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Abstract: We propose a new initial state design procedure for a newly-activated controller at
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actuality that a controller switch occurs and the virtual situation where it does not occur.
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1. INTRODUCTION

The switches from an operating controller to a more
desirable one have been widely performed for letting a
control system adjust to the changes in control objective,
operating conditions, surrounding circumstances, and so
on. Here, it is needless to say that we should reduce the
undesirable effects of a controller switch. A practical tech-
nique for reducing the undesirable effect is to appropriately
initialize a newly-activated controller.

Many studies have addressed the issue of suppressing
the fluctuations in transient responses after a controller
switch by designing the initial state of a newly-activated
controller, e.g., Hanus et al. (1987), Kothare et al. (1994),
Edwards and Postlethwaite (1998), Turner and Walker
(2000), and Paxman and Vinnicombe (2000). Most of them
aimed at making the output of a control system after a
controller switch close to the virtual output in the case
where the switch does not occur.

Asai (2003) designed a control system by reducing the
value of the Hankel-type switching L2 gain presented in
Asai (2005) to suppress the fluctuations in transient re-
sponses. Suyama and Sebe (2019a) obtained the optimal
switching matrix, which determines the initial state of a
newly-activated controller, for suppressing the fluctuations
in transient responses after a controller switch by mini-
mizing the value of another switching L2 gain. Moreover,
Suyama and Sebe (2019b) presented a procedure for di-
rectly obtaining the optimal initial state by using the state-
dependent switching L2 gain (Suyama and Sebe, 2018b).

For taking a desirable reference signal into consideration,
Zaccarian and Teel (2005) and Hespanha et al. (2007)
directly minimized the L2 norm of the error between the
plant output and reference signal to obtain the optimal
initial state. Under the assumption that only the state
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of an integrator is assigned in a state-feedback control
system, Saito et al. (1998) approximated its step response
by assigning an initial value by using the observability
Gramian. Also Nakano et al. (2018) directly evaluated the
L2 norm of the output signal by using the observability
Gramian in an observer-based servo system to show that
transient responses caused by state-feedback and observer
gains switch can be suppressed by appropriately initializ-
ing a newly-activated observer.

In this paper, we first present a new state-dependent
switching L2 gain that focuses on the difference between
the actuality that a controller switch occurs and the
virtual situation where it does not occur. Then, for a
given switching situation, by minimizing the value of the
state-dependent switching L2 gain, we obtain the optimal
initial state for suppressing the difference between the
actuality and virtual situation. We can make the output
of a control system after a controller switch close to the
virtual output in the case where the switch does not
occur more effectively. The proposed initial state design
procedure has the following advantages.

• The switching time does not affect its design result,
and need not be known in advance.

• We need only solving a linear matrix inequality (LMI)
problem. Complicated calculation is not necessary.

• We can always obtain the solution. It is not necessary
to discuss the solvability.

They are important especially when the initial state should
be determined immediately after a non-preplanned con-
troller switch. Moreover, by the proposed initial state
design, we can improve the safety of the operating-state
transitions in the procedure of safe preventive maintenance
of control systems presented in Suyama and Sebe (2017).

Notations. F�(G,K) denotes the lower linear fractional
transformation (LFT) of G and K, and L2(a, b) : the
Lebesgue space of all square-integrable and vector-valued
functions defined on an interval (a, b), i.e., L2(a, b) =
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{
x(t)

∣∣ ‖x(t)‖2 (a, b) < ∞}
, where ‖x(t)‖2 (a, b) denotes the

L2 norm defined by ‖x(t)‖2 (a, b) =
[ ∫ b

a
xT(t)x(t)dt

] 1
2

.

2. STATE-DEPENDENT SWITCHING L2 GAIN

2.1 System switch

Suppose that a linear time-invariant (LTI) system Hp

switches to another LTI system Hf with a state transition
at the switching time t = t0.

