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Andrei Sperilă ∗ Florin S. Tudor ∗∗ Bogdan D. Ciubotaru ∗

Cristian Oară ∗
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1. INTRODUCTION

The H∞ control problem was introduced at the begin-
ning of the 1980s in the seminal paper Zames [1981] as
a novel approach to closed-loop disturbance attenuation.
The standard formulation of the problem was established
in Doyle [1984] before definitive state-space formulas were
given for the proper, continuous-time case in Doyle et al.
[1989]. These were then expanded for more general cases
such as: nonlinear (Van der Schaft [1992]), time-varying
(Limebeer et al. [1992]) or discrete-time (Ionescu et al.
[1999]) systems. As an alternative to the pure state-space
approach, the original frequency-domain interpretation of
the problem introduced in Zames [1981] yielded the J-
lossless factorization proposed in Green [1992]. Very re-
cently, a variant of this technique was employed in Ste-
fanovski [2015] to provide a solution for the H∞ problem
where the plant may be improper in addition to having ze-
ros along the extended imaginary axis. Although powerful,
the algorithm presented in said paper is rather computa-
tionally demanding and does not provide a simpler routine
for systems that are only improper. Our approach in this
paper offers just such an alternative, for the case in which
the improper plant’s zeros are well-behaved.

It is in this context that we offer a solution for the set
of MIMO (multiple-input multiple-output) linear time-
invariant continuous-time systems described by a combi-
nation of both differential and algebraic equations

E
d

dt
x(t) =Ax(t) +Bu(t), (1)

y(t) =Cx(t) +Du(t), (2)

with A − sE a square pencil and E a singular matrix.
The singularity of E represents the cause for which the
system (1)-(2) features both algebraic and differential com-
ponents. Alternatively, one may describe these systems in
the frequency domain through the use of their transfer

function matrices which are possibly improper, or even
polynomial. These differential-algebraic systems are alter-
natively known in literature as generalized or descriptor
(see, for example, Verghese et al. [1981]). They prove
essential in modeling systems which exhibit physical al-
gebraic constraints or impulsive behavior (see Dai [1989]).
A large number of practical applications in the various
fields of engineering may be surveyed in Pasqualetti et al.
[2013], Offner et al. [2016], Campbell et al. [2019] and their
respective references.

The paper is organized as follows. Preliminary results,
as well as general definitions and notation are given in
Section 2. The paper’s main result, the suboptimal H∞
problem for descriptor systems, is formulated and solved
in Section 3. An illustrative numerical example is then
showcased in Section 4. Finally, a set of concluding remarks
are elaborated upon in Section 5.

2. PRELIMINARIES

2.1 Definitions and general notation

Let C bee the complex plane and C := C ∪ {∞} the
latter’s extension at infinity. We denote by C− and C+

the open left-half and right-half planes, respectively, of C.
Let the imaginary axis be labeled as jR, along with its own
extension at infinity, jR := jR ∪ {∞}. For a matrix A ∈
Cp×m, A∗ denotes its conjugate transpose and σmax(A) its
maximum singular value. If A is square, ρ(A) represents
its spectral radius. If A−sE is a regular pencil, Λ(A−sE)
denotes the set of its generalized eigenvalues (both finite
and infinite, counting multiplicity). Throughout the paper,
we primarily describe a linear time-invariant dynamical
system, with m inputs and p outputs, by its transfer
function matrix (TFM)

H(s) =

[
aij(s)

bij(s)

]
i=1:p, j=1:m

, (3)
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where aij(s) and bij(s) are scalar polynomials with coeffi-
cients in C. As stated, we aim to investigate differential-
algebraic systems, whose TFMs may be improper (see
Dai [1989]), deg[aij(s)] > deg[bij(s)], or even polynomial,
bij(s) ≡ 1, for some i, j. Let Cp×m(s) be the set of all p×m
complex TFMs.

If all the poles of a system, H(s), are located in C−,
we deem it to be stable. Consequently, a stable system
is also proper (deg[aij(s)] ≤ deg[bij(s)], ∀i = 1 : p,
j = 1 : m) since, by our definition, stability precludes
the presence of poles at infinity. Let the Banach space of
complex p×m TFM bounded on jR, having the H∞ norm

defined as ‖H‖∞:= supω∈R σmax

(
H(jω)

)
, be denoted by

RL∞. Let RH∞(⊂ RL∞) be the subset of stable TFMs.

