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Abstract: The problem of robust fault diagnosis in nonlinear dynamic systems under presence
of disturbances is studied within the scope of analytical redundancy conception. Solution of the
problem assumes residual generation by checking redundancy relations existing among system
inputs and outputs measured over a finite time window followed by decision making through
evaluation of the residuals. Nonparametric method is considered for residual generation. To
make decision, the unified method is developed whose feature is it combines the threshold
logic of decision making and the residuals comparing with the fault syndromes evaluated
on-line. Joint application of both nonparametric method for residual generation and unified
method for decision making gives the possibility to develop the universal diagnostic platform
for different systems described by ordinary nonlinear differential equations of the same structure
but distinguished by these equations coefficients values.
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1. INTRODUCTION

This work is devoted to the problem of fault diagnosis
in dynamic systems described by nonlinear ordinary dif-
ferential equations whose coefficients (system parameters)
may be unknown. Solution of this problem is considered
within the framework of analytical redundancy conception
Chow and Willsky (1984). According to this conception,
fault diagnosis is based on checking relations that exist
among system inputs and outputs measured over a finite
time window. The process of diagnosis includes residual
generation as a result of mismatch between the system
behavior and its reference model behavior, followed by
decision making through evaluation of the residuals.

Faults in the system are the first reason of mismatch
between the system behavior and its reference model be-
havior. The second reason is influence of disturbances due
to the modelling errors, uncontrollable external actions
and measurement noise. As soon as disturbances and faults
all act upon the residual, the robustness problem arises.
It is common practice to distinguish active and passive
approaches to the robustness problem solution. An active
approach is concentrated on the stage of residual gener-
ation to make the residual insensitive or low sensitive to
disturbances and, simultaneously, sensitive to faults, while
the passive approach touches upon the decision making
procedure Blanke et al. (2006); Chen and Patton (1999);
Gertler (1998).
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Among the methods developed in the frames of active
approache, there exists the method considered in Shumsky
(2007). The feature of this method is that the knowledge
of some constant system parameters is not required for
redundancy relations checking. Thus, this method provides
active robustness; moreover, it can be called as non-
parametric one, see also Ding (2014); Lindner and Auret
(2014).

Nevertheless, existence of time variable disturbance ac-
tions calls for the use the passive approach whose main
tool is the threshold logic of decision making. To guarantee
acceptable trade-off between the count of false alarms
and missing of faults, the threshold should be adaptive,
depended on intensity of disturbances.

This paper concentrates mainly on the use of the passive
approach to robustness aimed at its application in the
frames of nonparametric method. The main contribution
of the paper is unified method for decision making whose
distinguishing feature is it combines the threshold logic of
decision making that involves adaptive threshold and the
residuals comparing with the fault syndromes evaluated
on-line.

It will be shown in the paper that application of proposed
results leads to obtaining the single diagnostic procedure
(platform) for different systems under diagnosis belonging
to the same class. All the systems from one class are
described by ordinary nonlinear differential equations of
the same structure. Under this, the equations given for
different systems from the same class may contain distin-
guishing values of their coefficients.
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The rest of the paper is organised as follows. Firstly, in
Section 2, the details of nonparametric method application
for residual generation are considered. Then, in Section
3, the unified method for decision making is proposed.
After this, an example is given to illustrate the features
and results of proposed method application. Section 4
concludes the paper.

2. RESIDUAL GENERATION BY NONPARAMETRIC
METHOD

2.1 The diagnostic models in use

Let the system under diagnosis is described by the model

dx(t)/dt = f(x(t), u(t), a), y(t) = h(x(t), a) (1)

where x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rl are the vectors
of the states, inputs (controls), outputs (measurements)
respectively and a ∈ Rm is the vector of the coefficients
including 1) the model constant coefficients corresponding
to unknown system parameters and 2) the coefficients that
take nonzero value only when appropriate fault occurs. For
convenience, vector of the last coefficients is considered as
subvector of a and is written as af .

It is assumed that the fault in the system results in
abrupt or gradual deviation of appropriate coefficient from
zero. It is also assumed only single fault in the system.
Nonlinear vector functions f(∗) and h(∗) describe the
system dynamics and sensors characteristics respectively.
The symbol ”star” is used instead of omitted function
arguments.

Design of the reference model needs in some transforma-
tions of the initial one. Consider them.