Suppose that the pre-switch system is represented by

Hp :

{
ẋp(t) = Apxp(t) +Bpw(t)
z(t) = Cpxp(t) +Dpw(t),

t ≤ t0, (1)

where xp(t) ∈ R
np (t ≤ t0) is the state-variable vector,

w(t) ∈ R
ni is the input, and z(t) ∈ R

no is the output. We
assume the following.

Assumption 2.1.

(a) Ap is stable.
(b) (Ap, Bp) is controllable and (Cp, Ap) is observable.
(c) xp(−∞) = 0.

Suppose that the post-switch system is represented by

Hf :

{
ẋf (t) = Afxf (t) +Bfw(t)
z(t) = Cfxf (t) +Dfw(t),

t > t0, (2)

where xf (t) ∈ R
nf (t > t0) is the state-variable vector

and w(t), z(t) are the same input and output as in the
pre-switch system Hp. We assume the following.

Assumption 2.2.

(a) Af is stable.
(b) (Af , Bf ) is controllable and (Cf , Af ) is observable.

Note that nf is not always equal to np, because the system
order can change. For example, in a controller switch,
there can be the difference in orders between an operating
controller and a newly-activated one.

Suppose that the following state transition occurs around
the system switch:

xf (t0+) = Sxp(t0), (3)

where S ∈ R
nf×np is a constant matrix.

2.2 Definition of state-dependent switching L2 gain

Under the condition that the switch to the post-switch
system with the state transition does not occur at t = t0(
strictly speaking, at any t ∈ [ t0,∞)

)
, let us extend the

pre-switch system as follows:

Hp, ext :

⎧⎨
⎩
ẋp(t) = Apxp(t) +Bpw(t){
z(t) = Cpxp(t) +Dpw(t), t ≤ t0
zvir(t) = Cpxp(t) +Dpw(t), t > t0,

(4)

where zvir(t) ∈ R
no (t > t0) is the virtual output under

the assumption that no system switch occurs.

The state-dependent switching L2 gain used in this paper
is defined as follows.

Definition 2.3. For an x0 ∈ R
np ,

γ̂sd-dif(x0) = sup
w(t)∈L2(−∞,∞)\{0}

s.t. xp(t0)=x0

‖z(t)− zvir(t)‖2 (t0,∞)

‖w(t)‖2 (−∞,∞)
.

(5)

Note that the switching time t0 does not affect the gain
value as shown in Theorem 2.4 later.

Suyama and Sebe (2016) presented the following switching
L2 gain to analyze the magnitude of a system switch:

γ̂dif = sup
w(t)∈L2(−∞,∞)\{0}

‖z(t)− zvir(t)‖2 (t0,∞)

‖w(t)‖2 (−∞,∞)
. (6)

The relationship between γ̂sd-dif(x0) and γ̂dif is as follows:

γ̂dif = max
x0∈R

np
γ̂sd-dif(x0). (7)

2.3 Difference system

Consider the following difference system between the post-
switch system Hf and the extended pre-switch system
Hp, ext on the post-switch side:

Hd :

{
ẋd(t) = Adxd(t) +Bdw(t)
zd(t) = z(t)− zvir(t) = Cdxd(t) +Ddw(t),

t > t0, (8)

where

xd(t) =

[
xf (t)
xp(t)

]
, t > t0 (9)

and

Ad =

[
Af O
O Ap

]
, Bd =

[
Bf

Bp

]
Cd = [ Cf −Cp ] , Dd = Df −Dp.

(10)

From Assumptions 2.1 (a) and 2.2 (a), Hd is stable. How-
ever, Hd is not always controllable and observable. If Hp

and Hf have a common pole, there is the possibility that
the pole is uncontrollable and/or unobservable. Thus, Hd

is stabilizable and detectable in general.

We then consider the system switch from Hp to Hd with
the state transition

xd(t0+) = Sdxp(t0), Sd =

[
S
I

]
. (11)

It occurs at the switching situation xp(t0) = x0 to discuss
the state-dependent switching L2 gain γ̂sd-dif(x0).

2.4 Equation-based L2 gain condition

The following theorem presents an equation-based L2 gain
condition. It shows that the switching time does not
affect the value of the state-dependent switching L2 gain
γ̂sd-dif(x0).