Additionally, denote by BH(γ)
∞ the subset of RH∞ such

that any TFM H(s) belonging to it satisfies ‖H‖∞< γ.

2.2 Realizations for differential-algebraic systems

In literature, differential-algebraic systems are usually
represented in the time-domain by descriptor realizations
of type (1)-(2) (see Dai [1989], Verghese et al. [1981]), with
A− sE ∈ Cn×n(λ) a regular n×n pencil and E a singular
matrix, along with all the associated constant complex
matrices B ∈ Cn×m, C ∈ Cp×n and D ∈ Cp×m having
appropriate dimensions. The connection between these
matrices and the TFM representation is made through

H(s) = C(sE −A)−1B +D =:

[
A− sE B
C D

]
. (4)

Descriptor realizations are an extension of the standard
state-space ones, the former being introduced to represent
systems which may have poles at ∞. Although (4) may
be used to describe any TFM model (3), it does introduce
a set of inconveniences when used to describe the type of
problem under investigation. For example, the order n of
the realization (4) is strictly greater than the McMillan
degree of H(s) (see Definition 3.12 in Zhou et al. [1996])
if the latter system has any poles at ∞.

Moreover, the classical interpretations of controllability
and observability do not amount to (4) being a minimal re-
alization. Furthermore, any two such minimal realizations
are not necessarily related by an equivalence transforma-
tion. Even worse, one cannot generally obtain a minimal
realization using exclusively unitary transformations when
starting from an arbitrary one (see Dai [1989], Van Dooren
[1981], Verghese et al. [1981, 1979]).

These inconveniences can be overcome by employing cen-
tered realizations, first introduced in Rakowski [1992]. To
define such a representation, one must first fix α, β ∈ C
and s0 ∈ C such that{

α = 1, β = 0, if s0 =∞,
α = s0, β = 1, if s0 ∈ C. (5)

We say that

H(s) = D + C(sE −A)−1B(α− βs) =:

[
A− sE B
C D

]
s0
(6)

is realization centered at s0 and we assume the implicit
choice of α and β in (5). If s0 = ∞, we merely drop the
index s0 from (6) and get the representation in (4).

We say that the pair (A−sE,B) or, alternatively, the real-
ization (6) is controllable at s ∈ C if rank [A− sE B] = n.
Furthermore, we affirm controllability at∞ if rank [EB] =
n. A realization or matrix pair are deemed controllable if
they are controllable ∀s ∈ C. Relaxing this condition, they
are deemed stabilizable if they are controllable ∀s ∈ C\C−.
By duality, the pair (C,A − sE) or the realization (6) is
observable if (A∗ − sE∗, C∗) is controllable. Similarly, we
relax the notion of observability into detectability, which
is equivalent to the pair (A∗− sE∗, C∗) being stabilizable.
Finally, a realization whose order is smallest among all
others centered at s0 is called minimal.

By choosing s0 (the point at which we center our real-
ization) as different from any pole of H(s), we recover all
the pleasant features of standard state-space realizations
(see Rakowski [1992] for a full discussion on the topic),
while eliminating all the inconveniences introduced by
realizations like (4). Moreover, the ease with which one
obtains centered realizations (surprisingly similar to the
standard ones) makes them all the more appealing for use
in investigating the central problem of this paper.

Starting from the expression of its TFM (3), a simple
method is given in Campbell et al. [2019] for directly
obtaining a centered realization (6). Alternatively, one can
use the procedures given in Pasqualetti et al. [2013] to
switch between a descriptor realization (4) and a centered
one (6), or vice-versa.

2.3 Algebraic Riccati equations

For systems described by centered realizations, there exists
a particular type of Riccati equation which will prove
instrumental in our investigation of the problem and which
is treated at length in Dinicu and Oară [2015]. Consider
the collection of matrices denoted by

Σ := (A− sE,B;Q,L,R), (7)

where A,E ∈ Cn×n, B,L ∈ Cn×m, Q = Q∗ ∈ Cn×n, and
R = R∗ ∈ Cm×m are invertible. Σ is used to summarily
represent a quadratic performance index∫ ∞

0

[
x(t)
u(t)

]∗ [
Q L
L∗ R

] [
x(t)
u(t)