Firstly, transformation of the model (1) to the model
without internal feedbacks

dx(1)(t)/dt = f (1)(y(t), u(t), a),

dx(2)(t)/dt = f (2)(x(1)(t), y(t), u(t), a),
...

dx(N)(t)/dt =

f (N)(x(N−1)(t), x(N−2)(t), ..., x(1)(t), y(t), u(t), a),

(2)

y∗(t) = h∗(x
(N)(t), x(N−1)(t), ..., x(1)(t), a) (3)

is executed. The model (2) dynamics is split into N
parts and x(i) is the state vector of the part number
i, 1 ≤ i ≤ N . Every part depends on the system input
and output vectors as well as the state vectors of previous
parts. The output vector of this model is formed as some
function of the parts state vectors, see (3). Transformation
of the model (1) to the model (2), (3) is fulfilled under
assumption about existing the links between state vector
of the model (1) and state vectors of the model (2) parts

x(i)(t) = ϕ(i)(x(t)), 1 ≤ i ≤ N, (4)

as well as between the output vectors of the models (1)
and (3)

y∗(t) = ψ(y(t)) (5)

where ϕ(i)(∗), 1 ≤ i ≤ N and ψ(∗) are some differentiated
vector functions.

To avoid the repetition of known results, note that solution
to the above model transformation task was given on the

base of differential geometric tools in Shumsky (2007,
2012).

Secondly, the transition from the model (2), (3) to the
system model in input-output form is executed. To realize
such transition, sometimes one may need in the system
functions representation in polynomial form. This demand
can be satisfied by explanation of the system functions into
a series. Obtained errors are considered as modelling ones.

Describe the features of such transition. To simplify the
next writings, introduce operator I according to relation

I(f (j)(x(j−1)(t), x(j−2)(t), ..., x(1)(t), y(t), u(t), a) =

=

t∫
t0

f (j)(x(j−1)(τ), x(j−2)(τ), ..., x(1)(τ), y(τ), u(τ), a)dτ+

x(j)(t0) = x(j)(t).
(6)

Due to (6) one can write

x(1)(t) = I(f (1)(∗)),
x(2)(t) = I(f (2)(I(f (1)(∗)), y(t), u(t), a)),

...

x(N)(t) =

I(f (N)(I(f (N−1)(∗)), ..., I(f (1)(∗), y(t), u(t), a).

(7)

After substitution (7) into (3) one can obtain input-output
description of the system in the form

ψ(y(t)) = (A+Af )W (t0, t) (8)

where W (t0, t) and A, Af are the column vector and
the matrices such that 1) elements of W (t0, t) are the
functionals depended on the measurable system inputs and
outputs at time interval [t0, t]; 2) elements of the matrix
A are polynomials of all the model (2) states at some
initial instant of time t0 and of the constant coefficients
(components of the vector a) such that these coefficients
are not subjected to faults action; 3) elements of the matrix
Af are polynomials of the vector af components and may
be of the rest components of the vector a and states of
the model (2) at time instant t0. It is important that for
healthy system case equality

Af = 0 (9)

holds. The model (8) is considered as the reference one.
This model will be used for analytical relations construc-
tion whose checking should allow to detect and isolate the
faults.

2.2 Residual generation

Let t0, t1, ..., tL, ti = t0 + i∆t, 1 ≤ i ≤ L, be some discrete
time readings and ∆t, is sampling period. The choice of ∆t
is depended on the system dynamics (speed of response)
and computational power of the diagnostic device. The less

∆t, the less time expenses to detect and isolate the faults.

In healthy system case, taking into account (9) one can
write for time interval (moving time window) TL = [t0, tL]

Y (tL) = AV (tL), (10)

where the matrices

Y (tL) =
(
ψ(y(t1))|ψ(y(t2))| . . . |ψ(y(tL)

)
, (11)

V (tL) =
(
W (t0, t1)|W (t0, t2)| . . . |W (t0, tL)

)
. (12)
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Let the size of moving time window is taken such that

rankV (tL−1) = rankV (tL). (13)

In this case, the matrix V (tL) is singular one and has
nonzero kernel. Due to this, the rule for analytical relations
checking can be taken in the form

r(tL) = Y (tL)v(tL), v(tL) ∈ kerV (tL). (14)

Indeed, according to (10) from (14) one has

r(tL) = AV (tL)v(tL) = 0. (15)

To reduce time expenses for fault detection and isolation
to minimum, the size of mowing time window should be
as minimal as possible. Given below algorithm for residual
generation satisfies this demand.

