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Abstract: Iterative learning control (ILC) scheme is known as an effective technique focused
on problems which involve repeating tasks, using the error signal from the previous cycle to
update the control input. In this paper, a compound control which combines a data-driven
iterative turning feedforward controller with a linear extended state observer (LESO) is proposed
for spatial periodic disturbances suppression. Due to the problem of feedforward parameter
identification in servo system, an algorithm of orthogonal projection is introduced. The error
signals caused by the reference trajectory and the disturbances are extracted by projecting
the overall error signals onto a subspace spanned by the physical model of the plant as well
as the model of the disturbances. Moreover, a data-driven approach is proposed to design the
learning gain. Furthermore, a 4th-order LESO is designed to estimate non-periodic disturbances
and uncertain dynamics so as to reduce the steady state error. Simulation results validate the
proposed method and confirm its effectiveness and superiority.
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1. INTRODUCTION

Rotating mechanical systems are widely applied to many
practical applications, such as disk actuators, robot manip-
ulators, testing tables and industrial manufacturing. With
respect to these kinds of systems, high operation smooth-
ness is a significant index, which is influenced mostly
by various disturbances and uncertainties in the systems.
Among all these disturbances, periodic disturbances oc-
cupy the main position. Some theoretical results can be
found in Kalyanam and Tsao (2012); Liu et al. (2018);
Guemes et al. (2011).

Iterative learning control (ILC) has found widespread in-
dustrial application in control of repetitive processes. In
a repetitive process, information from earlier iterations
can be used to improve performance in the current it-
eration. ILC has been implemented in several industrial
processes because of its simplicity of design, analysis and
implementation. Vast literature associated with ILC exists
and it spans both, the theory and the practice, Ahn et al.
(2007); Xu and Tan (2003), and references therein. Be-
sides, ILC is suitable for complex system model building
and high-precision control. Excluding the effect of model
uncertainty, data-driven ILC is popular when an accurate
dynamic model is not available. Stearns et al. (2008) itera-
tively tuned the feedforward controller to compensate the
force ripple disturbances of a wafer stage. Tousain et al.
(2001) established the closed-loop model of the iterative
algorithm based on the pulse transfer matrix of the plant,
? This work was supported by National Nature Science Foundation
(NNSF) of China under Grant 61773138.

and used the optimal method of multi-objective functions
to design the learning gain, so as to achieve optimal
tracking performance under the premise of the stability in
iterative domain with a certain robustness. Although many
scholars at home and abroad have adopted ILC for distur-
bance suppression, parameter identification and achieved
good results, there still exist the following limitations: the
iterative algorithm only performs in time domain, where
its coupled parameters affect the identification process.
Orthogonal projection is therefore introduced to avoid
such problems, and in this way what need to be identi-
fied is merely the parameters projected onto the subspace
formed by the basis functions, thus greatly compresses the
identification matrix, reduces the algorithm complexity.

However, in many practical systems, the periodicity of
the system does not exist in time interval, but in space
interval. Many uncertainties or external disturbances of
a moving system are functions of spatial position or
system state rather than time Huo et al. (2016). In
addition to spatial periodic disturbances, there also exist
other uncertain disturbances and unknown dynamics in
rotary machines, whose characteristics are hard to model.
Recently, active disturbance rejection control (ADRC) has
been well developed and achieved satisfactory performance
for uncertain systems, which is symbolized by the use
of linear extended state observer (LESO), investigated
in Dan and Chen (2009); Han (2009); Huang and Xue
(2014). Focused on estimating and compensating the total
disturbance or total uncertainty, ADRC concentrates on
the effects of external disturbances and unknown dynamics
on the output. Besides, some valuable state information
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can be obtained with ESO such as the angular velocity,
which may save the computation resources.

In this paper, motivated by the suppression of spatial
periodic and uncertain disturbances, a compound control
method which combines a data-driven iterative tuning
feedforward controller with a LESO is proposed. The ILC
algorithm uses only partial error information from the
previous iteration, which is obtained by projection of the
entire error information vector onto a smaller subspace
spanned by a set of basis functions. It is motivated by the
physical model of repetitive disturbances along with the
trajectory to be tracked. Further, a fourth-order LESO
is designed to deal with remained uncertain disturbances
which still degrade the performance of the ILC scheme.
The following theoretical results proposed in this paper
are carried on a turntable system, as shown in Fig. 1.