]
dt, (8)

with x and u being the state and input vectors, respec-
tively, from (1). Thus, the optimization problem described
by Σ is constrained to the system’s dynamics, as given by
its centered realization. Let the latter be fixed by s0 ∈ jR,
as in (5), then we may associate with it the equation

A∗XE + E∗XA+Q− ((A− s0E)∗XB + L)R−1

×(L∗ +B∗X(A− s0E)) = 0, (9)

called the descriptor continuous-time algebraic Riccati
equation and denoted by DCTARE(Σ, s0). The matrix
X = X∗ ∈ Cn×n is called the unique stabilizing solution
of the DCTARE(Σ, s0) if Λ(A− sE +BF (α− βs)) ⊂ C−,
where

F := −R−1(L∗ +B∗X(βA− αE)) (10)

is the stabilizing Riccati feedback. Theorem 2 in Dinicu
and Oară [2015] gives necessary and sufficient existence
conditions for the unique stabilizing solution, together
with numerically sound prototype algorithms for its com-
putation.
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Remark 1. In the standard (proper) case, when s0 = ∞
and E = I, Σ is written in the form of a so-called Popov
triplet Σ := (A,B;Q,L,R) and DCTARE is replaced by
the (standard) continuous-time algebraic Riccati equation
associated with Σ, denoted CTARE(Σ), respectively

A∗X +XA+Q− (XB + L)R−1(B∗X + L∗) = 0, (11)

as defined in (3.19) of Ionescu et al. [1999]. In this
case, X = X∗ is the unique stabilizing solution to the
CTARE(Σ) if Λ(A + BF ) ⊂ C−, where now F :=
−R−1(B∗X + L∗) is the stabilizing Riccati feedback.

2.4 Möbius transformations

We present here several technical results related to Möbius
transformations, extracted from Section 7.4 of Tudor
[2018] and instrumental in proving the main result of this
paper.

Consider throughout this subsection that s0 = jω0 ∈ jR
is fixed such that s0 6∈ Λ(A − sE). Let the Möbius
(omographic) transformation f : C→ C be defined as

f(λ) =
aλ+ b

cλ+ d
, a, b, c, d ∈ C and ad− bc 6= 0, (12)

with a = jω0, b = c = 1, d = 0. For this particular choice,
we have that ad− bc = 1 6= 0. Using (12), one may define
f : C→ C as

f(λ) = jω0 +
1

λ
=: s, ∀λ ∈ C\{0},

f(0) =∞, f(∞) = jω0.
(13)

Lemma 2. Consider f : C → C as given in (13). Then, we
have that:

(i) f is continuous, bijective, conformal (it preserves
angles locally) and its inverse map, f−1, is given by

λ = f−1(s) =
1

s− jω0
, ∀s ∈ C\{jω0},

f−1(jω0) =∞, f−1(∞) = 0.
(14)

(ii) f maps the following subsets of C onto themselves:

f(jR) = jR, f(C−) = C−, f(C+) = C+. (15)

The next result showcases the preservation of key system
properties under the mapping given by (13).

Lemma 3. Let H ∈ Cp×m(s) be a continuous-time
differential-algebraic system having a realization centered
at s0 = jω0 ∈ jR\Λ(A − sE), as defined in (6). We may
now introduce the new linear system

H̃(λ) := H(s)
∣∣∣
s=f(λ)

= H
(
f(λ)

)
, (16)

where f is defined in (13). The following statements hold:

(i) H̃(λ) is stable if and only if H(s) is stable.

(ii) H̃ ∈ Cp×m(λ) is a proper continuous-time system
having the standard realization

H̃(λ)=

[
(A− jω0E)−1E − λI(A− jω0E)−1B

C D

]
=:

[
Ã− λIB̃
C D

]
.

(17)

(iii) Λ(Ã) ⊂ C− if and only if Λ(A− sE) ⊂ C−.

(iv) The realization (17) of H̃(λ) is stabilizable and
detectable if and only if the realization (6) of H(s)
is stabilizable and detectable. Moreover, (17) is a
minimal realization if and only if (6) is also minimal.

(v)
∥∥∥H̃∥∥∥

∞
= ‖H‖∞.

Finally, we present a connection, under the mapping f from
(13), between the stabilizing solutions to DCTARE and its
standard counterpart, CTARE (see Remark 1 and Ionescu
et al. [1999]).