Theorem 2.4. Let γ > 0 and x0( �= 0) ∈ R
np . The state-

dependent switching L2 gain γ̂sd-dif(x0) satisfies γ̂sd-dif(x0)
< γ if and only if the following conditions are satisfied.
(a) σ̄(Dd) < γ.
(b) There exists the stabilizing solution Xd � O to the
Riccati equation

XdAd +AT
dXd + CT

d Cd + (XdBd + CT
d Dd)

× (γ2I −DT
d Dd)

−1(XdBd + CT
d Dd)

T = O. (12)

(c) It holds that

xT
0 (γ

2X−1
p − ST

d XdSd)x0 > 0, (13)
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where Xp � O is a unique solution to the Lyapunov
equation

ApXp +XpA
T
p +BpB

T
p = O. (14)

Proof: (i) Sufficiency: On the pre-switch side (i.e., t ≤ t0),

it follows from (14) that

[
ApXp +XpA

T
p Bp

BT
p −I

]
	 O.

Thus,

d

dt

(
xT
p (t)X

−1
p xp(t)

)− wT(t)w(t)

=

[
X−1

p xp(t)
w(t)

]T [
ApXp +XpA

T
p Bp

BT
p −I

] [
X−1

p xp(t)
w(t)

]
≤ 0 (15)

for any w(t) ∈ L2(−∞, t0 ] and the corresponding xp(t).
Integrating (15) with respect to t ∈ (−∞, t0 ] and using
Assumption 2.1 (c), we have

‖w(t)‖22 (−∞, t0]
≥ xT

0 X
−1
p x0. (16)

On the post-switch side (i.e., t > t0), using the stabilizing
solution Xd � O to Riccati equation (12), we consider the
following equation that holds for any w(t) ∈ L2(t0,∞) and
the corresponding xd(t):∫ ∞

t0

[
xT
d (t)W11xd(t) + 2xT

d (t)W12w(t)

+ wT(t)W22w(t) +
d

dt

(
xT
d (t)Xdxd(t)

)]
dt

=

∫ ∞

t0

[
xd(t)
w(t)

]T

×
[
XdAd +AT

dXd +W11 XdBd +W12

BT
d Xd +WT

12 W22

] [
xd(t)
w(t)

]
dt,

(17)

where W11 = CT
d Cd, W12 = CT

d Dd, and W22 = −(γ2I
−DT

d Dd). Here, it follows from the stability of Hd that
xd(∞) = 0 for any w(t) ∈ L2(t0,∞). We thus have

Left-hand side of (17)

= ‖zd(t)‖22 (t0,∞) − γ2‖w(t)‖22 (t0,∞) − (Sdx0)
TXd(Sdx0).

(18)

Next, under Conditions (a), (b) and the detectability of

Hd, we have

[
XdAd +AT

dXd +W11 XdBd +W12

BT
d Xd +WT

12 W22

]
	 O.

Thus, for any w(t) ∈ L2(t0,∞) and the corresponding
xd(t),

Right-hand side of (17) ≤ 0. (19)

Therefore, from (18) and (19) we have

‖zd(t)‖22 (t0,∞) − γ2‖w(t)‖22 (t0,∞) ≤ (Sdx0)
TXd(Sdx0).

(20)

Multiplying (16) by −γ2, adding it with (20), and using
(11) and (13), we have

‖zd(t)‖22 (t0,∞) − γ2‖w(t)‖22 (−∞,∞)

≤ − xT
0

(
γ2X−1

p − ST
d XdSd

)
x0 < 0 (21)

for any w(t) ∈ L2(−∞,∞). This implies that γ̂sd−dif(x0) <
γ.