Fig. 1. Turntable system

The rest of the paper is organized as follows. Section 2
analyzes and builds the models of both the plant and
the disturbances. The projection algorithm is briefly intro-
duced as well. In Section 3, a data-driven ILC algorithm
based on the orthogonal projection as well as its conver-
gence analysis is given. Whereafter, a method of compound
control design using LESO is proposed along with its pa-
rameters’ adjustment. Simulation and comparison results
are provided in Section 4 to show the effectiveness of the
proposed method. Concluding remarks are given in Section
5.

2. PROBLEM FORMULATION

2.1 Mathematical model

The turntable system considered in this paper is driven
by a permanent magnet synchronous motor (PMSM) with
vector control, which is realized through angular position
closed-loop. The motion model of the PMSM can be
described by

J
dω

dt
= Tm −Dω − Tl (1)

where ω is angular velocity of the motor, Tm is the
electromagnetic torque, Tl is the load torque, J is the
inertia and D is the drag coefficient.

The model in (1) can be described by Fig. 2, where ic is
the control current signal, θ is the output angular position,
R is the stator resistance, L is inductance, Ks is the
equivalent gain of driving circuit, Ke is back electromotive
force coefficient and Km is torque coefficient of PMSM.
From Fig. 2, without considering the load torque Tl, the
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Fig. 2. Block diagram of the PMSM system

transfer function of the plant in Laplace domain can be
given as follows,

G(s)=
KmKs

LJs2+(RJ+KsJ+DL)s+(DR+DKs+KmKe)
·

1

s
(2)

As wind resistance is usually small, the drag coefficient D
can be ignored. With D=0, (2) is simplified as

G(s) =
K

τmτes2 + τms+ 1
· 1

s
(3)

where τe=
L

Ks+R and τm=J(Ks+R)
KmKe

are the electrical time
constant and electromechanical time constant, respec-
tively. K=Ks

Ke
is the equivalent magnification.

2.2 Disturbance analysis

According to the analysis in Yao et al. (2013); Ou et al.
(2018); Huo et al. (2020), we know that the frequencies of
disturbances of the turntable system are mainly caused by
torque disturbances due to the unbalancing loading and
the torque ripples of the motor. The motor torque ripples
are divided into electromagnetic torque ripple and cogging
torque ripple, which are determined by the number of pole-
pairs and tooth-slots.

The accurate model of disturbances is intractable due to
the mechanism of the uneven distribution of the body mass
and the ripples of the PMSM, it can be modeled as periodic
functions in form of the angular position, that is

frip =

m∑
i=1

Ai sin(ω̂iθ+φi) i = 1, · · · ,m (4)

where θ is the angular position of the motor, Ai, φi and
ω̂i are the amplitude, phase angle and spatial frequency of
the ith major disturbance harmonics, respectively.

2.3 Orthogonal Projection

Define f1(t), f2(t), · · · , fn(t) as the orthogonal basis func-
tions of the subspace H, the projection of signal u(t) onto
the subspace H can be given as

u(t)|H = ξ1f1(t) + ξ2f2(t) + · · ·+ ξnfn(t) = f(t)ξ (5)

where f(t) , [f1(t), f2(t), · · · , fn(t)], ξ , [ξ1, ξ2, · · · , ξn]T .
ξ denotes the vector representation of u(t) in the subspace
H, which can be calculated by

ξ =< f(t), u(t) > (6)

where <,> denotes the inner product operation, i.e., <
x(t),y(t) >=

∫
x(t)y(t) dt.

The measured data are available only with the sampling
period Ts and the input is injected to the plant through a
zero-order hold(ZOH). Therefore, the orthogonal projec-
tion matrix is obtained as

F
∆
=


f1(0) f2(0) · · · fn(0)
f1(Ts) f2(Ts) · · · fn(Ts)

...
... · · ·

...
f1(NTs) f2(NTs) · · · fn(NTs)

 (7)
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For a vector xj ∈ RN , the superscript j denotes the
iteration index of the experiment. It is defined as xj =
[xj(0)xj(1) · · ·xj(N − 1)], where xj(k) is a measurement
at time instant k for k = 0, 1, · · · , N − 1 with N being
the number of samples. The symbols q and z denote the
forward shift operator with respect to time and iteration,
respectively. Namely, qx(k) = x(k + 1) and zxj = xj+1.

3. MAIN RESULTS

In this section, we propose a compound control scheme
to suppress various kinds of disturbances, especially the
disturbances which are angular position dependent. Due
to the effectiveness of ILC in suppressing spatial periodic
disturbances, we project the error data onto a subspace to
capture the effective error information caused by the refer-
ence and disturbances. A data-based gradient approach is
proposed to design the learning gain. Moreover, the LESO
is used to estimate and compensate for other remained
disturbances as well as uncertain dynamics.