Lemma 4. Let s0 = jω0 ∈ jR\Λ(A−sE), H(s) in (6), and

H̃(λ) in (16) given by the realization (17). Let

Σrsc := (A− sE,B; Qc, Lc, Rc),

Σrso := (A∗ − sE∗, C∗; Qo, Lo, Ro),
(18)

and their proper counterparts

Σ̃rsc := (Ã, B̃; Qc, Lc, Rc),

Σ̃rso := (Ã∗, C∗; Q̃o, L̃o, Ro),

Q̃o := (A− s0E)−1Qo(A− s0E)−∗,

L̃o := (A− s0E)−1Lo.

(19)

Then the DCTARE(Σrsc , s0) and DCTARE(Σrso , s0) have
stabilizing solutions X = X∗ and Y = Y ∗ if and only if the

CTARE(Σ̃rsc ) and CTARE(Σ̃rso ) have stabilizing solutions

X̃ = X̃∗ and Ỹ = Ỹ ∗, respectively. Furthermore, one
obtains:

X̃ = (A− jω0E)∗X(A− jω0E), Ỹ = Y,

K̃rs = (A− jωoE)−1Krs, F̃rs = Frs,
(20)

where Frs, Krs, F̃rs, K̃rs are the corresponding stabilizing
Riccati feedbacks of DCTARE(Σrsc , s0), DCTARE(Σrso , s0),

CTARE(Σ̃rsc ), and CTARE(Σ̃rso ), respectively.

3. H∞ SUBOPTIMAL CONTROL

Let H ∈ Cp×m(s) be described by a set of differential-
algebraic equations and assume H is written in partitioned
form as [

y1
y2

]
= H

[
u1
u2

]
=

[
H11 H12

H21 H22

] [
u1
u2

]

=

A− sE B1 B2

C1 D11 D12

C2 D21 D22


s0

[
u1
u2

]
, (21)

with s0 = jω0 ∈ jR\Λ(A − sE), A ∈ Rn×n, Hij ∈
Cpi×mj (s), and i, j = 1, 2, m = m1 +m2, p = p1 + p2. Let
K ∈ Cm2×p2(s) be an output feedback controller, which is
to say that u2 = Ky2.

The H∞ suboptimal control problem consists in finding
K such that the lower linear fractional transformation
(abbreviated LLFT), as defined below:

HCL = LLFT(H,K) = H11 + H12K(I −H22K)−1H21

(22)
is well-posed, internally stable (for the precise definition,
see Section 5.1 of Vidyasagar [1985]) and ‖HCL‖∞ < γ, for
any feasible γ. In short, internal stability implies that all
rational matrices that model the transfers from exogenous
inputs to closed-loop signals are stable, and thus implicitly
proper (by our definition of stability).
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For the above-stated objective to be feasible, the following
hypotheses have been inherited from the standard, proper
formulation of the control problem (see Theorem 10.3.1 in
Ionescu et al. [1999]):

(H1) The pair (A − sE,B2) is stabilizable and the pair
(A− sE,C2) is detectable;

(H2) rank
[
A− jωE B2(jω0 − jω)

C1 D12

]
= n+m2,∀ω ∈ R;

(H3) rank
[
A− jωE B1(jω0 − jω)

C2 D21

]
= n+ p2 ,∀ω ∈ R;

(H4)

[
D11 D12

D21 D22

]
=

 0 0 0
0 0 I
0 I 0

.

We remark that only hypotheses (H1)−(H3) are necessary
for the existence of a Riccati-based solution. (H1) is
fundamental, as it implies that there exists a class of
stabilizing controllers for our system. (H2) − (H3) are
made so as to ensure the solvability of the dual Riccati
equation approach and may be relaxed, if one opts for
the linear matrix inequality formulation of the problem.
(H4) is not at all necessary, and has been made only to
simplify the formulas given in the main result, through the
so-called “normalizing conditions”. Indeed, a system with
an arbitrary feedthrough matrix can be made compliant
with (H4) through a series of reversible transformations
(see section 17.2 of Zhou et al. [1996]).

The following theorem represents the main result of this
paper, and can be seen as an extension of Theorem 10.3.1
in Ionescu et al. [1999] to systems described by differential-
algebraic equations.