(ii) Necessity: (ii-1) Conditions (a) and (b): Define the L2

gain of Hd by

γd = sup
w∈L2 (t0,∞)\{0}

‖zd(t)‖2 (t0,∞)

‖w(t)‖2 (t0,∞)
, (22)

where zd(t) ∈ L2(t0,∞) is the output of Hd against
w(t) ∈ L2(t0,∞) under the condition that xd(t0+) = 0.
Suppose that Condition (a) and/or (b) is not satisfied.
Then, it hold that γd ≥ γ. Define ε1 = γd − γ (≥ 0).
Let wf∞(t) (t > t0) denote an input providing the value
of γd under xd(t0+) = 0. Let zd∞(t) denote the output
against wd∞(t) under xd(t0+) = 0. We consider the input
w̃(t) ∈ L2(−∞,∞) given by

w̃(t) =

{
wp0(t), t ≤ t0
η · wd∞(t), t > t0,

(23)

where η > 0, and wp0(t) (t ≤ t0) realizes xp(t0) = x0.
Then, the output against w̃(t) is given by

z̃(t) = Cde
Ad(t−t0)Sdx0 + η · zd∞(t), t > t0. (24)

We thus have

γ̂sd-dif(x0)

≥ ‖z̃(t)‖2 (t0,∞)

‖w̃(t)‖2 (−∞,∞)

≥ η ‖zd∞(t)‖2 (t0,∞) − ‖Cde
Ad(t−t0)Sdx0‖2 (t0,∞)

‖wp0(t)‖2 (−∞, t0] + η ‖wd∞(t)‖2 (t0,∞)

= γd − ε2, (25)

where ε2 ≥ 0. By choosing η sufficiently large, we can
achieve ε2 ≤ ε1. This implies γ̂sd-dif(x0) ≥ γ. Thus,
γ̂sd-dif(x0) < γ does not hold.

(ii-2) Condition (c): Suppose that Condition (c) is not
satisfied. Consider the following input:

ŵ(t) =

{
BT

p e
−AT

p (t−t0)X−1
p x0, t ≤ t0

Kde
(Ad+BdKd) (t−t0)Sdx0, t > t0,

(26)

where

Kd = (γ2I −DT
d Dd)

−1(XdBd + CT
d Dd)

T. (27)

Here, −AT
p is anti-stable by Assumption 2.1 (a); Ad+BdKd

is stable because Xd is the stabilizing solution to the
Riccati equation (12). Thus, ŵ(t) belongs to L2(−∞,∞).

Since on the pre-switch side, the controllability Gramian

Xp =

∫ ∞

0

eAptBpB
T
p e

AT
p tdt � O is the solution to the

Lyapunov equation (14), we have

‖ŵ(t)‖22 (−∞, t0]
= xT

0 X
−1
p x0. (28)

Furthermore, using Assumption 2.1 (c), we have xp(t0) =
x0.

On the post-switch side, using Kd given in (27) and
Condition (b), we have[

XdAd +AT
dXd +W11 XdBd +W12

BT
d Xd +W12 W22

]

=

[
I O

−Kd I

]T [
O O
O I

] [
I O

−Kd I

]
. (29)

Here, the input ŵ(t) and corresponding x̂d(t) with the ini-
tial condition xd(t0+) = Sdx0 satisfy ŵ(t) = Kdx̂d(t), t >
t0. We then have[

I O
−Kd I

] [
x̂d(t)
ŵ(t)

]
=

[
x̂d(t)
0

]
, t > t0. (30)
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By applying (29) and (30) to (19), we have that the
inequality (19) has equality; thus, the inequality (20) also
has equality as

‖ẑ(t)‖22 (t0,∞) − γ2‖ŵ(t)‖22 (t0,∞) = (Sdx0)
TXdSdx0, (31)

where ẑ(t) is the output corresponding to ŵ(t).

Multiplying (28) by −γ2 and adding it with (31), we have

‖ẑ(t)‖22 (t0,∞) − γ2‖ŵ(t)‖22 (−∞,∞)

=− xT
0 (γ

2X−1
p − ST

d XdSd)x0. (32)

Since Condition (c) is not satisfied, ‖ẑ(t)‖22 (t0,∞) −
γ2‖ŵ(t)‖22 (−∞,∞) ≥ 0. Therefore, γ̂sd-dif(x0) < γ does not

hold.