3.1 Data-driven ILC based on orthogonal projection

The identification is performed by using a feedforward
controller until the tracking error cannot be reduced. The
data-driven ILC structure is shown in Fig. 3, whereK(s) is

the feedback controller, r is the reference input and ujff is

the feedforward control signal. The position output yj(θ) is

affected by periodic disturbances f jrip as well as uncertain

ones f jd .

−

( )K s ( )G s
r

( )f rip

jf

( )jy 

j

ffu
j

df

Fig. 3. Configuration of data-driven ILC system

From Fig. 3, the tracking error in Laplace domain can be
given as

ej(s) =
r − (fjrip + uj

ff
)G

1 +KG
−

Gfj
d

1 +KG

= ej0(s) + ej
d
(s)

(8)

with {
ej0(s) = S(s)r −G(s)S(s)(fjrip + uj

ff
)

ej
d
(s) = −G(s)S(s)fj

d

(9)

where S(s) = 1
1+KG is the sensitivity function of the

feedback loop. It follows that if ujff =G−1r− f jrip, ej0 = 0.

For the convenience of identification, (3) and (4) can be
simplified as

G(s) =
1

a1s3 + a2s2 + a3s
(10)

frip =

m∑
i=1

[αi sin(ω̂iθ)+βi cos(ω̂iθ)] (11)

where a1, a2 and a3 are the corresponding coefficients after
simplification. Thus, the desired feedforward term in time
domain can be expressed as

u∗ff (t)=a1
d3r

dt3
+a2

d2r

dt2
+a3

dr

dt
−

m∑
i=1

[αi sin(ω̂ir)+βi cos(ω̂ir)]

=ϕ(t)σ∗

(12)
where u∗ff (t) is the desired feedforward, σ∗ are the true
parameters in the model.ϕ(t) =

[
d3r

dt3
,

d2r

dt2
,

dr

dt
,− sin(ω̂1r), · · · ,− cos(ω̂mr)

]
σ∗ = [a1, a2, a3, α1, · · · , αm, β1, · · · , βm]T

(13)

The above equations imply that we could seek u∗ff (t) in
the finite dimensional subspace H.

H=span

{
d3r

dt3
,

d2r

dt2
,

dr

dt
,−sin(ω̂1r),· · · ,−cos(ω̂mr)

}
(14)

Since the true parameters σ∗ are unknown, the feedfor-
ward term ujff (t) is parameterized in the following form

with estimated σ̂j .

ujff (t) = ϕ(t)σ̂j (15)

The essence of orthogonal projection is to pre-compress
the state signal. By projection transformation, the time-
domain signal can be transformed into the vector space
composed of the basis functions and the iterative identifi-
cation of parameters could then be implemented.

Substituting (12) into (8), it follows that e∗0 =Sr−GSϕσ∗.
Therefore, we have

Sr = GSϕσ∗ (16)

Since the model of the plant G and the sensitivity function
S are both unknown, it is impossible to construct GS
directly. Let GB denote the Toeplitz matrix corresponding
to GS with the following form.

GB =


g0 0 · · · 0
g1 g0 · · · 0
...

...
...

...
gN−1 gN−2 · · · g0

 (17)

The impulse response only depends on the transfer func-
tion of the system. Though it may be affected by other
disturbances, this effect can be greatly reduced by ma-
trix operation, since the structure of the fixed system
is invariable Mishra and Tomizuka (2009). It could be
obtained by injecting an impulse feedforward signal and
a zero reference to the system. Substituting (16) into (8),
it follows that

ej0 = ϕ(σ∗ − σ̂j) (18)

Define Φ as the digital form of ϕ(t). Φ could be orthogonal
decomposed through QR decomposition.

Φ = QR (19)

where R∈Rn×n is a nonsingular upper triangular matrix
and Q ∈ RN×n satisfies QTQ = In×n. Each column of
Q constitutes the orthogonal basis of the subspace H.
Then δj , the coordinate parameters of tracking error ej

in subspace H, could be denoted as

δj = QTej (20)

Combining (20) and (18), we have

δj = M(σ∗ − σ̂j) (21)
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where
M = QTGBΦ (22)

Therefore, we can get the data-based estimation of M . The
δj contains partial, but the most pertinent information in
the error signal. Hence, it is the effective information we
would utilize for identification.