Theorem 5. Let H be given by a realization partitioned as
in (21), that satisfies hypotheses (H1)− (H4) and with s0
chosen on jR such that s0 = jω0 ∈ jR\Λ(A− sE).

Consider

Σc := (A− sE,Bc; Qc, Lc, Rc),
Σo := (A∗ − sE∗, C∗o ; Qo, Lo, Ro),

(23)

where

Bc =
[

1√
γB1

√
γB2

]
, Co =

[
1√
γC1√
γC2

]
,

Qc = 1
γC
∗
1C1, Qo = 1

γB1B
∗
1 ,

Lc =
[

0 1√
γC
∗
1D12

]
, Lo =

[
0 1√

γB1D
∗
21

]
,

Rc =

[
−Im1

0
0 Im2

]
, Ro =

[
−Ip1 0

0 Ip2

]
.

Then we have that:

I. There exists a feedback controller K ∈ Cm2×p2(s)
that solves the suboptimalH∞ control problem if and
only if the following conditions hold simultaneously:

(C1) The DCTARE(Σc, jω0) has a stabilizing positive
semidefinite solution X = X∗ ≥ 0.

(C2) The DCTARE(Σo, jω0) has a stabilizing positive
semidefinite solution Y = Y ∗ ≥ 0.

(C3) ρ[(A− jω0E)∗X(A− jω0E)Y ] < 1.

II. Assume that conditions (C1)− (C3) hold and let

Fc :=

[
F1

F2

]
=

[ 1√
γB
∗
1X(A− jω0E)

−
(√

γB∗2X(A− jω0E) + 1√
γD
∗
12C1

) ]
(24)

be the stabilizing feedback corresponding to the
DCTARE(Σc, jω0), and define

Z := Y (I − (A− jω0E)∗X(A− jω0E)Y )−1. (25)

The class of all controllers that solve the suboptimal
H∞ control problem is K = LLFT(Kg,Φ), where

Φ ∈ BH(γ)
∞ is arbitrary and

Kg(s) =

Ag − sEg Bg1 Bg2Cg1 0 I
Cg2 I 0


jω0

, (26)

with

Ag =A+ jω0(BcFc +Bg1Cg2),

Eg =E +BcFc +Bg1Cg2,

Bg1 =−B1D
∗
21 − (A− jω0E)Z(γC∗2 +

√
γF ∗1D

∗
21),

Bg2 =−B2 +
1
√
γ

(A− jω0E)ZF ∗2 ,

Cg1 =−√γF2,

Cg2 =C2 +
1
√
γ
D21F1.

Proof.

I. It can be easily shown that, if H(s) satisfies hy-

potheses (H1) − (H4), then H̃(λ) is eligible for The-
orem 10.3.1 in Ionescu et al. [1999], which gives a
solution to the suboptimal H∞ problem for proper
systems. (H1) and (iv) of Lemma 4 ensure that

there exists a class of stabilizing controllers for H̃(λ).
(H2) − (H3) and (ii) of Lemma 3 applied to the
zeros of H12(s) and H21(s) enable the two CTAREs

associated with H̃(λ) to have stabilizing solutions.
Finally, by (H4) and (17), “normalizing conditions”

also apply to H̃(λ).

Partition first

H̃(λ) :=

 Ã B̃1 B̃2

C1 D11 D12

C2 D21 D22

 , (27)

and recall from (17) that

Ã =(A− jω0E)−1E,[
B̃1 B̃2

]
=(A− jω0E)−1 [B1 B2 ] .

Let
Σ̃c := (Ã, B̃c; Qc, Lc, Rc),

Σ̃o := (Ã∗, C∗o ; Q̃o, L̃o, Ro),
(28)

where

B̃c =
[

1√
γ B̃1

√
γB̃2

]
,

Q̃o = 1
γ B̃1B̃

∗
1 ,

L̃o =
[

0 1√
γ B̃1D

∗
21

]
.

(29)
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Using statement I of Theorem 10.3.1 in Ionescu et al.

[1999], we get that, for a feasible γ, CTARE(Σ̃c)

and CTARE(Σ̃o) have positive semidefinite stabi-
lizing solutions and therefore, by Lemma 4, so do
DCTARE(Σc, jωo) and DCTARE(Σo, jωo) for the
same γ, thus enabling (C1) and (C2) to hold.