Let x0 �= 0. Suppose that Conditions (a) and (b) in
Theorem 2.4 are satisfied, and xT

0 (γ
2X−1

p −ST
d XdSd)x0 =

0. Then, γ̂sd-dif(x0) = γ. Furthermore, an input providing
the value of γ̂sd-dif(x0) is given by (26).

Also, it follows from Conditions (a) and (b) in Theorem 2.4
that for any x0( �= 0) ∈ R

np , the state-dependent switching
L2 gain γ̂sd-dif(x0) satisfies

γ̂sd-dif(x0) ≥ γd. (33)

2.5 LMI-based L2 gain condition

The LMI conditions in the theorem presented below will
play an essential role in the proposed initial state design.

Theorem 2.5. Let γ > 0 and x0 ( �= 0 ) ∈ R
np . The

state-dependent switching L2 gain γ̂sd-dif(x0) satisfies

γ̂sd-dif(x0) < γ if and only if there exist X̃p � O and

X̃d � O satisfying the following conditions:[
X̃pAp +AT

p X̃p X̃pBp

BT
p X̃p −γI

]
≺ O (34)⎡

⎣ X̃dA
T
d +AdX̃d Bd X̃dC

T
d

BT
d −γI DT

d

CdX̃d Dd −γI

⎤
⎦ ≺ O (35)

[
xT
0 X̃px0 xT

0 S
T
d

Sdx0 X̃d

]
� O. (36)

Proof: The proof of the sufficiency is entirely analogous to
that in Theorem 2.4. Thus, we only prove the necessity by
obtaining X̃p � O and X̃d � O satisfying (34)–(36) from
Conditions (a)–(c) in Theorem 2.4.

On the pre-switch side, it follows from Assumption 2.1 (a)
that there exists X ′

p � O satisfying

ApX
′
p +X ′

pA
T
p ≺ O. (37)

Multiplying (37) by ε > 0 and adding it with (14), we have

Ap(Xp + εX ′
p) + (Xp + εX ′

p)A
T
p +BpB

T
p ≺ O, (38)

where Xp + εX ′
p � O. Left- and right-multiplying (38) by

(Xp + εX ′
p)

−1 � O and using the Schur complement, we
have [

(Xp + εpX
′
p)

−1Ap +AT
p (Xp + εpX

′
p)

−1

BT
p (Xp + εpX

′
p)

−1

(Xp + εpX
′
p)

−1Bp

−I

]
≺ O. (39)

Multiplying (39) by γ > 0 and defining X̃p � O by

X̃p = γ(Xp + εX ′
p)

−1, (40)

we can have (34).

By using X̃p given in (40) with sufficiently small ε > 0, we
can have

xT
0 (γX̃p − ST

d XdSd)x0 > 0 (41)

from Condition (c) in Theorem 2.4. Consider the following
Riccati matrix inequality related to (12):

X ′
dAd +AT

dX
′
d + CT

d Cd + (X ′
dBd + CT

d Dd)

× (γ2I −DT
d Dd)

−1(X ′
dBd + CT

d Dd)
T ≺ O (42)

Since there exists the stabilizing solution Xd � O to (12),
there exists a solution X ′

d � O to (42). Furthermore, Xd �
O is the minimum solution, i.e., X ′

d � Xd (Zhou et al.,

1996). Since X̃p satisfying (34) and Xf also satisfy (41),
there exists X ′

d such that

xT
0 (γX̃p − ST

d X
′
dSd)x0 > 0. (43)

We take X̃d � O as

X̃d =
1

γ
X ′

d. (44)

Then, from (42) we can have⎡
⎣ X̃dAd +AT

d X̃d X̃dBd CT
d

BT
d X̃d −γI DT

d
Cd Dd −γI

⎤
⎦ ≺ O. (45)

Furthermore, by using (44), from (43) we can have

xT
0 (X̃p − ST

d X̃dSd)x0 > 0. (46)

Rewriting X̃−1
d by X̃d and using the Schur complement,

we can have (35) and (36) from (45) and (46).