Algorithm 1. (Residual generation)

(1) Take L=1. Compute V (t1) = W (t0, t1).
(2) Take L=L+1. Compute V (tL) according to (12).
(3) Check if equality (13) holds. If no, go to step 2.
(4) Compute Y (tL) according to (11).
(5) Compute the residual according to (14).
(6) End.

Notice, computational expanses of this algorithm may be
slightly decreased by excluding the step 3. Indeed, under
value L = Lmax, where Lmax plus 1 exceeds the number of
the matrix A columns, the matrix V (tL) is singular. But
in this case, the minimal size of moving time window is
not under guarantee.

3. UNIFIED METHOD OF DECISION MAKING

3.1 Threshold logic

Under absence of faults and disturbances the rule (14)
gives zero residual vector. At a practice, due to distur-
bances action (whose description the reference model does
not contain) the residual vector will be nonzero. Under
this, the question arises is the disturbances action the
single reason of nonzero residual vector generation? To
give answer on this question the threshold logic of decision
making is involved. Let evaluation of the residual vector
results that the system is healthy at time interval up to
time instant tL−1.

Introduce relation for the threshold computation in the
form

Π(tL) = Π0 + max
τ∈T∗

(r(τ)T (r(τ))1/2, T∗ = [t0, tL−1].

(16)
It is assumed to take the constant Π0 from simulation
results or full-scale test to exclude the false alarm, see
example.

If the norm of the residual vector does not exceed the
threshold

(rT (tL)r(tL))1/2 ≤ Π(tL), (17)

the decision is made about the healthy system. Given in
(16) way for threshold computation does not take into
account intensity of disturbances at instant tL. Therefore,
inequality (17) can be violated even if there are no faults in
the system. So, the final decision needs in additional test
(see below). If this test does not prove the fault presence,
at the next position of time window the threshold will be
increased.

Notice, relation (16) allows considering the possible
changes of disturbances intensity under diagnosis. It pro-
vides threshold adaptation to real diagnostic conditions.

3.2 Comparing with the fault syndroms

Let the fault results in nonzero value of parameter afj at

the instant tL such that inequality (17) is violated. Under
this, the matrix A keeps its value, while Af 6= 0. Therefore,
(15) holds and, as a result, the value of the residual vector
at instant of time tL satisfies equality

r(tL) = AfW (t0, tL)vL(tL) (18)

where vL(tL) is the last component of the vector v(tL).
Under assumption that the fault value is sufficiently small,
use the linear approximation

Af = (∂Af/∂afj )| af=0 a
f
j . (19)

In this case, due to (18) and (19), under absence of
disturbances the residual vector direction coincides with
direction of the vector

σj(tL) = (∂Af/∂afj )| af=0W (t0, tL). (20)

The vector σj(tL) is named ”syndrome of the fault num-
bered j” and relation (20) is used for on-line syndrom
computation.

The disturbances influence results in not full coincidence of
the residual and syndrome vectors direction. In this case,
conclusion about the fault numbered j is made on the base
of angle distance between the vectors r(tL) and σj(tL). It
is proposed to use absolute value of cosine of the angle
between these vectors given by following relation

αj(tL) =
|rT (tL)σj(tL)|

(rT (tL) r(tL))1/2 (σTj (tL)σj(tL))1/2
(21)

as the measure of a such distance. The closer αj(tL) is to
one, the greater confidence in appropriate fault.

In general case, the matrix (∂Af/∂afj )| af=0 may contain
unknown coefficients and immediately unobservable com-
ponents of the vectors x(j)(t0), 1 ≤ j ≤ N . Two stages
procedure is proposed to evaluate these coefficients and
states: 1) compute the matrix A by direct solution of the
equation (10); 2) express the coefficients and states looking
for from the matrix A coefficients.

Assume that the size L of mowing time window is minimal
such that equality (13) holds. In this case the matrix
V (t0, tL−1) is nonsingular one and depends on the vectors
of healthy system inputs and outputs measured at time
interval T∗ = [t0, tL−1]. If the matrix V (t0, tL−1) is not
square one, then the following representation

AV (t0, tL−1) = [A1 |A2]

[
V1(t0, tL−1)

V2(t0, tL−1)

]
is true, where V1(t0, tL−1) is square matrix. Under this,
from (10) one obtains

A1 = [Y (t0, tL−1)−A2V2(t0, tL−1)]V −1
1 (t0, tL−1). (22)

To solve equation (22) for the matrix A1 one needs the
matrix A2 redefining. Let unknown system parameters
included into the matrix A2 take their values from some
known intervals. In this case it is reasonable to take the
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middle of interval to redefine appropriate coefficient. If it
is necessary to redefine the values of some system states
at instant t0, one can use an additional state observer for
their estimation.