Furthermore, let X̃ be the above-mentioned solution

of CTARE(Σ̃c), just as Ỹ is for CTARE(Σ̃o). From

Lemma 4, we have that Ỹ = Y and that X̃ = (A −
jω0E)∗X(A − jω0E). Condition (C3) of statement I
in Theorem 10.3.1 in Ionescu et al. [1999] holds for
the previously selected γ, and thus

ρ(X̃Ỹ ) < 1, (30)

from where we retrieve the inequality given by (C3)
from the main result and enable said condition to hold
for the same feasible γ.

II. We apply (v) from Lemma 3 to HCL and get that

‖HCL‖∞ =
∥∥∥LLFT(H̃, K̃)

∥∥∥
∞
, (31)

where
K̃(λ) := K(f(λ)). (32)

Additionally, we impose K̃ be written as

K̃ = LLFT(K̃g, Φ̃), (33)

with K̃g ∈ C(m2+p2)×(m2+p2)(λ) and Φ̃ ∈ Cm2×p2(λ).

Thus, the controller that enforces HCL ∈ BH(γ)
∞ is

K = LLFT(Kg,Φ), (34)

having

Kg(s) =K̃g(f
−1(s)), (35)

Φ(s) =Φ̃(f−1(s)). (36)

The suboptimal H∞ control problem of H is equiv-

alent to that of H̃, with their solutions being linked

by (32). We have proven previously that H̃ is eligible
for Theorem 10.3.1 in Ionescu et al. [1999]. If, addi-

tionally, conditions (C1) − (C3) pertaining to H̃ are
satisfied for a chosen γ, then we can define

F̃c :=

[
F̃1

F̃2

]
=

 1√
γ B̃
∗
1X̃

−
(√

γB̃∗2X̃ + 1√
γD
∗
12C1

)  (37)

and
Z̃ := Ỹ (I − X̃Ỹ )−1, (38)

along with an arbitrary Φ̃(λ) ∈ BH(γ)
∞ and

K̃g(λ) =

 Ãg B̃g1 B̃g2
C̃g1 0 I

C̃g2 I 0

 , (39)

where

Ãg =Ã+ B̃cF̃c + B̃g1C̃g2,

B̃g1 =− B̃1D
∗
21 − Z̃(γC∗2 +

√
γF̃ ∗1D

∗
21),

B̃g2 =− B̃2 +
1
√
γ
Z̃F̃ ∗2 ,

C̃g1 =−√γF̃2,

C̃g2 =C2 +
1
√
γ
D21F̃1.

From Lemma 4, we have that F̃c = Fc. Given that

B̃∗c X̃ = B∗cX(A − jω0E) by (20) and (29), one
retrieves (24). From the same result, we can further
deduce the following three identities:

Z̃ = Y (I − (A− jω0E)∗X(A− jω0E)Y ) ≡ Z, (40)

C̃g1 = −√γF2 ≡ Cg1, (41)

C̃g2 = C2 +
1
√
γ
D21F1 ≡ Cg2. (42)

Using (40)-(42), we notice that

Ãg =(A− jω0E)−1Eg, (43)

B̃g1 =(A− jω0E)−1Bg1, (44)

B̃g2 =(A− jω0E)−1Bg2. (45)

Denoting

Bg = [Bg1 Bg2 ] , Cg =

[
Cg1
Cg2

]
, Dg =

[
0 I
I 0

]
,

and plugging (41)-(45) into (39), we may perform a
change of variable λ = 1

s−jω0
and group up terms as

in (17) to obtain that K̃g(f
−1(s)) has the centered

realization from (26).

Finally, we need only prove that, if Φ̃(λ) ∈ BH(γ)
∞ ,

then Φ̃(f−1(s)) ∈ BH(γ)
∞ . This follows directly from

(i) and (v) of Lemma 3.
�

Remark 6. For most practical applications, the central
controller, which is obtained by taking Φ = 0, is suffi-
cient in providing an adequate solution. However, upon
inspecting (26), one notices that the matrix Eg is not
guaranteed to be invertible, which means that the central
controller may be improper depending on the target plant.
Therefore, it is fortunate that we possess an entire class
of controllers, as parametrized by the pair (Kg,Φ), which
may be used to guarantee that the obtained controller is
always proper. Recall (34) and the structure of Kg from
(26). Then, by Theorem 12.19 from Zhou et al. [1996],
we may alternatively express the class of suboptimal H∞
controllers through