Inspired by norm-optimal ILC, in this paper, a gradient
approach in the subspace H is proposed to design the
learning gain. The cost function is given as follows,

J(σ̂j) = (δj)Tδj (23)

For the optimization problem in (23), minimizing J(σ̂j)
by taking the partial derivative with respect to σ̂j and
setting it to zero leads to

∂J

∂σ

∣∣∣∣
σ=σ̂j

= 2
∂
(
δj
)
T

∂σ̂j
δj =−2MTδj (24)

H|
σ=σ̂j =2

∂
(
δj
)
T

∂σ̂j

(
∂
(
δj
)
T

∂σ̂j

)T

=2MTM (25)

Then according to the Gauss-Newton gradient iterative
algorithm, we have

σ̂j+1 = σ̂j−λH−1 ∂J

∂σ

∣∣∣∣
σ=σ̂j

= σ̂j+λ
[
MTM

]−1MTδj

= σ̂j+λM−1δj

(26)
where λ ∈ (0, 2) is the learning step.

Hence, the iterative learning identification algorithm can
be obtained as follows,

σ̂j+1 = σ̂j + Lδj (27)

where L = λM−1 is the learning gain.

3.2 Convergence analysis

Substituting (21) into (27), we have

σ̂j+1 = (I − LM) σ̂j + LMσ∗ (28)

Since λ ∈ (0, 2), obviously, we have

ρ (I − LM) < 1 (29)

where ρ(A) denotes the maximum singular value of A.
(29) indicates that the convergence is monotonous. It
guarantees monotonic transient convergence as well as
bounds the steady state error.

Let z denote the forward shift operator with respect to the
iteration index j. From (28), we have

σ̂j = [(z − 1) I + LM ]
−1
LMσ∗ (30)

Then the z-domain relationship can be given as follows,

σ̂ (z) = Tσ̂σ∗(z)
z

z − 1
λσ∗ (31)

where Tσ̂σ∗(z) = [(z − 1) I + LM ]
−1

. Based on the final
value theorem of z-transform, we can get

E [σ∞] = E
[

lim
z→1

(z − 1)λσ̂(z)
]

= Tσ̂σ∗ (1)λσ∗

= σ∗

(32)

In summary, for the system described above, the proposed
iterative learning algorithm is monotonically convergent.
Further more, E

[
σj
]
→ σ∗, when j →∞.

3.3 Compound control design

The data-driven ILC based on orthogonal projection is
utilized to suppress the periodic disturbances while other
uncertain disturbances still deteriorate the tracking perfor-
mance. One promising way is ESO. Put forward by Han
(2009), ADRC was designed to estimate the total uncer-
tainties online by using ESO. By adding the state feedback
and command feedforward to ESO, the control system
can obtain steady and dynamic states of high quality.
Although the original formulation of ESO has a nonlinear
gain structure, LESO has attracted much attention as it is
easier to design and simple to implement. So here, a LESO
is added into the loop. Configuration of overall system with
compound control is shown in Fig. 4.

−

( )K s ( )G s
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( )jy 
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Fig. 4. Configuration of system with compound control

For the 3rd-order plant obtained in (3), a 4th-order LESO
is shown 

˙̄x1 = x̄2 + b1 (y − x̄1)

˙̄x2 = x̄3 + b2 (y − x̄1)

˙̄x3 = x̄4 + b3 (y − x̄1) + bū

˙̄x4 = b4 (y − x̄1)

(33)

where x̄1, x̄2, x̄3, x̄4 are the observer states, ū is the input
of LESO and b is the gain of ū. Specifically, x̄4 is the
extended state of the output port equivalent disturbance
since x̄1 is the position estimation without disturbance and
x̄2 is the estimate of the angular velocity.

b1 = 4ωeso b2 = 6ω2
eso b3 = 4ω3

eso b4 = ω4
eso (34)

where ωeso denotes the observer bandwidth. In general,
the larger the observer bandwidth is, the more effective
the observer is. The modified control input is given by

ū = u0 − x̄4/b (35)

Finally, the discretized LESO is given by

ē(k) = y(k) − x̄1(k)

x̄1(k + 1) = x̄1(k) + Ts (x̄2(k) + b1ē(k))

x̄2(k + 1) = x̄2(k) + Ts (x̄3(k) + b2ē(k))

x̄3(k + 1) = x̄3(k) + Ts (x̄4(k) + b3ē(k) + bū(k))

x̄4(k + 1) = x̄4(k) + Tsb4ē(k)