Obviously, if V (t0, tL−1) is square matrix, no redefining
is required. To find the matrix A, it is sufficient to take
A1 = A, V1(t0, tL−1) = V (t0, tL−1) and A2V2(t0, tL−1) = 0
in (22).

3.3 The unified method realization

In given above relations (14), (16), (20) and (21) one uses
”internal” time of the interval TL corresponding to the
real position of moving time window. In order to lock this
”internal” time to the system time t, it is sufficient to take
in these relations

tL = t, ti = t− (L− i) ∆t, 0 ≤ i ≤ L− 1. (23)

Consider feature of given above decision making methods
joint use. Firstly, realization of the threshold logic method
assumes the possibility to compute on-line both the resid-
ual vector and threshold. The residual vector computation
is possible if measurements of input and output vectors
are available at time interval TL. This demand is always
satisfied if t ≥ Lmax∆t. Also, computation of the threshold
is possible if the residual values are available at time
interval T∗ whose length does not exceed (Lmax − 1)∆t.

Secondly, it is necessary to take value αmin sufficiently
close to one, such that fulfilling inequality

αj(t) ≥ αmin (24)

allows making final conclusion about appropriate fault in
the system. The next algorithm describes main steps of
the unified method application.

Algorithm 2. (Decision making)

(1) Start when t = Lmax∆t.
(2) Take i = Lmax − 1.
(3) Applying Algorithm 1 compute r(t).
(4) If i ≥ 1 take i = i− 1, t = t+∆ t and go to step 3.
(5) Take t = t+∆ t.
(6) Applying Algorithm 1 compute r(t).
(7) Applying relation (16) compute Π(t).
(8) If inequality (16) holds go to step 5.
(9) For every j compute σj(t) and αj(t) according to (20)

and (21) respectively.
(10) If inequality (24) does not hold for each j go to step

5.
(11) If for some j and all i, i 6= j, inequality αj(t) > αi(t)

holds, make a decision about jth fault in the system.

Give necessary comments to above algorithm. Fulfilling
steps (1)-(4) provides the possibility of the residual and
threshold computation at the initial stage of diagnosis.
Steps (5)-(10) present the diagnostic stage accomplished
by the fault detection, while at step (11) solution to
fault isolation problem is given. Notice, if for some faults
with numbers i and j approximate equality αi(t) ' αj(t)
takes place, above faults are indistinguishable within the
framework of the proposed diagnostic method.

4. ILLUSTRATIVE EXAMPLE

4.1 The reference model design

Consider the features of the proposed results application
on the base of three tank system model, see Patton et. al.
(1989). The model of three tank system used in this paper
has a form

dx1(t)/dt = a1u1(t)− (a2 − af2 )
√
x1(t)− x2(t),

dx2(t)/dt = (a2 − af2 )
√
x1(t)− x2(t)−

(a3 − af3 )
√
x2(t)− x3(t),

dx3(t)/dt = (a3 − af3 )
√
x2(t)− x3(t)−

(a4 − af4 )
√
x3(t),

y1(t) = x2(t), y2(t) = x3(t)

(25)

where aj , 1 ≤ j ≤ 4, are the constant coefficients depended
on the system parameters. It is assumed that these coef-

ficients are unknown. The coefficients afj , 2 ≤ j ≤ 4, are
given for faults in the sysyem and result in appropriate
pipes blocking. In spite of the model given in Patton et.
al. (1989), the model (25) assumes that liquid is drained
through pipe at the bottom of the third tank.

Transformation to the model without internal feedbacks
results in

dx
(1)
1 (t)/dt = a1u1(t)− (a3 − af3 )

√
y1(t)− y2(t),

dx
(1)
2 (t)/dt = (a3 − af3 )

√
y1(t)− y2(t)−

(a4 − af4 )
√
y2(t),

dx
(2)
1 (t)/dt = (a2 − af2 )

√
x

(1)
1 (t)− 2 y1(t)−

(a3 − af3 )
√
y1(t)− y2(t),

y1(t) = x
(2)
1 (t), y2(t) = x

(1)
2 (t)

(26)

under ϕ(1)(x(t)) =
(
x1(t) + x2(t) x3(t)

)T
, ϕ(2)(x(t)) =

x2(t), ψ(y(t)) =
(
y1(t) y2(t)

)T
.