K(Φ) = (K11Φ + K12)(K21Φ + K22)−1 ≡ LLFT(Kg,Φ),
(46)

where

KR(s) :=

[
K11(s) K12(s)
K21(s) K22(s)

]
=

[
Ag − sEg −Bg1Cg2(jω0 − s) Bg2 Bg1

Cg1 I 0

Cg2 0 I

]
jω0

(47)

is a right coprime factorization, with all partitions proper
and stable. Assume the central controller, given by

K(0) = K12K
−1
22 , (48)

is improper. Then, it must be that K22 has zeros at
∞. However, both K21 and K22 may not simultaneously
have zeros at ∞ as, being partitions of a right coprime
factorization, that would invalidate the Bézout identity
that said partitions must satisfy for any s, including

the point at ∞. Therefore, any Φ(s) ∈ BH(γ)
∞ with

rank [Φ(∞)] = rank n [Φ(s)] guarantees that K(Φ) is
proper when K(0) is not.
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4. NUMERICAL EXAMPLE

Consider the following example. Let

H(s) =


s

s+ 2
s

s

s+ 2
s+ 1

s3 + 5s2 + 4

s2 + 4s+ 4
s2 + s

 .
Notice that H has both proper and improper elements.
The system possesses two double poles, at ∞ and at −2,
thus having a McMillan degree of δ(H) = 4. By centering
at s0 = 0 ∈ jR, one obtains a minimal realization

H(s) =


1 0.5633s 0 0 −1.1945 −0.9646
0 1 0 0 0 2.1206
0 0 1 + 0.5s 0 1.1067 0
0 0 −0.9036s 1 + 0.5s −1 0

0 0.4716 0.4518 0 0 0
0 0.4716 0.4518 0 0 1

−0.8372 0.0907 −0.9036 1 1 0


0

.

The order of the above realization is n = δ(H) = 4 and
H(0) = D. We now obtain the class of suboptimal H∞
controllers for γ = 0.7 using Theorem 5. The DCTAREs
have stabilizing solutions (see Dinicu and Oară [2015] for
computational details):

X =

 0 0 0 0
0 0.1374 0.0973 0
0 0.0973 0.0895 0
0 0 0 0

,
Y =

 2.0006 0 −1.3290 0.0868
0 0 0 0

−1.3290 0 1.0367 −0.3733
0.0868 0 −0.3733 0.6511

.
The class of all suboptimal H∞ controllers, K(Φ), that
ensure ‖HCL‖∞ < 0.7 = γ is given by

Kg(s) =


−0.5765 0.6923 0.5105 0.2456 −0.5318 −1.1390
−1.1396 −0.6657 −0.2723 0.3141 −0.6442 −0.6736
0.4139 0.8594 −0.6829 −0.4765 −0.1770 0.8021
0.3667 0.3482 −0.5949 −0.4760 −0.0575 0.5331

0.6043 0.7263 −0.6937 −0.5228 0 1

1.1023 −0.5842 −0.4399 −0.1191 1 0


0

,

and Φ(s) ∈ BH(γ)
∞ . The central controller, for Φ = 0, is

K(s) =
−2.019s2 − 4.038s

s4 + 12.8s3 + 15.72s2 + 15.24s+ 6.346
.

Note that K is proper, and thus readily available for imple-
mentation in any practical control scheme. The closed-loop
system’s poles:

Λ [HCL(s)] = {−0.2156± 0.7534j,−0.6645,−2},
indicate that K is indeed a stabilizing controller, but also
a suboptimal H∞ controller, since

‖HCL‖∞ = 0.6795 < 0.7 = γ.

5. CONCLUSIONS

For a differential-algebraic system, we have solved the
suboptimal H∞ control problem and offered a viable alter-
native to the approach in Stefanovski [2015] for improper
systems with zeros not on the extended imaginary axis. For
these systems, our chief contribution is that we can always
obtain a proper controller through a less computationally
expensive procedure (see the conclusions of Stefanovski
[2015]), based upon a Möbius transformation and a pair
of algebraic Riccati equations. In real-life applications, it
is beneficial to employ a proper controller due to its ease
of implementation and lack of impulsive behavior.
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