ū(k) = u0(k) − x̄4(k)/b

(36)

4. NUMERICAL EXAMPLES

In this section, numerical simulations are presented to il-
lustrate the proposed scheme for the disturbances rejection
and evaluate its correctness.
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4.1 Simulation set-up

In the illustrated example, the sampling period is Ts =
500µs, the model of the plant in simulations is

G(s) =
92224

s2 + 514.5s+ 781.1
· 1

s
(37)

Here, a step disturbance and three periodic disturbances
are introduced, in which the frequencies of periodic distur-
bances in spatial domain are

ω̂1 =
1

360
/deg, ω̂2 =

1

24
/deg, ω̂3 =

1

10
/deg (38)

The selection of stabilizing controller K(s) can be synthe-
sized by the classic loop shaping method as follows,

K(s) = 16.2297 · 0.2756s+ 1

0.0919s+ 1
· (0.0083s+ 1

0.0049s+ 1
)
5

(39)

For the time-varying command velocity with three stages
including acceleration, constant angular velocity and de-
celeration of the turntable system, a recorded control sig-
nal, which indirectly reflects the disturbances, is depicted
in Fig. 5 in time domain as well as in spatial domain,
respectively. Obviously, the disturbances are periodic in
the angular position rather than time.
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Fig. 5. Control signal in time and spatial domain.
(a)Time domain (b)Spatial domain

The learning step λ is selected as 0.7, the plots of estimates
versus iterations are shown in Fig. 6. It can be observed
that almost all estimates converge to steady constant
values after several iterations. Table 1 shows specific
information of the true parameters and estimates.
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Fig. 6. Identification results: estimates versus iterations.

To identify the spatial frequency components, experiment
results are recorded and analyzed. By mapping the in-
dependent variable from time to space, the frequency in
spatial domain is derived, as shown in Fig. 7.
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Fig. 7. Identification in spatial domain

In this case study, the parameters of the 4th-order LESO,
weso and b can be calculated as

weso = 10rad/s, b = 1000 (40)

Table 1. Comparison results

α1 α2 α3 β1 β2 β3
True parameters 1.9 -0.2 -0.2 -2.4 0.1 0.4

Estimates 1.97 -0.21 -0.24 -2.37 0.14 0.43

4.2 Comparison and simulation studies

In this example, for a better description of proposed
method, a S-curve instead of a trapezoid is given in order
to reduce the impulsion caused by the suddenly change of
angular acceleration, shown in Fig. 8.

Fig. 8. Velocity reference

Simulation studies are implemented for comparison with
four controllers respectively, including a basic stabilizing
controller K(s), a LESO, a data-driven ILC based on or-
thogonal projection and a compound controller combined
with ILC based on orthogonal projection and LESO.

The response of the system, in which only the stabilizing
controller K(s) is applied, is exhibited in Fig. 9. Obvi-
ously, there exist very large ripples in the output angular
position. When a 4th-order LESO is merely added, the
corresponding angular position tracking error is illustrated
in Fig. 10. It can be seen that the steady state error
has been reduced, but its periodic disturbances remain
a problem. In Fig. 11, when a data-driven ILC based on
orthogonal projection algorithm is applied alone, although
the periodic disturbances are reduced to a great extent, the
steady error still exists. Finally, the compound controller,
which is a combination of ILC and LESO, is applied and
the tracking error is illustrated in Fig. 12. In the steady-
state, significantly better tracking is obtained since the
ripples, including the fundamental and harmonic compo-
nents, are greatly suppressed, which shows a remarkable
improvement over methods mentioned above.
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Fig. 9. Tracking error under K(s)
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Fig. 10. Tracking error under LESO
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Fig. 11. Tracking error under ILC
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Fig. 12. Tracking error under ILC combined with LESO

The comparison results indicate that the tracking error in
dynamic process is successfully attenuated by the proposed
compound method.

5. CONCLUSION

This paper presents a compound control method which
aims at attenuating all kinds of spatial disturbances and
uncertainties. Due to the data-driven ILC, the identifi-
cation matrix is greatly compressed and the complexity
of the algorithm is reduced meanwhile. Besides, LESO
helps a lot to enhance the performance of uncertainties
suppression. The simulation results demonstrate that the
proposed method effectively improves the accuracy of the
ripple identification, and significantly minimizes the dis-
turbances. Our future work is to apply the compound
method to experimental research which is carried out on
the actual turntable system.
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