẋM (t) = AM xM (t) + BM uM (t)
yE(t) = CPxP (t)− CM xM (t)

(17)
whose output is identically null for all input uM (t)
if the initial state is null. This means that there

exists an

((
AP + BPFP BPFM

0 AM

)
,

(
BP

0

))
-invariant

subspace V ⊆ XP ⊕ XM such that V ⊆ Ker(CP −

CM ) and Im

(
BPD
BM

)
⊆ V. Therefore, with the notation

of (11), V is a positive (AE , B1)-invariant subspace and,
letting V̄ be a matrix whose columns are a basis of V, we
have B2 = V̄ H̄ − B1D for some matrix H of suitable
dimensions. Then, if V is a matrix whose columns are
a basis of V ∗ of the form V = (V̄ V ′), condition a)

4
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follows by taking H = (H̄>0)>. Condition b) follows by
minimality of V∗(ImB2) and Proposition 10.

Remark 13. The necessary and sufficient conditions of
Theorem 12 are stringent and, since they completely char-
acterize solvability, this means that the requirements of the
problem are very strong. It is important to note, however,
that such conditions can be practically checked. To do
this, one has to construct V∗ and V∗(ImB1) by means of
the algorithms described respectively in Basile and Marro
(1992) and in Conte and Perdon (1991) and to solve the
inequalities that characterize positivity of V∗(ImB1) as
described in Proposition 8.

3.2 Solvability conditions for the AMMP+

About the AMMP+, we can give the following result.

Theorem 14. Given a linear system ΣP and a positive
model ΣM , consider the output-difference system ΣE de-
scribed by (11) and assume that condition (16) holds.
Letting V be a matrix whose columns form a basis of V∗,
the related AMMP+ is solvable if and only if

a) B2 = V H − B1D for a matrix H and a matrix D of
suitable dimensions such that BPD is non negative
and

b) V∗(ImB2) has a friend F such that (AE + B1F ) is a
Metzler matrix (in particular, V∗(ImB2) is a positive
(AE , B1)-invariant subspace) and a Hurwitz matrix
(i.e. ΣF

diff is asymptotically stable).

Proof. It follows from Theorem 12 and Proposition 10.

Characterization of (AE , B1)-invariant subspaces that sat-
isfies condition b) of the above therorem is not easy, nev-
ertheless the following result, which represents a necessary
condition for the solution of the AMMP+, can be given.

Theorem 15. Given a linear systems ΣP and a positive
model ΣM , consider the output-difference system ΣE de-
scribed by (11) and assume that condition (16) holds.
Letting V be a matrix whose columns form a basis of V∗,
the related AMMP+ is solvable only if

a) B2 = V H − B1D for a matrix H and a matrix D of
suitable dimensions such that BPD is non negative
and

b) V∗(ImB2) is a positive (AE , B1)-invariant subspace
and the (unique) matrix L such that AEV1 = V1L +
B1M , where V1 is a matrix whose columns are a basis
of V∗(ImB2), is Hurwitz.

Proof. It follows from Theorem 12 by remarking that
the dynamics induced on V∗(ImB2) in the compensated
system is described, in a suitable basis, by the matrix L.

3.3 Solvability conditions for the DEMMP+

About the DEMMP+, we can give the following result.

Theorem 16. Given a positive plant ΣP and a positive
model ΣM , consider the output-difference system ΣE de-
scribed by (11) and assume that condition (16) holds.
Then, the related DEMMP+ is solvable if there exists a
solution uM (t) = FPxP (t) + FMxM (t) + DuM (t) of the
EMMP+ such that BPFP is a non negative matrix. In
particular, this holds if V(ImB2) is a strongly positive
(AE , B1)-invariant subspace.

Proof. It is sufficient to remark, as done in Section 2, that
a solution is given by the compensator (9).

3.4 Example

For sake of illustration, let us consider the plant ΣP and
the model ΣM defined respectively by the equations

ΣP ≡

 ẋP (t) =

(
0 2
3 −2

)
xP (t) +

(
1
1

)
uP (t)

yP (t) = (1 1)xP (t)
(18)

ΣM ≡

 ẋM (t) =

(
−1 1
0 −2

)
xM (t) +

(
0
1

)
uM (t)

yM (t) = (5 2)xM (t)
(19)

and the resulting system Σdiff of the form (11). Condition
(16) holds and we have that V∗(ImB2) = span(V ), where

V =

 1 1
1 0
0 1
1 −2

, and in particular B2 = V H − B1D with

H = (1 0)> and D = (1). Note that span(V ) satisfies (15)

with L =

[
0 −2
1 −3

]
and M = [ 1 5 ]. All friends of V are of

the form

F = [−5− k1 + 2k2 4− 3k2 + k1 k1 k2 ]

for any k1 and k2. Therefore, any possible solution of the
EMMP+ is of the form uP (t) = F xE(t) + uM (t) and the
dynamic matrix and the input matrix of the compensated
system are respectively of the form

AE+B1F =

−5− k1 + 2k2 6− 3k2 + k1 k1 k2
−2− k1 + 2k2 2− 3k2 + k1 k1 k2

0 0 −1 1
0 0 0 −2


and [

BPD
BM

]
=

 1
1
0
1

 .

We must chose k1 > 0 and k2 > 0 to satisfy the Positivity
condition and taking, for instance, k1 = 1 and k2 = 2, the
dynamic matrix becomes

(AE + B1F ) =


−2 1 1 2

1 −3 1 2

0 0 −1 1

0 0 0 −2

 .

Since it is a Metzler matrix and it is Hurwitz, actually for
F = (−2 −1 1 2) we have a solution of the AMMP+. Note
that span(V ) is not a strongly positive (AE , B1)-invariant
subspace, since any friend F ′ must satisfy F ′V = FV =
M = (−1 − 5) and this implies that at least one entry of
F ′ is negative.

4. CONCLUSIONS

The structural geometric approach has been applied to
the model matching problem in the framework of positive
linear system by introducing a suitable notions of positive
controlled invariance. This has made it possible to find
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solvability conditions by static state feedback for the con-
sidered problems in a number of situations. In particular,
the solvability of the asymptotic model matching problem
has been related to the existence of stabilizing friends for
positive controlled invariant subspaces and this property
needs to be further investigated in the future. Analogously,
starting from the sufficient condition that has been found,
the complete characterization of solvability by means of
dynamical compensators needs to be worked out.
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