Taking into account (6) and making substitution according
to (7) one can write

x
(1)
1 (t) = a1

t∫
t0

u1(τ) dτ−

(a3 − af3 )

t∫
t0

√
y1(τ)− y2(τ) dτ + x

(1)
1 (t0),

x
(1)
2 (t) = (a3 − af3 )

t∫
t0

√
y1(τ)− y2(τ) dτ−

(a4 − af4 )

t∫
t0

√
y2(τ) dτ + x

(1)
2 (t0),

x
(2)
1 (t) = (a2 − af2 )

t∫
t0

√
x

(1)
1 (t0) + µ(τ) dτ−

(a3 − af3 )

t∫
t0

√
y1(τ)− y2(τ) dτ + x

(2)
1 (t0)

(27)
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where

µ(τ) = a1

τ∫
t0

u1(τ ′) dτ ′−

(a2 − af2 )

τ∫
t0

√
y1(τ ′)− y2(τ ′) dτ ′ − 2 y1(τ).

(28)

Using expansion of square root into a series one can write√
1 +

µ(τ)

x
(1)
1 (t0)

= 1 +
1

2

µ(τ)

x
(1)
1 (t0)

− 1

8

(
µ(τ)

x
(1)
1 (t0)

)2

− . . . .

Involving only three terms, one obtains

x
(2)
1 (t) = (a2 − af2 )×√

x
(1)
1 (t0)

t∫
t0

(
1 +

1

2

µ(τ)

x
(1)
1 (t0)

− 1

8

(
µ(τ)

x
(1)
1 (t0)

)2)
dτ−

−(a3 − af3 )

t∫
t0

√
y1(τ)− y2(τ) dτ + x

(2)
1 (t0).

(29)
Taking into account (27) and (28), (29), the matrices of
the reference model (8) can be written as follows

A =

(
x

(2)
1 (t0) a2

√
x

(1)
1 (t0)

a1a2

2

√
x

(1)
1 (t0)

−a2√
x

(1)
1 (t0)

x
(1)
2 (t0) 0 0 0

∣∣∣∣∣
∣∣∣∣∣

a2

2x
(1)
1 (t0)

√
x

(1)
1 (t0)

−a3
−a2

2

2

√
x

(1)
1 (t0)

0

0 a3 0 −a4

∣∣∣∣∣
∣∣∣∣∣

a2
1a2

8x
(1)
1 (t0)

√
x

(1)
1 (t0)

a1a
2
2

4x
(1)
1 (t0)

√
x

(1)
1 (t0)

0 0

∣∣∣∣∣
∣∣∣∣∣

−a3
2

8x
(1)
1 (t0)

√
x

(1)
1 (t0)

−a2
2

2x
(1)
1 (t0)

√
x

(1)
1 (t0)

0 0

)
,

Af =

(
0 −af2

√
x

(1)
1 (t0)

−a1a
f
2

2

√
x

(1)
1 (t0)

af2√
x

(1)
1 (t0)

0 0 0 0

∣∣∣∣∣
∣∣∣∣∣

−af2
2x

(1)
1 (t0)

√
x

(1)
1 (t0)

af3
−2a2a

f
2 + (af2 )2

2

√
x

(1)
1 (t0)

0

0 −af3 0 af4

∣∣∣∣∣
∣∣∣∣∣

−a2
1a
f
2

8x
(1)
1 (t0)

√
x

(1)
1 (t0)

a1(−2a2a
f
2 + (af2 )2)

4x
(1)
1 (t0)

√
x

(1)
1 (t0)

0 0

∣∣∣∣∣
∣∣∣∣∣
−3a2

2a
f
2 + 3a2(af2 )2 − (af2 )3

8x
(1)
1 (t0)

√
x

(1)
1 (t0)

−a2a
f
2 + (af2 )2

2x
(1)
1 (t0)

√
x

(1)
1 (t0)