3. INITIAL STATE DESIGN

3.1 Problem statement

As shown in Fig. 1, we consider the pre-switch system
Hp and post-switch system Hf described in the linear
fractional transformation (LFT) framework. Here, w is
the exogenous input, z is the evaluation output, u is
the control input, and y is the measured output. The
generalized plant G is not switched. Let xg(t) ∈ R

ng

denote its state-variable vector. On the other hand, the
controller is switched from the operating Kp to a more
desirable Kf at t = t0 in some sense, such as performance
and fault tolerance. Let xkp

(t) ∈ R
nkp and xkf

(t) ∈
R

nkf denote the state-variable vectors of Kp and Kf ,

respectively. Then, by taking xp(t) =
[
xT
g (t) xT

kp
(t)

]T
, the

pre-switch system Hp with the output can be represented
as follows:

Hp :

[
Ap Bp

Cp Dp

]
= F�(G,Kp). (47)

Furthermore, by taking xf (t) =
[
xT
g (t) xT

kf
(t)

]T
, the

post-switch system Hf can be represented as follows:

Hf :

[
Af Bf

Cf Df

]
= F�(G,Kf ). (48)

We assume that Hp and Hf obtained above satisfy As-
sumptions 2.1 and 2.2, respectively.
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Kp

G

yu

w z

Hp

(a)

w z
G

Kf

Hf

yu

(b)

Fig. 1. (a) Pre-switch system and (b) post-switch system
in a controller switch.

Since xg(t0+) = xg(t0), the switching matrix is of the
following form:

S =

[
I O
S1 S2

]
, (49)

where S1 ∈ R
nkf

×ng and S2 ∈ R
nkf

×nkp . Then, we have

xf (t0+) =

[
xg(t0)

xkf
(t0+)

]
=

[
xg(t0)

S1xg(t0) + S2xkp
(t0)

]
. (50)

The initial state design problem considered in this paper
is as follows.

Problem 3.1. (Initial state design problem).
For given G, Kp, Kf , and x0 = xp(t0), find the optimal
xkf

(t0+) that minimizes the state-dependent switching L2

gain γ̂sd-dif(x0).

For a given switching situation x0, this problem provides
the optimal initial state of Kf for suppressing the dif-
ference between the actuality that this controller switch
occurs and the virtual situation where it does not occur.
Note that in this problem, the switching matrix S (i.e., S1

and S2) is not determined.

On the other hand, we can consider the following problem
for assigning the initial state of a newly-activated con-
troller.

Problem 3.2. (Switching matrix design problem).
For given G, Kp, and Kf , find the optimal S1 and S2 in
(49) that minimizes the switching L2 gain γ̂dif.

In this problem, the initial state of a newly-activated
controller is assigned by xkf

(t0+) = S1xg(t0) + S2xkp
(t0).

This problem focuses on the worst switching situation for
the controller switch in the sense of the state-dependent
switching L2 gain γ̂sd-dif(x0). Thus, it is clear that by
Problem 3.1 according to the switching situation, we can
more effectively assign the initial state to suppress the
difference between the actuality that this controller switch
occurs and the virtual situation where it does not occur.

3.2 Proposed initial state design procedure

Consider Problem 3.1. Defining

x ′
01 =

[
0

xkf
(t0+)
0

]
, x ′

02 =

[
xg(t0)

0
x0

]
, (51)

where xkf
(t0+) is the initial state of the newly-activated

controller Kf to be obtained, we then have Sdx0 = x ′
01 +

x ′
02. Thus, the LMI (36) is equivalent to[

xT
0 X̃px0 x ′T

01 + x ′T
02

x ′
01 + x ′

02 X̃d

]
� O. (52)

We can then treat x ′
01 as an LMI variable. Thus, by solving

the LMI problem under the constraint conditions (34),

(35), and (52) to minimize γ by using the variables X̃p, X̃d,
and x ′

01, we can obtain the optimal xkf
(t0+) in x ′

01.