0 0

)
,

W (t0, t) =

(
1 t− t0

t∫
t0

τ∫
t0

u1(τ ′)dτ ′dτ

t∫
t0

y1(τ)dτ

∣∣∣∣∣

∣∣∣∣∣
t∫

t0

y2
1(τ)dτ

t∫
t0

√
y1(τ)− y2(τ)dτ

∣∣∣∣∣
∣∣∣∣∣

t∫
t0

τ∫
t0

√
y1(τ ′)− y2(τ ′)dτ ′dτ

∣∣∣∣∣
∣∣∣∣∣

t∫
t0

√
y2(τ)dτ

t∫
t0

( τ∫
t0

u1(τ ′)dτ ′
)2

dτ

∣∣∣∣∣
∣∣∣∣∣

t∫
t0

( τ∫
t0

u1(τ ′)dτ ′
τ∫

t0

√
y1(τ ′)− y2(τ ′)dτ ′

)
dτ

∣∣∣∣∣
∣∣∣∣∣

t∫
t0

( τ∫
t0

√
y1(τ ′)− y2(τ ′)dτ ′

)2

dτ

∣∣∣∣∣
∣∣∣∣∣

t∫
t0

y1(τ)
( τ∫
t0

√
y1(τ ′)− y2(τ ′)dτ ′

)
dτ

)T
.

Analysis of the above matrices allows making following
conclusions. Firstly, as soon the matrix W (t0, t) does not
contain unknown coefficients, the residual generation pro-
cedure provided by Algorithm 1 is nonparametric (knowl-
edge of the coefficients aj , 1 ≤  ≤ 4 is not required).

Secondly, the matrices(∂Af/∂afj )| af=0, 2 ≤ j ≤ 4, are de-
pended on the model coefficients. But it is easy to see that

the faults resulting in distortion af2 (the first fault) and af4
(the third fault) influence only on the first and the second
rows of the matrix Af respectively, while contribution of

the coefficient af3 (the second fault) to the both rows of
the matrix Af is the same in quantity but different in sign.
Considering (20), one can take σ1 = (1 0)T , σ2 = (1 −1)T

and σ3 = (0 1)T . Thus, decision making also does not need
in the system parameters knowledge.

4.2 Simulation results

Above matrices were used to simulate the diagnostic pro-
cess in three tank system involving the package MatLab.
Under simulation of the healthy system, the system pa-
rameters were taken as follows a1 = 1m−2, a2 = a3 =
a4 = 0, 4427m1/2/sec. Residual generation and decision
making were realized via Algorithm 1 and Algorithm 2
respectively. The results obtained for the healthy system
case are given in Fig.1. The plots (a), (b) and (c) describe
behavior of the variables u(t), y1(t) and y2(t) respectively,
while the plot (d) describes behavior of the residual vector
norm and adaptive threshold. Nonzero value of the residual
norm is explained by approximate character of the refer-
ence model due to expansion of square root into series.
The value of the threshold constant term Π0 = 2×10−4 is
taken from the condition of false alarm absence at instant
t = 300sec.

Figures 2, 3 and 4 correspond to the first (af2 = 0.1 at

t = 350sec), second (af3 = 0.2 at t = 500sec) and the third

(af4 = 0.1 at t = 700sec) faults respectively. Under this, the
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plots denoted (a) describe behavior of the residual vector
norm and adaptive threshold, while plots (b), (c) and (d)
correspond to angle distance αj , 1 ≤ j ≤ 3 in a case when
this distance exceeds the value αmin = 0.9. If for some j
holds αj ≤ αmin it is shown αj = 0 at appropriate plot.

Comparing the plots (b), (c) and (d), obtained for differ-
ent faults, allows making conclusion about possibility to
isolate all the faults.

5. CONCLUSION

In present paper, an effective solution has been given to
the problem of robust fault diagnosis in dynamic sys-
tems described by nonlinear ordinary differential equa-
tions with unknown constant coefficients. In contrast to
former papers, proposed solution admits the influence of
unstructured disturbances on the diagnostic process due to
uncontrollable external actions, noise of measurements and
approximations assumed under reference model design.

Proposed solution combines the nonparametric method
of the residual generation and unified decision making
method, as its complement. In some sense, proposed uni-
fied decision making method is also nonparametric one as
soon it assumes unknown coefficients evaluation if neces-
sary.

As a result, application of proposed results gives the possi-
bility to develop the same diagnostic platform for different
systems described by the ordinary differential equations of
the same structure but distinguished by coefficient values.
It allows speaking about practical significance of the paper
results.
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Fig. 1. The healthy system case

Fig. 2. The first fault in the system

Fig. 3. The second fault in the system

Fig. 4. The third fault in the system
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