Remark 3.3. We can solve Problem 3.2 in an entirely
analogous fashion. Defining

Sd1 =

⎡
⎢⎣

O O
S1 S2

O O
O O

⎤
⎥⎦ , Sd2 =

⎡
⎢⎣

I O
O O
I O
O I

⎤
⎥⎦ , (53)

we can decompose Sd as Sd = Sd1 +Sd2. Then, by solving
the LMI problem under the constraint conditions (34),
(35), and [

X̃p ST
d1 + ST

d2

Sd1 + Sd2 X̃d

]
� O (54)

to minimize γ by using the variables X̃p, X̃d, and Sd1, we
can obtain the optimal S1 and S2 in Sd1.

3.3 Features

We can easily show that for any x0 ( �= 0) ∈ R
np and

k ( �= 0) ∈ R,

γ̂sd-dif(x0) = γ̂sd-dif(k · x0). (55)

Thus, the value of the state-dependent switching L2 gain
γ̂sd-dif(x0) depends only on the direction in the state space
xp ∈ R

np .

Suppose that for a given switching situation x0 ( �= 0) ∈
R

np , we obtain the optimal initial state x ′
0 ∈ R

np+nf by
solving Problem 3.1. Then, for a switching situation k · x0

(k �= 0), the optimal initial state is k · x ′
0. This implies

that the proposed initial state design procedure provides
a mapping from a direction in the switching situation
x0 ∈ R

np to a direction in xkf
∈ R

nkf .

For a given switching situation x0 = xp(t0), the pro-
posed initial state design provides the optimal initial state
xkf

(t0+) for suppressing the difference between the actu-
ality that this controller switch occurs and the virtual
situation where it does not occur in the sense of the
state-dependent switching L2 gain γ̂sd-dif(x0). It has the
following advantages.

(a) The switching time does not affect its design result,
and need not be known in advance.

(b) It needs only solving an LMI problem. That is, com-
plicated calculation is not necessary.

(c) It is not necessary to discuss the solvability, because
we can always obtain the solution.

Conversely, the proposed initial state design cannot be
applied to tracking control to a specified reference signal.
For example, in a servo system for a stepped reference
signal, by considering the fluctuations in the error against
a controller switch in the steady state, the undesirable
effects of the switch can be suppressed by the proposed
design. Thus, by using it, we can improve the safety of
the operating-state transitions in the procedure of safe
preventive maintenance of control systems presented in
Suyama and Sebe (2017). However, the virtual output is
not always the reference signal to make the actual output
track. The proposed design cannot provide an initial state
for suppressing the fluctuations in tracking error for a
specified reference signal.
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Remark 3.4. We should use the initial state design and
switching matrix design depending on the situation. For
a pre-planned controller switch in the steady state, the
proposed initial state design is more efficient for suppress-
ing the undesirable effects of the switch. However, for a
non-preplanned controller switch under a violent system
fluctuations, the switching matrix design can provide a
more desirable initial state.

3.4 Numerical example

The generalized plant G, operating controller Kp, and
newly-activated controller Kf are given as

G :

⎡
⎢⎢⎣
−14 −2 4 −4

5 −9 −2 −1

4 −12 0 0

−1 −13 0 0

⎤
⎥⎥⎦ (56)

Kp :

⎡
⎣ −5.61 2925.70 5.39
926.26 −4190.34 326.88

4.00 −719.97 0

⎤
⎦ (57)

Kf :

⎡
⎣ −73.63 66562.80 73.54
11257.06 −726.36 2837.09

86.54 −16015.40 0

⎤
⎦ . (58)

Consider the L2 gain as the performance index. Table 1
shows the performance index values of Hp and Hf ; the
values imply that this controller switch improves the
control performance. Note that γd = 0.5962 is the lower
bound of the switching L2 gains γ̂sd-dif(x0) and γ̂dif.

Table 1. Performance index value.

L2 gain

Pre-switch system Hp 1.1077

Post-switch system Hf 0.5635

Difference system Hd 0.5962

Suppose that a controller switch from Kp to Kf occurs at
t = t0 and

x0 = xp(t0) =

[
xg(t0)
xkp

(t0)

]
=

⎡
⎢⎣

0.8614
−0.0440

0.4980
0.0903

⎤
⎥⎦ . (59)

In order to obtain the initial state xkf
(t0+) of the newly-

activated controller Kf , we consider the following three
design:

• Proposed initial state design (Problem 3.1)
• Switching matrix design (Problem 3.2)
• Zero initial state.

Table 2 shows the initial state design results. Note that in
the switching matrix design, we first obtain the following
switching matrix:

S1 =

[
0.2920 1.1301

−0.0074 −0.0666

]

S2 =

[
0.4558 −0.0028
0.0216 −0.0018

]
.

(60)

The proposed initial state design directly provides the
optimal initial state xkf

(t0+) of the newly-activated con-
troller Kf in the sense of the state-dependent switching L2

gain γ̂sd-dif(x0). That is, the proposed initial state design
minimizes γ̂sd-dif(x0) to obtain the value 0.5991. On the
other hand, the switching matrix design minimizes γ̂dif(x0)
to obtain the value 0.7958.

Table 2. Initial state design results.

Proposed initial
state design

Switching
matrix design

Zero
initial state

xkf
(t0+)

[
0.5025

0.0592

] [
0.4285

0.0071

] [
0

0

]
γ̂sd-dif(x0) 0.5991 0.6129 1.1004

γ̂dif —— 0.7958 4.6482
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 Proposed initial state design 

 Switching matrix design

 Zero initial state

Fig. 2. Responses in z(t)−zvir(t) against ŵ(t) providing the
value of γ̂sd-dif(x0) normalized as ‖ŵ(t)‖2 (0,∞) = 1.
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 Switching matrix design

 Zero initial state

Fig. 3. Actual output z(t) against ŵ(t) providing the value
of γ̂sd-dif(x0) normalized as ‖ŵ(t)‖2 (0,∞) = 1.

We present the simulation results. We suppose without loss
of generality that the controller switch occurs at t = 0,
i.e., t0 = 0. We can obtain an input ŵ(t) given in (26)
that provides the value of γ̂sd-dif(x0) in each case, where it
is normalized as ‖w(t)‖2 (0,∞) = 1. Figures 2 and 3 show
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the responses in z(t)− zvir(t) and z(t), respectively, after
the controller switch against the obtained input ŵ(t) in
the proposed initial state design case, switching matrix
design case, and zero initial state case. As shown in Fig. 2,
in the proposed initial state design case, even the worst
fluctuation in z(t) − zvir(t) (i.e., the largest difference
between the actuality that this controller switch occurs
and the virtual situation where it does not occur) is well
suppressed in comparison with the other cases.

This example implies that for given G, Kp, Kf , and x0,
the difference between the actuality and virtual situation
can be well suppressed by appropriately designing the
initial state xkf

(t0+) of Kf according to the situation at
a switching time, i.e., x0. The effectiveness of the initial
state design by using the state-dependent switching L2

gain γ̂sd-dif(x0) shows its potential applicability as a design
index.

4. CONCLUSIONS

We have proposed a new initial state design procedure for
a newly-activated controller at a controller switch. By min-
imizing the value of the state-dependent switching L2 gain
presented in this paper, we can obtain the optimal initial
state for suppressing the difference between the actuality
that a controller switch occurs and the virtual situation
where it does not occur. By the proposed initial state
design, we can improve the safety of the operating-state
transitions in the procedure of safe preventive maintenance
of control systems presented in Suyama and Sebe (2017).

However, the virtual output is not always the reference
signal to make the actual output track. The proposed
design cannot provide an initial state for suppressing the
fluctuations in tracking error for a specified reference
signal. This is an important issue to be solved/improved
in future.

Khargonekar et al. (1991) introduced the worst-case norm
of the regulated output over all exogenous inputs and
initial states as a performance measure. Balandin and
Kogan (2010) obtained optimal time-invariant controllers
by minimizing the measure by using LMIs. Another im-
portant future work is to clarify the relationship between
the proposed initial state design and such H∞ controller
design with transients.
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